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Preface

What is geometry about?

Geometry ‘measuring the world’ attempts to describe and understand space around
us and all that is in it. It is the central activity and main driving force in many branches
of math and physics, and offers a whole range of views on the nature and meaning
of the universe. This book treats geometry in a wide context, including a wealth of
relations with surrounding areas of math and other aspects of human experience.

Any discussion of geometry involves tension between the twin ideals of intuition
and precision. Descriptive or synthetic geometry takes as its starting point our ideas
and experience of the observed world, and treats geometric objects such as lines and
shapes as objects in their own right. For example, a line could be the path of a light
ray in space; you can envisage comparing line segments or angles by ‘moving’ one
over another, thus giving rise to notions of ‘congruent’ figures, equal lengths, or equal
angles that are independent of any quantitative measurement. If A, B, C are points
along a line segment, what it means for B to be between A and C is an idea hard-wired
into our consciousness. While descriptive geometry is intuitive and natural, and can
be made mathematically rigorous (and, of course, Euclidean geometry was studied in
these terms for more than two millennia, compare 9.1), this is not my main approach
in this book.

My treatment centres rather on coordinate geometry. This uses Descartes’ idea
(1637) of measuring distances to view points of space and geometric quantities in
terms of numbers, with respect to a fixed origin, using intuitive ideas such as ‘a bit
to the right’ or ‘a long way up’ and using them quantitatively in a systematic and
precise way. In other words, I set up the (x, y)-plane R

2, the (x, y, z)-space R
3 or

whatever I need, and use it as a mathematical model of the plane (space, etc.), for
the purposes of calculations. For example, to plan the layout of a car park, I might
map it onto a sheet of paper or a computer screen, pretending that pairs (x, y) of real
numbers correspond to points of the surface of the earth, at least in the limited region
for which I have planning permission. Geometric constructions, such as drawing an
even rectangular grid or planning the position of the ticket machines to ensure the
maximum aggravation to customers, are easier to make in the model than in real

xiii
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xiv PREFACE

z

x

y

A coordinate model of space.

life. We admit possible drawbacks of our model, but its use divides any problem into
calculations within the model, and considerations of how well it reflects the practical
world.

Topology is the youngster of the geometry family. Compared to its venerable
predecessors, it really only got going in the twentieth century. It dispenses with
practically all the familiar quantities central to other branches of geometry, such
as distance, angles, cross-ratios, and so on. If you are tempted to the conclusion
that there is not much left for topology to study, think again. Whether two loops of
string are linked or not does not depend on length or shape or perspective; if that
seems too simple to be a serious object of study, what about the linking or knotting
of strands of DNA, or planning the over- and undercrossings on a microchip? The
higher dimensional analogues of disconnecting or knotting are highly nontrivial and
not at all intuitive to denizens of the lower dimensions such as ourselves, and cannot
be discussed without formal apparatus. My treatment of topology runs briefly through
abstract point-set topology, a fairly harmless generalisation of the notion of continuity
from a first course on analysis and metric spaces. However, my main interest is in
topology as rubber-sheet geometry, dealing with manifestly geometric ideas such as
closed curves, spheres, the torus, the Möbius strip and the Klein bottle.

Change of coordinates, motions, group theory
and the Erlangen program

Descartes’ idea to use numbers to describe points in space involves the choice of
a coordinate system or coordinate frame: an origin, together with axes and units of
length along the axes. A recurring theme of all the different geometries in this book
is the question of what a coordinate frame is, and what I can get out of it. While
coordinates provide a convenient framework to discuss points, lines, and so on, it
is a basic requirement that any meaningful statement in geometry is independent of
the choice of coordinates. That is, coordinate frames are a humble technical aid in
determining the truth, and are not allowed the dignity of having their own meaning.

Changing from one coordinate frame to another can be viewed as a transformation
or motion: I can use a motion of space to align the origin and coordinate axes of two
coordinate systems. A statement that remains true under any such motion is indepen-
dent of the choice of coordinates. Felix Klein’s 1872 Erlangen program formalises
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PREFACE xv

this relation between geometric properties and changes of coordinates by defining
geometry to be the study of properties invariant under allowed coordinate changes,
that is, invariant under a group of transformations. This approach is closely related to
the point of view of special relativity in theoretical physics (Einstein, 1905), which
insists that the laws of physics must be invariant under Lorentz transformations.

