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1 Coding and Capacity

1.1 Digital Data Communication and Storage

Digital communication systems are ubiquitous in our daily lives. The most obvious
examples include cell phones, digital television via satellite or cable, digital radio,
wireless internet connections via Wi-Fi and WiMax, and wired internet connec-
tion via cable modem. Additional examples include digital data-storage devices,
including magnetic (“hard”) disk drives, magnetic tape drives, optical disk drives
(e.g., CD, DVD, blu-ray), and flash drives. In the case of data-storage, informa-
tion is communicated from one point in time to another rather than one point in
space to another. Each of these examples, while widely different in implementa-
tion details, generally fits into a common digital communication framework first
established by C. Shannon in his 1948 seminal paper, A Mathematical Theory
of Communication [1]. This framework is depicted in Figure 1.1, whose various
components are described as follows.

Source and user (or sink). The information source may be originally in analog
form (e.g., speech or music) and then later digitized, or it may be originally in
digital form (e.g., computer files). We generally think of its output as a sequence
of bits, which follow a probabilistic model. The user of the information may be
a person, a computer, or some other electronic device.

Source encoder and source decoder. The encoder is a processor that converts
the information source bit sequence into an alternative bit sequence with a
more efficient representation of the information, i.e., with fewer bits. Hence, this
operation is often called compression. Depending on the source, the compression
can be lossless (e.g., for computer data files) or lossy (e.g., for video, still images,
or music, where the loss can be made to be imperceptible or acceptable). The
source decoder is the encoder’s counterpart which recovers the source sequence
exactly, in the case of lossless compression, or approximately, in the case of lossy
compression, from the encoder’s output sequence.

Channel encoder and channel decoder. The role of the channel encoder is to
protect the bits to be transmitted over a channel subject to noise, distortion,
and interference. It does so by converting its input into an alternate sequence
possessing redundancy, whose role is to provide immunity from the various
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Figure 1.1 Basic digital communication- (or storage-) system block diagram due to Shannon.

channel impairments. The ratio of the number of bits that enter the channel
encoder to the number that depart from it is called the code rate, denoted by
R, with 0 < R < 1. For example, if a 1000-bit codeword is assigned to each
500-bit information word, R = 1/2, and there are 500 redundant bits in each
codeword. The function of the channel decoder is to recover from the channel
output the input to the channel encoder (i.e., the compressed sequence) in spite
of the presence of noise, distortion, and interference in the received word.

Modulator and demodulator. The modulator converts the channel-encoder out-
put bit stream into a form that is appropriate for the channel. For example,
for a wireless communication channel, the bit stream must be represented by
a high-frequency signal to facilitate transmission with an antenna of reason-
able size. Another example is a so-called modulation code used in data storage.
The modulation encoder output might be a sequence that satisfies a certain
runlength constraint (runs of like symbols, for example) or a certain spectral
constraint (the output contains a null at DC, for example). The demodulator is
the modulator’s counterpart which recovers the modulator input sequence from
the modulator output sequence.

Channel. The channel is the physical medium through which the modulator
output is conveyed, or by which it is stored. Our experience teaches us that
the channel adds noise and often interference from other signals, on top of the
signal distortion that is ever-present, albeit sometimes to a minor degree. For
our purposes, the channel is modeled as a probabilistic device, and examples will
be presented below. Physically, the channel can included antennas, amplifiers,
and filters, both at the transmitter and at the receiver at the ends of the system.
For a hard-disk drive, the channel would include the write head, the magnetic
medium, the read head, the read amplifier and filter, and so on.

Following Shannon’s model, Figure 1.1 does not include such blocks as encryp-
tion/decryption, symbol-timing recovery, and scrambling. The first of these is
optional and the other two are assumed to be ideal and accounted for in the
probabilistic channel models. On the basis of such a model, Shannon showed that
a channel can be characterized by a parameter, C, called the channel capacity,
which is a measure of how much information the channel can convey, much like
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1.2 Channel-Coding Overview 3

the capacity of a plumbing system to convey water. Although C can be repre-
sented in several different units, in the context of the channel code rate R, which
has the units information bits per channel bit, Shannon showed that codes exist
that provide arbitrarily reliable communication provided that the code rate sat-
isfies R < C. He further showed that, conversely, if R > C, there exists no code
that provides reliable communication.

