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Geometric Approximation via Coresets
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Abstract. The paradigm of coresets has recently emerged as a powerful
tool for efficiently approximating various extent measures of a point set P .
Using this paradigm, one quickly computes a small subset Q of P , called
a coreset, that approximates the original set P and and then solves the
problem on Q using a relatively inefficient algorithm. The solution for Q
is then translated to an approximate solution to the original point set P .
This paper describes the ways in which this paradigm has been successfully
applied to various optimization and extent measure problems.

1. Introduction

One of the classical techniques in developing approximation algorithms is the

extraction of “small” amount of “most relevant” information from the given data,

and performing the computation on this extracted data. Examples of the use of

this technique in a geometric context include random sampling [Chazelle 2000;

Mulmuley 1993], convex approximation [Dudley 1974; Bronshteyn and Ivanov

1976], surface simplification [Heckbert and Garland 1997], feature extraction

and shape descriptors [Dryden and Mardia 1998; Costa and César 2001]. For

geometric problems where the input is a set of points, the question reduces to

finding a small subset (a coreset) of the points, such that one can perform the

desired computation on the coreset.

As a concrete example, consider the problem of computing the diameter of a

point set. Here it is clear that, in the worst case, classical sampling techniques like

ε-approximation and ε-net would fail to compute a subset of points that contain

a good approximation to the diameter [Vapnik and Chervonenkis 1971; Haussler

and Welzl 1987]. While in this problem it is clear that convex approximation
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2 P. K. AGARWAL, S. HAR-PELED, AND K. R. VARADARAJAN

(i.e., an approximation of the convex hull of the point set) is helpful and provides

us with the desired coreset, convex approximation of the point set is not useful

for computing the narrowest annulus containing a point set in the plane.

In this paper, we describe several recent results which employ the idea of

coresets to develop efficient approximation algorithms for various geometric prob-

lems. In particular, motivated by a variety of applications, considerable work

has been done on measuring various descriptors of the extent of a set P of n

points in Rd. We refer to such measures as extent measures of P . Roughly

speaking, an extent measure of P either computes certain statistics of P itself

or of a (possibly nonconvex) geometric shape (e.g. sphere, box, cylinder, etc.)

enclosing P . Examples of the former include computing the k-th largest distance

between pairs of points in P , and the examples of the latter include computing

the smallest radius of a sphere (or cylinder), the minimum volume (or surface

area) of a box, and the smallest width of a slab (or a spherical or cylindrical

shell) that contain P . There has also been some recent work on maintaining

extent measures of a set of moving points [Agarwal et al. 2001b].

Shape fitting, a fundamental problem in computational geometry, computer

vision, machine learning, data mining, and many other areas, is closely related to

computing extent measures. The shape fitting problem asks for finding a shape

that best fits P under some “fitting” criterion. A typical criterion for measuring

how well a shape γ fits P , denoted as µ(P, γ), is the maximum distance between

a point of P and its nearest point on γ, i.e., µ(P, γ) = maxp∈P minq∈γ ‖p − q‖.
Then one can define the extent measure of P to be µ(P ) = minγ µ(P, γ), where

the minimum is taken over a family of shapes (such as points, lines, hyperplanes,

spheres, etc.). For example, the problem of finding the minimum radius sphere

(resp. cylinder) enclosing P is the same as finding the point (resp. line) that fits

P best, and the problem of finding the smallest width slab (resp. spherical shell,

cylindrical shell)1 is the same as finding the hyperplane (resp. sphere, cylinder)

that fits P best.

The exact algorithms for computing extent measures are generally expensive,

e.g., the best known algorithms for computing the smallest volume bounding box

containing P in R3 run in O(n3) time. Consequently, attention has shifted to

developing approximation algorithms [Barequet and Har-Peled 2001]. The goal

is to compute an (1+ε)-approximation, for some 0 < ε < 1, of the extent measure

in roughly O(nf(ε)) or even O(n+f(ε)) time, that is, in time near-linear or linear