This course discusses several different geometries: in some case the spaces them-
selves are different (for example, the sphere and the plane), but in others the differ-
ence is purely in the conventions I make about coordinate changes. Metric geometries
such as Euclidean and hyperbolic non-Euclidean geometry include the notions of dis-
tance between two points and angle between two lines. The allowed transformations
are rigid motions (isometries or congruences) of Euclidean or hyperbolic space. Affine
and projective geometries consider properties such as collinearity of points, and the
typical group is the general linear group GL(n), the group of invertible n × n ma-
trixes. Projective geometry presents an interesting paradox: while its mathematical
treatment involves what may seem to be quite arcane calculations, your brain has a
sight driver that carries out projective transformations by the thousand every time
you recognise an object in perspective, and does so unconsciously and practically
instantaneously.

The sets of transformations that appear in topology, for example the set of all
continuous one-to-one maps of the interval [0, 1] to itself, or the same thing for the
circle S1 or the sphere S2, are of course too big for us to study by analogy with trans-
formation groups such as GL(n) or the Euclidean group, whose elements depend on
finitely many parameters. In the spirit of the Erlangen program, properties of spaces
that remain invariant under such a huge set of equivalences must be correspondingly
coarse. I treat a few basic topological properties such as compactness, connectedness,
winding number and simple connectedness that appear in many different areas of
analysis and geometry. I use these simple ideas to motivate the central problem of
topology: how to distinguish between topologically different spaces? At a more ad-
vanced level, topology has developed systematic invariants that apply to this problem,
notably the fundamental group and homology groups. These are invariants of spaces
that are the same for topologically equivalent spaces. Thus if you can calculate one
of these invariants for two spaces (for example, a disc and a punctured disc) and
prove that the answers are different, then the spaces are certainly not topologically
equivalent. You may want to take subsequent courses in topology to become a real
expert, and this course should serve as a useful guide in this.

Geometry in applications

Although this book is primarily intended for use in a math course, and the topics are
oriented towards the theoretical foundations of geometry, I must stress that the math
ideas discussed here are applicable in different ways, basic or sophisticated, as stated
or with extra development, on their own or in combination with other disciplines,
Euclidean or non-Euclidean, metric or topological, to a huge variety of scientific and
technological problems in the modern world. I discuss in Chapter 8 the quantum
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xvi PREFACE

mechanical description of the electron that illustrates a fundamental application of
the ideas of group theory and topology to the physics of elementary particles. To
move away from basic to more applied science, let me mention a few examples
from technology. The typesetting and page layout software now used throughout the
newspaper and publishing industry, as well as in the computer rooms of most univer-
sity departments, can obviously not exist without a knowledge of basic coordinate
geometry: even a primary instruction such as ‘place letter A or box B, scaled by such-
and-such a factor, slanted at such-and-such an angle, at such-and-such a point on the
page’ involves affine transformations. Within the same industry, computer typefaces
themselves are designed using Bezier curves. The geometry used in robotics is more
sophisticated. The technological aim is, say, to get a robot arm holding a spanner into
the right position and orientation, by adjusting some parameters, say, angles at joints
or lengths of rods. This translates in a fairly obvious way into the geometric prob-
lem of parametrising a piece of the Euclidean group; but the solution or approximate
solution of this problem is hard, involving the topology and analysis of manifolds,
algebraic geometry and singularity theory. The computer processing of camera im-
ages, whose applications include missile guidance systems, depends among other
things on projective transformations (I say this for the benefit of students looking
for a career truly worthy of their talents and education). Although scarcely having
the same nobility of purpose, similar techniques apply in ultrasonic scanning used
in antenatal clinics; here the geometric problem is to map the variations in density
in a 3-dimensional medium onto a 2-dimensional computer screen using ultrasonic
radar, from which the human eye can easily make out salient features. By a curious
coincidence, 3 hours before I, the senior author, gave the first lecture of this course in
January 1989, I was at the maternity clinic of Walsgrave hospital Coventry looking
at just such an image of a 16-week old foetus, now my third daughter Murasaki.