Later in this chapter, we review the capacity formulas for a number of commonly
studied channels for reference in subsequent chapters. Prior to that, however, we
give an overview of various channel-coding approaches for error avoidance in data-
transmission and data-storage scenarios. We then introduce the first channel code
invented, the (7,4) Hamming code, by which we mean a code that assigns to
each 4-bit information word a 7-bit codeword according to a recipe specified by
R. Hamming in 1950 [2]. This will introduce to the novice some of the elements
of channel codes and will serve as a launching point for subsequent chapters.
After the introduction to the (7,4) Hamming code, we present code- and decoder-
design criteria and code-performance measures, all of which are used throughout
this book.

1.2 Channel-Coding Overview

The large number of coding techniques for error prevention may be partitioned
into the set of automatic request-for-repeat (ARQ) schemes and the set of forward-
error-correction (FEC) schemes. In ARQ schemes, the role of the code is simply
to reliably detect whether or not the received word (e.g., received packet) contains
one or more errors. In the event a received word does contain one or more errors,
a request for retransmission of the same word is sent out from the receiver back
to the transmitter. The codes in this case are said to be error-detection codes. In
FEC schemes, the code is endowed with characteristics that permit error correction
through an appropriately devised decoding algorithm. The codes for this approach
are said to be error-correction codes, or sometimes error-control codes. There also
exist hybrid FEC/ARQ schemes in which a request for retransmission occurs if
the decoder fails to correct the errors incurred over the channel and detects this
fact. Note that this is a natural approach for data-storage systems: if the FEC
decoder fails, an attempt to re-read the data is made. The codes in this case are
said to be error-detection-and-correction codes.

The basic ARQ schemes can broadly be subdivided into the following protocols.
First is the stop-and-wait ARQ scheme in which the transmitter sends a codeword
(or encoded packet) and remains idle until the ACK/NAK status signal is returned
from the receiver. If a positive acknowledgment (ACK) is returned, a new packet
is sent; otherwise, if a negative acknowledgment (NAK) is returned, the current
packet, which was stored in a buffer, is retransmitted. The stop-and-wait method
is inherently inefficient due to the idle time spent waiting for confirmation.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521848688
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-84868-8 - Channel Codes: Classical and Modern
William E. Ryan and Shu Lin

Excerpt
More information
4 Coding and Capacity

In go-back-N ARCQ), the idle time is eliminated by continually sending pack-
ets while waiting for confirmations. If a packet is negatively acknowledged, that
packet and the N — 1 subsequent packets sent during the round-trip delay are
retransmitted. Note that this preserves the ordering of packets at the receiver.

In selective-repeat ARQ), packets are continually transmitted as in go-back-N
ARQ), except only the packet corresponding to the NAK message is retransmitted.
(The packets have “headers,” which effectively number the information block for
identification.) Observe that, because only one packet is retransmitted rather than
N, the throughput of accepted packets is increased with selective-repeat ARQ
relative to go-back-N ARQ. However, there is the added requirement of ample
buffer space at the receiver to allow re-ordering of the blocks.

In incremental-redundancy ARQ), upon receiving a NAK message for a given
packet, the transmitter transmits additional redundancy to the receiver. This addi-
tional redundancy is used by the decoder together with the originally received
packet in a second attempt to recover the original data. This sequence of
steps — NAK, additional redundancy, re-decode — can be repeated a number of
times until the data are recovered or the packet is declared lost.

While ARQ schemes are very important, this book deals exclusively with FEC
schemes. However, although the emphasis is on FEC, each of the FEC codes intro-
duced can be used in a hybrid FEC/ARQ scheme where the code is used for both
correction and detection. There exist many FEC schemes, employing both linear
and nonlinear codes, although virtually all codes used in practice can be charac-
terized as linear or linear at their core. Although the concept will be elucidated in
Chapter 3, a linear code is one for which any sum of codewords is another codeword
in the code. Linear codes are traditionally partitioned to the set of block codes
and convolutional, or trellis-based, codes, although the turbo codes of Chapter 7
can be seen to be a hybrid of the two. Among the linear block codes are the cyclic
and quasi-cyclic codes (defined in Chapter 3), both of which have more algebraic
structure than do standard linear block codes. Also, we have been tacitly assuming
binary codes, that is, codes whose code symbols are either 0 or 1. However, codes
whose symbols are taken from a larger alphabet (e.g., 8-bit ASCII characters or
1000-bit packets) are possible, as described in Chapters 3 and 14.

