This book describes electron microprobe analysis (EMPA) and scanning electron microscopy (SEM) specifically from a geological viewpoint. No prior knowledge is assumed and unnecessary technical detail is avoided, in order to keep the book easily accessible to new users of these techniques.

The principles of electron–specimen interactions and instrumentation are covered in the first part of the book. The mechanisms involved in SEM (secondary and backscattered electron) image formation are then explained, with full consideration of digital imaging techniques. The operating principles of energy- and wavelength-dispersive X-ray spectrometers are described, as well as ancillary techniques including cathodoluminescence (CL) and electron backscatter diffraction (EBSD). Procedures for qualitative and quantitative X-ray analysis (using either electron microprobe or SEM instruments) are described in detail. The production of X-ray ‘maps’ showing element distributions is also described, with examples. Finally the subject of specimen preparation is discussed. There is an emphasis throughout on specifically geological aspects not covered in books aimed at a more general readership.

This updated version of the first (1996) edition takes full account of recent developments and is intended for geological graduate students and postdoctoral workers, as well as those in commercial laboratories. It is also an invaluable accompaniment to courses for geological EMPA and SEM users.

Dr Reed is affiliated to the Department of Earth Sciences at the University of Cambridge. He has spent over forty years practising and researching electron microprobe analysis. After studying physics at Southampton University, he gained a Ph.D. from the University of Cambridge in 1964 for research in using EMPA to analyse iron meteorites. He went on to be a Scientific Officer at the Natural History Museum, London from 1965 until 1970 before his appointment as Senior Research Fellow at the Australian...
National University, Canberra in 1970, where he implemented a new system for quantitative ED analysis. From 1974 until his retirement in 2002, Dr Reed was at the Department of Earth Sciences, University of Cambridge with research interests including ion and electron microprobe analysis and developing simulation software. In 1981 he was awarded the Microbeam Analysis Society Presidential Award for his outstanding scientific contribution to the theory and practice of microbeam analysis, followed in 1984 by honorary life membership. He has written, and contributed to, several books on the subject, including *Electron Microprobe Analysis* (Cambridge University Press, first edn 1975, second edn 1993).
ELECTRON MICROPROBE ANALYSIS
AND SCANNING ELECTRON MICROSCOPY IN GEOLOGY

S. J. B. REED
University of Cambridge
Contents

Preface xi
Acknowledgments xiii

1 Introduction 1
 1.1 Electron microprobe analysis 1
 1.2 Scanning electron microscopy 1
 1.2.1 Use of SEM for analysis 2
 1.3 Geological applications of SEM and EMPA 2
 1.4 Related techniques 4
 1.4.1 Analytical electron microscopy 4
 1.4.2 Proton-induced X-ray emission 4
 1.4.3 X-ray fluorescence analysis 5
 1.4.4 Auger analysis 5
 1.4.5 Ion microprobe analysis 6
 1.4.6 Laser microprobe methods 6

2 Electron–specimen interactions 7
 2.1 Introduction 7
 2.2 Inelastic scattering 7
 2.2.1 Electron range 8
 2.3 Elastic scattering 8
 2.3.1 Backscattering 9
 2.4 Secondary-electron emission 11
 2.5 X-ray production 11
 2.5.1 The continuous X-ray spectrum 12
 2.5.2 Characteristic X-ray spectra 12
 2.6 X-ray absorption 16
 2.7 The Auger effect and fluorescence yield 17
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8</td>
<td>Cathodoluminescence</td>
<td>17</td>
</tr>
<tr>
<td>2.9</td>
<td>Specimen heating</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>Instrumentation</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>The electron gun</td>
<td>21</td>
</tr>
<tr>
<td>3.2.1</td>
<td>High-brightness electron sources</td>
<td>23</td>
</tr>
<tr>
<td>3.3</td>
<td>Electron lenses</td>
<td>23</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Aberrations</td>
<td>25</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Apertures</td>
<td>27</td>
</tr>
<tr>
<td>3.4</td>
<td>Beam diameter and current</td>
<td>27</td>
</tr>
<tr>
<td>3.5</td>
<td>Column alignment</td>
<td>27</td>
</tr>
<tr>
<td>3.6</td>
<td>Beam current monitoring</td>
<td>28</td>
</tr>
<tr>
<td>3.7</td>
<td>Beam scanning</td>
<td>29</td>
</tr>
<tr>
<td>3.8</td>
<td>The specimen stage</td>
<td>30</td>
</tr>
<tr>
<td>3.9</td>
<td>The optical microscope</td>
<td>32</td>
</tr>
<tr>
<td>3.10</td>
<td>Vacuum systems</td>
<td>33</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Contamination</td>
<td>34</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Low-vacuum or environmental SEM</td>
<td>34</td>
</tr>
<tr>
<td>3.11</td>
<td>Electron detectors</td>
<td>35</td>
</tr>
<tr>
<td>3.11.1</td>
<td>Secondary-electron detectors</td>
<td>35</td>
</tr>
<tr>
<td>3.11.2</td>
<td>Backscattered-electron detectors</td>
<td>36</td>
</tr>
<tr>
<td>3.12</td>
<td>Detection of other types of signal</td>
<td>37</td>
</tr>
<tr>
<td>3.12.1</td>
<td>Auger electrons</td>
<td>37</td>
</tr>
<tr>
<td>3.12.2</td>
<td>Cathodoluminescence</td>
<td>38</td>
</tr>
<tr>
<td>3.12.3</td>
<td>Electron-backscatter diffraction</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>Scanning electron microscopy</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Magnification and resolution</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>Focussing</td>
<td>42</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Working distance</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>Topographic images</td>
<td>43</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Secondary-electron images</td>
<td>43</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Topographic contrast in BSE images</td>
<td>45</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Spatial resolution</td>
<td>49</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Depth of focus</td>
<td>52</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Stereoscopic images</td>
<td>52</td>
</tr>
<tr>
<td>4.4.6</td>
<td>Environmental SEM</td>
<td>53</td>
</tr>
<tr>
<td>4.5</td>
<td>Compositional images</td>
<td>53</td>
</tr>
</tbody>
</table>
Contents