About this book

Who the
book is for

This book is intended for the early years of study of an undergraduate math course.
For the most part, it is based on a second year module taught at Warwick over many
years, a module that is also taken by first and third year math students, and by students
from the math/physics course. You will find the book accessible if you are familiar
with most of the following, which is standard material in first and second year math
courses.

Coordinate geometry How to express lines and circles in R
2 in terms of coordi-

nates, and calculate their points of intersection; some idea of how to do the same in
R

3 and maybe R
n may also be helpful.

Linear algebra Vector spaces and linear maps over R and C, bases and matrixes,
change of bases, eigenvalues and eigenvectors. This is the only major piece of math
that I take for granted. The examples and exercises make occasional reference to
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PREFACE xvii

vector spaces over fields other than R or C (such as finite fields), but you can always
omit these bits if they make you uncomfortable.

Multilinear algebra Bilinear and quadratic forms, and how to express them in ma-
trix terms; also Hermitian forms. I summarise all the necessary background material
in Appendix B.

Metric spaces Some prior familiarity with the first ideas of a metric space course
would not do any harm, but this is elementary material, and Appendix A contains all
that you need to know.

Group theory I have gone to some trouble to develop from first principles all
the group theory that I need, with the intention that my book can serve as a first
introduction to transformation groups and the notions of abstract group theory if you
have never seen these. However, if you already have some idea of basic things such
as composition laws, subgroups, cosets and the symmetric group, these will come in
handy as motivation. If you prefer to see a conventional introduction to group theory,
there are any number of textbooks, for example Green [10] or Ledermann [14]. If you
intend to study group theory beyond the introductory stage, I strongly recommend
Artin [1] or Segal [22]. My ideological slant on this issue is discussed in more detail
in 9.2.

How to use
the book

Although the thousands queueing impatiently at supermarkets and airport bookshops
to get their hands on a copy of this book for vacation reading was strong motivation
for me in writing it, experience suggests the harsher view of reality: at least some of
my readers may benefit from coercion in the form of an organised lecture course.

Experience from teaching at Warwick shows that Chapters 1–6 make a reasonably
paced 30 hour second year lecture course. Some more meat could be added to subjects
that the lecturer or students find interesting; reflection groups following Coxeter [5],
Chapter 4 would be one good candidate. Topics from Chapters 7–8 or the further
topics of Chapter 9 could then profitably be assigned to students as essay or project
material. An alternative course oriented towards group theory could start with affine
and Euclidean geometry and some elements of topology (maybe as a refresher), and
concentrate on Chapters 3, 6 and 8, possibly concluding with some material from
Segal [22]. This would provide motivation and techniques to study matrix groups
from a geometric point of view, one often ignored in current texts.

The author’s
identity
crisis

I want the book to be as informal as possible in style. To this end, I always refer
to the student as ‘you’, which has the additional advantage that it is independent of
your gender and number. I also refer to myself by the first person singular, despite
the fact that there are two of me. Each of me has lectured the material many times,
and is used to taking personal responsibility for the truth of my assertions. My model
is van der Waerden’s style, who always wrote the crisp ‘Ich behaupte . . . ’ (often
when describing results he learned from Emmy Noether or Emil Artin’s lectures). I
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leave you to imagine the speaker as your ideal teacher, be it a bearded patriarch or a
fresh-faced bespectacled Central European intellectual.

Acknowledge-
ments

A second year course with the title ‘Geometry’ or ‘Geometry and topology’ has
been given at Warwick since the 1960s. It goes without saying that my choice of
material, and sometimes the material itself, is taken in part from the experience of
colleagues, including John Jones, Colin Rourke, Brian Sanderson; David Epstein has
also provided some valuable material, notably in the chapter on hyperbolic geom-
etry. I have also copied material consciously or unconsciously from several of the
textbooks recommended for the course, in particular Coxeter [5], Rees [19], Nikulin
and Shafarevich [18] and Feynman [7]. I owe special thanks to Katrin Wendland, the
most recent lecturer of the Warwick course MA243 Geometry, who has provided a
detailed criticism of my text, thereby saving me from a variety of embarrassments.

Disclaimer Wen solche Lehren nicht erfreun,
Verdienet nicht ein Mensch zu sein.

From Sarastro’s aria, The Magic Flute, II.3.

This is an optional course. If you don’t like my teaching, please deregister before the
deadline.
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