This book will provide many examples of each of these code types, including
nonbinary codes, and their decoders. For now, we introduce the first FEC code,
due to Hamming [2], which provides a good introduction to the field of channel
codes.

1.3 Channel-Code Archetype: The (7,4) Hamming Code

The (7,4) Hamming code serves as an excellent channel-code prototype since it
contains most of the properties of more practical codes. As indicated by the nota-
tion (7,4), the codeword length is n = 7 and the data word length is k =4, so
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Figure 1.2 Venn-diagram representation of (7,4) Hamming-code encoding and decoding rules.

the code rate is R = 4/7. As shown by R. McEliece, the Hamming code is easily
described by the simple Venn diagram in Figure 1.2. In the diagram, the infor-
mation word is represented by the vector u = (ug, u1, u2, ug) and the redundant
bits (called parity bits) are represented by the parity vector p = (po, p1,p2). The
codeword (also, code vector) is then given by the concatenation of u and p:

V= (11 p) = (u07u17u27u37p07p17p2) = (U07U17U27U37U47U5av6)'

The encoding rule is trivial: the parity bits are chosen so that each circle has an
even number of 1s, i.e., the sum of bits in each circle is 0 modulo 2. From this
encoding rule, we may write

Po = ug + u2 + us,
P1 = up + Ul + uz, (1.1)
p2 = u1 + u2 + ug,

from which the 16 codewords are easily found:

0000 000 1000 110 0010 111
1111 111 0100 011 1001 O11
1010 001 1100 101
1101 000 1110 010
0110 100 0111 001
0011 010 1011 100
0001 101 0101 110

As an example encoding, consider the third codeword in the middle column,
(1010 001), for which the data word is u = (ug, u1, u2,ug) = (1,0,1,0). Then,

po=1+1+0=0,
p1:1+0+1:0,
pr=04+1+0=1,
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Figure 1.3 Venn-diagram setup for the Hamming decoding example.

yielding v = (u p) = (1010 001). Observe that this code is linear because the sum
of any two codewords yields a codeword. Note also that this code is cyclic: a cyclic
shift of any codeword, rightward or leftward, gives another codeword.

Suppose now that v = (1010 001) is transmitted, but r = (1011 001) is received.
That is, the channel has converted the 0 in code bit v into a 1. The Venn diagram
of Figure 1.3 can be used to decode r and correct the error. Note that Circle 2 in
the figure has an even number of 1s in it, but Circles 1 and 3 do not. Thus, because
the code rules are not satisfied by the bits in r, we know that r contains one or
more errors. Because a single error is more likely than two or more errors for most
practical channels, we assume that r contains a single error. Then, the error must
be in the intersection of Circles 1 and 3. However, ro = 1 in the intersection cannot
be in error because it is in Circle 2 whose rule is satisfied. Thus, it must be r3 = 1
in the intersection that is in error. Thus, v3 must be 0 rather than the 1 shown
in Figure 1.3 for r3. In conclusion, the decoded codeword is ¥ = (1010 001), from
which the decoded data @ = (1010) may be recovered.

It can be shown (see Chapter 3) that this particular single error is not special
and that, independently of the codeword transmitted, all seven single errors are
correctable and no error patterns with more than one error are correctable. The
novice might ask what characteristic of these 16 codewords endows them with the
ability to correct all single-errors. This is easily explained using the concept of the
Hamming distance dy(x,x’) between two length-n words x and x’, which is the
number of locations in which they disagree. Thus, di (1000 110,0010 111) = 3. It
can be shown, either exhaustively or using the principles developed in Chapter 3,
that dg (v, v') > 3 for any two different codewords v and v’ in the Hamming code.
We say that the code’s minimum distance is therefore dpi, = 3. Because dpyin = 3,
a single error in some transmitted codeword v yields a received vector r that is
closer to v, in the sense of Hamming distance, than any other codeword. It is for
this reason that all single errors are correctable.
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1.4 Design Criteria and Performance Measures 7