in n. The framework of coresets has recently emerged as a general approach to

achieve this goal. For any extent measure µ and an input point set P for which

we wish to compute the extent measure, the general idea is to argue that there

exists an easily computable subset Q ⊆ P , called a coreset, of size 1/εO(1), so

1A slab is a region lying between two parallel hyperplanes; a spherical shell is the region
lying between two concentric spheres; a cylindrical shell is the region lying between two coaxial
cylinders.
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GEOMETRIC APPROXIMATION VIA CORESETS 3

that solving the underlying problem on Q gives an approximate solution to the

original problem. For example, if µ(Q) ≥ (1 − ε)µ(P ), then this approach gives

an approximation to the extent measure of P . In the context of shape fitting, an

appropriate property for Q is that for any shape γ from the underlying family,

µ(Q, γ) ≥ (1 − ε)µ(P, γ). With this property, the approach returns a shape γ∗

that is an approximate best fit to P .

Following earlier work [Barequet and Har-Peled 2001; Chan 2002; Zhou and

Suri 2002] that hinted at the generality of this approach, [Agarwal et al. 2004]

provided a formal framework by introducing the notion of ε-kernel and showing

that it yields a coreset for many optimization problems. They also showed that

this technique yields approximation algorithms for a wide range of problems.

Since the appearance of preliminary versions of their work, many subsequent

papers have used a coreset based approach for other geometric optimization

problems, including clustering and other extent-measure problems [Agarwal et al.

2002; Bădoiu and Clarkson 2003b; Bădoiu et al. 2002; Har-Peled and Wang 2004;

Kumar et al. 2003; Kumar and Yildirim ≥ 2005].

In this paper, we have attempted to review coreset based algorithms for ap-

proximating extent measure and other optimization problems. Our aim is to

communicate the flavor of the techniques involved and a sense of the power of

this paradigm by discussing a number of its applications. We begin in Section 2

by describing ε-kernels of point sets and algorithms for constructing them. Sec-

tion 3 defines the notion of ε-kernel for functions and describes a few of its

applications. We then describe in Section 4 a simple incremental algorithm for

shape fitting. Section 5 discusses the computation of ε-kernels in the streaming

model. Although ε-kernels provide coresets for a variety of extent measures,

they do not give coresets for many other problems, including clustering. Sec-

tion 6 surveys the known results on coresets for clustering. The size of the

coresets discussed in these sections increases exponentially with the dimension,

so we conclude in Section 7 by discussing coresets for points in very high dimen-

sions whose size depends polynomially on the dimension, or is independent of

the dimension altogether.

2. Kernels for Point Sets

Let µ be a measure function (e.g., the width of a point set) from subsets

of Rd to the nonnegative reals R+ ∪ {0} that is monotone, i.e., for P1 ⊆ P2,

µ(P1) ≤ µ(P2). Given a parameter ε > 0, we call a subset Q ⊆ P an ε-coreset

of P (with respect to µ) if

(1 − ε)µ(P ) ≤ µ(Q).

Agarwal et al. [2004] introduced the notion of ε-kernels and showed that it

is an f(ε)-coreset for numerous minimization problems. We begin by defining

ε-kernels and related concepts.
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ω(u, P )

ω(u, Q)

u

Figure 1. Directional width and ε-kernel.

ε-kernel. Let Sd−1 denote the unit sphere centered at the origin in Rd. For any

set P of points in Rd and any direction u ∈ Sd−1, we define the directional width

of P in direction u, denoted by ω(u, P ), to be

ω(u, P ) = max
p∈P

〈u, p〉 − min
p∈P

〈u, p〉 ,

where 〈·, ·〉 is the standard inner product. Let ε > 0 be a parameter. A subset

Q ⊆ P is called an ε-kernel of P if for each u ∈ Sd−1,

(1 − ε)ω(u, P ) ≤ ω(u,Q).

Clearly, ω(u,Q) ≤ ω(u, P ). Agarwal et al. [2004] call a measure function µ

faithful if there exists a constant c, depending on µ, so that for any P ⊆ Rd and

for any ε, an ε-kernel of P is a cε-coreset for P with respect to µ. Examples

of faithful measures considered in that reference include diameter, width, radius

of the smallest enclosing ball, and volume of the smallest enclosing box. A

common property of these measures is that µ(P ) = µ(conv(P )). We can thus

compute an ε-coreset of P with respect to several measures by simply computing

an (ε/c)-kernel of P .