4.5.1 Atomic-number discrimination in BSE images 55
4.5.2 Spatial resolution in BSE images 61
4.5.3 The application of etching 61
4.6 Image defects 61
4.6.1 Statistical noise 61
4.6.2 Specimen charging 62
4.6.3 Stray field and vibration 63
4.6.4 Astigmatism 63
4.6.5 Coating artefacts 64
4.7 Image enhancement 64
4.7.1 Digital image processing 64
4.7.2 False colours 67
4.8 Other types of image 68
4.8.1 Absorbed-current images 68
4.8.2 Magnetic-contrast images 70
4.8.3 Electron-backscatter diffraction images 70
4.8.4 Cathodoluminescence images 73
4.8.5 Charge-contrast images 77
4.8.6 Scanning Auger images 77

5 X-ray spectrometers 78
5.1 Introduction 78
5.2 Energy-dispersive spectrometers 78
5.2.1 Solid-state X-ray detectors 78
5.2.2 Energy resolution 80
5.2.3 Detection efficiency 81
5.2.4 Pulse processing and dead-time 82
5.2.5 Spectrum display 84
5.2.6 Artefacts in ED spectra 86
5.3 Wavelength-dispersive spectrometers 88
5.3.1 Bragg reflection 88
5.3.2 Focussing geometry 90
5.3.3 Design 92
5.3.4 Proportional counters 94
5.3.5 Pulse counting and dead-time 96
5.4 A comparison between ED and WD spectrometers 97

6 Element mapping 99
6.1 Introduction 99
6.2 Digital mapping 99
6.3 EDS mapping 100
6.4 WDS mapping 102
6.5 Quantitative mapping 102
6.6 Statistics and noise in maps 104
6.7 Colour maps 104
6.8 Modal analysis 105
6.9 Line scans 109
6.10 Three-dimensional maps 109

7 X-ray analysis (1) 110
7.1 Introduction 110
7.2 Pure-element X-ray spectra 110
7.3 Element identification 113
7.4 Mineral identification 115
7.5 Quantitative WD analysis 115
 7.5.1 Background corrections 117
 7.5.2 Overlap corrections 117
 7.5.3 Uncorrected concentrations 118
7.6 Quantitative ED analysis 120
 7.6.1 Background corrections in ED analysis 120
 7.6.2 Measuring peak intensities in ED analysis 121
 7.6.3 A comparison between ED and WD analysis 121
7.7 Matrix corrections 122
 7.7.1 Atomic-number corrections 122
 7.7.2 Absorption corrections 123
 7.7.3 Fluorescence corrections 124
 7.7.4 Alpha coefficients 126
 7.7.5 The accuracy of matrix corrections 126
7.8 Correction programs 127
 7.8.1 Unanalysed elements 127
7.9 Treatment of results 128
 7.9.1 Polyvalency 129
 7.9.2 Mineral formulae 130
 7.9.3 Data presentation 131
7.10 Standards 131
 7.10.1 Standardless analysis 135

8 X-ray analysis (2) 136
8.1 Light-element analysis 136
 8.1.1 Chemical bonding effects 137
8.1.2 Absorption corrections for light elements 138
8.1.3 Application of multilayers 138
8.2 Low-voltage analysis 139
8.3 Choice of conditions for quantitative analysis 139
8.4 Counting statistics 140
8.4.1 Homogeneity 141
8.5 Detection limits 142
8.6 The effect of the conductive coating 142
8.7 Beam damage 143
8.7.1 Heating 143
8.7.2 Migration of alkalies etc. 144
8.8 Boundary effects 146
8.9 Special cases 146
8.9.1 Tilted specimens 147
8.9.2 Broad-beam analysis 147
8.9.3 Particles 148
8.9.4 Rough and porous specimens 149
8.9.5 Thin specimens 149
8.9.6 Fluid inclusions 150
8.9.7 Analysis in low vacuum 151