Generalizations of the Venn-diagram code description for the more complex
codes used in applications are presented in Chapter 3 and subsequent chapters.
In the chapters to follow, we will revisit the Hamming code a number of times,
particularly in the problems. We will see how to reformulate encoding so that it
employs a so-called generator matrix or, better, a simple shift-register circuit. We
will also see how to reformulate decoding so that it employs a so-called parity-check
matrix, and we will see many different decoding algorithms. Further, we will see
applications of codes to a variety of channels, particularly ones introduced in the
next section. Finally, we will see that a “good code” generally has the following
properties: it is easy to encode, it is easy to decode, it a has large dpn, and/or
the number of codewords at the distance dyi, from any other codeword is small.
We will see many examples of good codes in this book, and of their construction,
their encoding, and their decoding.

1.4 Design Criteria and Performance Measures

Although there exist many channel models, it is usual to start with the two most
frequently encountered memoryless channels: the binary symmetric channel (BSC)
and the binary-input additive white-Gaussian-noise channel (BILAWGNC). Exam-
ination of the BSC and BI-AWGNC illuminates many of the salient features of
code and decoder design and code performance. For the sake of uniformity, for
both channels, we denote the ith channel input by x; and the ith channel output
by y;. Given channel input z; = v; € {0,1} and channel output y; € {0,1}, the
BSC is completely characterized by the channel transition probabilities P(y;|z;)
given by

P(yi =1]z; = 0) = P(y; = 0lz; = 1) =¢,

P(y;=1lz; =1)=P(yi =0]z; =0) =1 — ¢,
where ¢ is called the crossover probability. For the BILAWGNC, the code bits
are mapped to the channel inputs as z; = (—1)"" € {£1} so that z; = +1 when

v; = 0. The BILAWGNC is then completely characterized by the channel transition
probability density function (pdf) p(y;|x;) given by

pllr) = == exp|~(w = )" /(2]

where o0 is the variance of the zero-mean Gaussian noise sample n; that the
channel adds to the transmitted value x; (so that y; = x; + n;). As a consequence
of its memorylessness, we have for the BSC

Plylx) =TT Pyl (1.2)

2

where y = [y1,¥2,¥s,...] and x = [z1, 22, x3,...]. A similar expression exists for
the BILAWGNC with P(-) replaced by p(-).
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The most obvious design criterion applicable to the design of a decoder is the
minimum-probability-of-error criterion. When the design criterion is to minimize
the probability that the decoder fails to decode to the correct codeword, i.e., to
minimize the probability of a codeword error, it can be shown that this is equivalent
to maximizing the a posteriori probability P(x|y) (or p(x|y) for the BFAWGNC).
The optimal decision for the BSC is then given by

P(y|x)P(x)
P(y)

where arg maxy f(v) equals the argument v that maximizes the function f(v).
Frequently, the channel-input words are equally likely and, hence, P(x) is inde-
pendent of x (hence, v). Because P(y) is also independent of v, the maximum
a posteriori (MAP) rule (1.3) can be replaced by the mazimum-likelihood (ML)
rule

(1.3)

¥ = argmax P(x|y) = arg max
v v

v = argmax P(y[x).
Using (1.2) and the monotonicity of the log function, we have for the BSC
¢ = argmax log [T P(uifr)

= argmax Y _ log P(y;;)

— argmax [dn(y, X)log() + (1 — du (v, x))log(1 — )]

= arg mgx{dH(y, )log(1 < ) + nlog(l — 5)}

= arg mindig(y. ).
where n is the codeword length and the last line follows since logle/(1 —¢)] < 0

and nlog(l — ¢) is not a function of v.
For the BI-AWGNC, the ML decision is

¥ = argmax P(y|x),
v

keeping in mind the mapping x = (—1)V. Following a similar set of steps (and
dropping irrelevant terms), we have

v

Il
)
]
o
5
i
5}
0]
7 N
q
¢)
i
o]
l_|
&
P
)
[«
[\&)
.,
~~_

= arg min dE(Y: )7
v
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1.4 Design Criteria and Performance Measures 9

where

de(y.x) = |3 (i — 2,)?

i

is the Fuclidean distance between y and x, and on the last line we replaced d%()
by dg(-) due to the monotonicity of the square-root function for non-negative
arguments. Note that, once a decision is made on the codeword, the decoded data
word @1 may easily be recovered from ¥, particularly when the codeword is in the
form v = (u p).