Algorithms for computing kernels. An ε-kernel of P is a subset whose con-

vex hull approximates, in a certain sense, the convex hull of P . Other notions of

convex hull approximation have been studied and methods have been developed

to compute them; see [Bentley et al. 1982; Bronshteyn and Ivanov 1976; Dudley

1974] for a sample. For example, in the first of these articles Bentley, Faust, and

Preparata show that for any point set P ⊆ R2 and ε > 0, a subset Q of P whose

size is O(1/ε) can be computed in O(|P | + 1/ε) time such that for any p ∈ P ,

the distance of p to conv(Q) is at most εdiam(Q). Note however that such a

guarantee is not enough if we want Q to be a coreset of P with respect to faithful

measures. For instance, the width of Q could be arbitrarily small compared to

the width of P . The width of an ε-kernel of P , on the other hand, is easily seen

to be a good approximation to the width of P . To the best of our knowledge,

the first efficient method for computing a small ε-kernel of an arbitrary point set

is implicit in [Barequet and Har-Peled 2001].
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GEOMETRIC APPROXIMATION VIA CORESETS 5

We call P α-fat, for α ≤ 1, if there exists a point p ∈ Rd and a hypercube C

centered at the origin so that

p + αC ⊂ conv(P ) ⊂ p + C.

A stronger version of the following lemma, which is very useful for constructing

an ε-kernel, was proved in [Agarwal et al. 2004] by adapting a scheme from

[Barequet and Har-Peled 2001]. Their scheme can be thought of as one that

quickly computes an approximation to the Löwner–John Ellipsoid [John 1948].

Lemma 2.1. Let P be a set of n points in Rd such that the volume of conv(P )

is nonzero, and let C = [−1, 1]d. One can compute in O(n) time an affine

transform τ so that τ(P ) is an α-fat point set satisfying αC ⊂ conv(τ(P )) ⊂ C,

where α is a positive constant depending on d, and so that a subset Q ⊆ P is an

ε-kernel of P if and only if τ(Q) is an ε-kernel of τ(P ).

The importance of Lemma 2.1 is that it allows us to adapt some classical ap-

proaches for convex hull approximation [Bentley et al. 1982; Bronshteyn and

Ivanov 1976; Dudley 1974] which in fact do compute an ε-kernel when applied

to fat point sets.

We now describe algorithms for computing ε-kernels. By Lemma 2.1, we can

assume that P ⊆ [−1,+1]d is α-fat. We begin with a very simple algorithm.

Let δ be the largest value such that δ ≤ (ε/
√

d)α and 1/δ is an integer. We

consider the d-dimensional grid ZZ of size δ. That is,

ZZ = {(δi1, . . . , δid) | i1, . . . , id ∈ Z} .

For each column along the xd-axis in ZZ, we choose one point from the highest

nonempty cell of the column and one point from the lowest nonempty cell of the

column; see Figure 2, top left. Let Q be the set of chosen points. Since P ⊆
[−1,+1]d, |Q| = O(1/(αε)d−1). Moreover Q can be constructed in time O(n +

1/(αε)d−1) provided that the ceiling operation can be performed in constant

time. Agarwal et al. [2004] showed that Q is an ε-kernel of P . Hence, we can

compute an ε-kernel of P of size O(1/εd−1) in time O(n+1/εd−1). This approach

resembles the algorithm of [Bentley et al. 1982].

Next we describe an improved construction, observed independently in [Chan

2004] and [Yu et al. 2004], which is a simplification of an algorithm of [Agarwal

et al. 2004], which in turn is an adaptation of a method of Dudley [1974]. Let S

be the sphere of radius
√

d + 1 centered at the origin. Set δ =
√

εα ≤ 1/2. One

can construct a set I of O(1/δd−1) = O(1/ε(d−1)/2) points on the sphere S so

that for any point x on S, there exists a point y ∈ I such that ‖x − y‖ ≤ δ. We

process P into a data structure that can answer ε-approximate nearest-neighbor

queries [Arya et al. 1998]. For a query point q, let ϕ(q) be the point of P returned

by this data structure. For each point y ∈ I, we compute ϕ(y) using this data

structure. We return the set Q = {ϕ(y) | y ∈ I}; see Figure 2, top right.
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6 P. K. AGARWAL, S. HAR-PELED, AND K. R. VARADARAJAN