9 Sample preparation 152
9.1 Initial preparation of samples 152
9.1.1 Cleaning 152
9.1.2 Drying 152
9.1.3 Impregnation 153
9.1.4 Replicas and casts 153
9.1.5 Cutting rock samples 154
9.2 Mounting 155
9.2.1 The SEM ‘stub’ 155
9.2.2 Embedding 155
9.2.3 Thin sections 156
9.2.4 Grain mounts 156
9.2.5 Standards 157
9.3 Polishing 158
9.4 Etching 158
9.5 Coating 159
9.5.1 Carbon coating 160
9.5.2 Metal evaporation 161
9.5.3 Sputter coating 161
Contents

9.5.4 Removing coatings 162
9.6 Marking specimens 163
 9.6.1 Specimen ‘maps’ 163
9.7 Specimen handling and storage 164

Appendix 165
References 182
Index 190
Preface

The favourable reception given to the first (1996) edition of this book suggests that the joint treatment of electron microprobe analysis (EMPA) and scanning electron microscopy (SEM) with a specifically geological slant has been found to serve a useful purpose. It was therefore decided to proceed with this second, revised and updated, edition. The inclusion of both EMPA and SEM can be justified on the grounds that the instruments share much in common and their functions overlap: SEMs fitted with X-ray spectrometers are often used in analytical mode, while EMP instruments, though designed primarily for analysis, also have imaging functions similar to those of the SEM.

The capabilities of the computers used both for instrument control and for data processing have increased greatly since the first edition. Whilst this allows more sophisticated software functions, it does not diminish the need to understand both the operating principles of the instruments and the factors controlling the results, the explanation of which is the main purpose of this book. Digital rather than analogue imaging is now the norm, with concomitant advantages provided by image processing and image analysis techniques. The increasing use of ‘false’ colour images in various forms is reflected in an expanded colour section in this edition. Significant instrumental developments include the increasing adoption of field emission electron sources, which are especially beneficial for high-resolution SEM applications. Also, variable-pressure or environmental SEMs are more commonly used. In addition, interest in ancillary techniques such as cathodoluminescence and electron backscatter diffraction has grown.

As before, no prior knowledge is expected of the reader and technical detail is limited to that needed for a sound understanding of operating principles and interpretation of results. It is hoped that the book will be particularly useful to
Preface

postgraduate students and postdoctoral researchers in university geology departments, where it may serve as an accompaniment to courses for SEM and EMPA users.

Inevitably a book reflects the bias of the author and for this I ask the reader’s indulgence, as well as for any errors or omissions.
I am greatly indebted to the following for providing illustrative material: J. Barreau (Fig. 4.21), N.J. Butterfield (Fig. 4.10) and J.A.D. Dickson (Figs. 4.7 and 4.19), Department of Earth Sciences, University of Cambridge; N. Cayzer (Figs. 4.8, 4.23 and cover), S. Haszeldine (Fig. 4.11) and N. Kelly (Fig. 4.33), Department of Geology and Geophysics, University of Edinburgh; T.J. Fagan (Plate 7), School of Ocean Science and Technology, University of Hawai’i at Manoa; B.J. Griffin (Fig. 4.34), Centre for Microscopy and Microanalysis, University of Western Australia; M. Jercinovic and M. Williams (Plates 5 and 6), Department of Geosciences, University of Massachusetts; M. Lee (Fig. 4.32), Division of Earth Sciences, University of Glasgow; G. E. Lloyd (Plate 3), Department of Earth Sciences, University of Leeds; E.W. Macdonald (Fig. 4.9), Department of Earth Sciences, Dalhousie University; A. Markowitz and K.L. Milliken (Plate 4(a)) and R.M. Reed (Plate 4(b)), Department of Geological Sciences, University of Texas at Austin; F.S. Spear and C.G. Daniel (Plate 8), Department of Earth and Environmental Sciences, Rensselaar Polytechnic Institute; P.D. Taylor (Fig. 4.18), Department of Palaeontology, Natural History Museum, London; and P. Trimby (Fig. 4.31), HKL Technology, Hobro, Denmark.

Copyright permission was kindly granted by the following: Mineralogical Society of America (Plate 8); Paleontological Society (Fig. 4.9); Journal of Sedimentary Research (Plate 4(a)); Meteoritics and Planetary Sciences (Plate 7); and Microscopy and Analysis (Fig. 4.32).

I thank Matt Lloyd and others at Cambridge University Press for facilitating the production of this edition.

On a personal note, I would like to record my indebtedness to Jim Long (1926-2003), who played a pivotal role in the development of EMPA in Britain, and whose knowledge and wisdom are greatly missed.