In summary, for the BSC, the ML decoder chooses the codeword v that is closest
to the channel output y in a Hamming-distance sense; for the BI-AWGNC, the
ML decoder chooses the code sequence x = (—1)V that is closest to the channel
output y in a Euclidean-distance sense. The implication for code design on the
BSC is that the code should be designed to maximize the minimum Hamming
distance between two codewords (and to minimize the number of codeword pairs
at that distance). Similarly, the implication for code design on the BILAWGNC is
that the code should be designed to maximize the minimum Euclidean distance
between any two code sequences on the channel (and to minimize the number of
code-sequence pairs at that distance).

Finding the codeword v that minimizes the Hamming (or Euclidean) distance
in a brute-force, exhaustive fashion is very complex except for very simple codes
such as the (7,4) Hamming code. Thus, ML decoding algorithms have been devel-
oped that exploit code structure, vastly reducing complexity. Such algorithms
are presented in subsequent chapters. Suboptimal but less complex algorithms,
which perform slightly worse than the ML decoder, will also be presented in subse-
quent chapters. These include so-called bounded-distance decoders, list decoders,
and iterative decoders involving component sub-decoders. Often these component
decoders are based on the bit-wise MAP criterion which minimizes the probabil-
ity of bit error rather than the probability of codeword error. This bit-wise MAP
criterion is

P(y|z;)P(x;)
Ply)

where the a priori probability P(xz;) is constant (and ignored together with P(y))
if the decoder is operating in isolation, but is supplied by a companion decoder
if the decoder is part of an iterative decoding scheme. This topic will also be
discussed in subsequent chapters.

The most commonly used performance measure is the bit-error probability, P,
defined as the probability that the decoder output decision @; does not equal the
encoder input bit wu;,

0; = arg max P(z;|y) = arg max
v, U

Pb £ Pr{ﬂi 7& uz}

Strictly speaking, we should average over all i to obtain P,. However, Pr{a; = u;}
is frequently independent of ¢, although, if it is not, the averaging is understood.
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10 Coding and Capacity

P, is often called the bit-error rate, denoted BER. Another commonly used perfor-
mance measure is the codeword-error probability, P.,, defined as the probability
that the decoder output decision ¥ does not equal the encoder output codeword v,

Py 2 Pr{¥v # v}

In the coding literature, various alternative terms are used for P.,,, including word-
error rate (WER) and frame-error rate (FER). A closely related error probability
is the probability P, = Pr{ii # u}, which can be useful for some applications,
but we shall not emphasize this probability, particularly since Py, =~ P, for many
coding systems. Lastly, for nonbinary codes, the symbol-error probability P; is
pertinent. It is defined as

Ps £ Pl“{’lll' 75 ui},

where in this case the encoder input symbols u; and the decoder output symbols
@i; are nonbinary. Py is also called the symbol-error rate (SER). We shall use the
notation introduced in this paragraph throughout this book.

1.5 Channel-Capacity Formulas for Common Channel Models

From the time of Shannon’s seminal work in 1948 until the early 1990s, it was
thought that the only codes capable of operating near capacity are long, imprac-
tical codes, that is, codes that are impossible to encode and decode in practice.
However, the invention of turbo codes and low-density parity-check (LDPC) codes
in the 1990s demonstrated that near-capacity performance was possible in prac-
tice. (As explained in Chapter 5, LDPC codes were first invented circa 1960 by
R. Gallager and later independently re-invented by MacKay and others circa 1995.
Their capacity-approaching properties with practical encoders/decoders could not
be demonstrated with 1960s technology, so they were mostly ignored for about 35
years.) Because of the advent of these capacity-approaching codes, knowledge of
information theory and channel capacity has become increasingly important for
both the researcher and the practicing engineer. In this section we catalog capac-
ity formulas for a variety of commonly studied channel models. We point out that
these formulas correspond to infinite-length codes. However, we will see numerous
examples in this book where finite-length codes operate very close to capacity,
although this is possible only with long codes (n > 5000, say).

No derivations are given for the various capacity formulas. For such information,
see [3-9]. However, it is useful to highlight the general formula for the mutual
information between the channel output represented by Y and the channel input
represented by X. When the input and output take values from a discrete set,
then the mutual information may be written as

I(X;Y)=H(Y) - HY|X), (1.4)
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