We now briefly sketch, following the argument in [Yu et al. 2004], why Q is is

an ε-kernel of P . For simplicity, we prove the claim under the assumption that

ϕ(y) is the exact nearest-neighbor of y in P . Fix a direction u ∈ Sd−1. Let σ ∈ P

be the point that maximizes 〈u, p〉 over all p ∈ P . Suppose the ray emanating

from σ in direction u hits S at a point x. We know that there exists a point

y ∈ I such that ‖x − y‖ ≤ δ. If ϕ(y) = σ, then σ ∈ Q and

max
p∈P

〈u, p〉 − max
q∈Q

〈u, q〉 = 0.

Now suppose ϕ(y) �= σ. Let B be the d-dimensional ball of radius ||y − σ||
centered at y. Since ‖y − ϕ(y)‖ ≤ ‖y − σ‖, ϕ(y) ∈ B. Let us denote by z the

point on the sphere ∂B that is hit by the ray emanating from y in direction −u.

Let w be the point on zy such that zy⊥σw and h the point on σx such that

yh⊥σx; see Figure 2, bottom.

δ

S

C

y

ϕ(y)

conv(P )

B

x

h

w

u

S

y

z

σ

Figure 2. Top left: A grid based algorithm for constructing an ε-kernel. Top

right: An improved algorithm. Bottom: Correctness of the improved algorithm.

The hyperplane normal to u and passing through z is tangent to B. Since

ϕ(y) lies inside B, 〈u, ϕ(y)〉 ≥ 〈u, z〉. Moreover, it can be shown that 〈u, σ〉 −
〈u, ϕ(y)〉 ≤ αε. Thus, we can write

max
p∈P

〈u, p〉 − max
q∈Q

〈u, q〉 ≤ 〈u, σ〉 − 〈u, ϕ(y)〉 ≤ αε.
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GEOMETRIC APPROXIMATION VIA CORESETS 7

Similarly, we have minp∈P 〈u, p〉 − minq∈Q 〈u, q〉 ≥ −αε.

The above two inequalities together imply that ω(u,Q) ≥ ω(u, P )−2αε. Since

αC ⊂ conv(P ), ω(u, P ) ≥ 2α. Hence ω(u,Q) ≥ (1−ε)ω(u, P ), for any u ∈ Sd−1,

thereby implying that Q is an ε-kernel of P .

A straightforward implementation of the above algorithm, i.e., the one that

answers a nearest-neighbor query by comparing the distances to all the points,

runs in O(n/ε(d−1)/2) time. However, we can first compute an (ε/2)-kernel Q′ of

P of size O(1/εd−1) using the simple algorithm and then compute an (ε/4)-kernel

using the improved algorithm. Chan [2004] introduced the notion of discrete

Voronoi diagrams, which can be used for computing the nearest neighbors of a

set of grid points among the sites that are also a subset of a grid. Using this

structure Chan showed that ϕ(y), for all y ∈ I, can be computed in a total time

of O(n + 1/εd−1) time. Putting everything together, one obtains an algorithm

that runs in O(n + 1/εd−1) time. Chan in fact gives a slightly improved result:

Theorem 2.2 [Chan 2004]. Given a set P of n points in Rd and a parameter

ε > 0, one can compute an ε-kernel of P of size O(1/ε(d−1)/2) in time O(n +

1/εd−(3/2)).

Experimental results. Yu et al. [2004] implemented their ε-kernel algorithm

and tested its performance on a variety of inputs. They measure the quality of

an ε-kernel Q of P as the maximum relative error in the directional width of P

and Q. Since it is hard to compute the maximum error over all directions, they

sampled a set ∆ of 1000 directions in Sd−1 and computed the maximum relative

error with respect to these directions, i.e.,

err(Q,P ) = max
u∈∆

ω(u, P ) − ω(u,Q)

ω(u, P )
. (2–1)

They implemented the constant-factor approximation algorithm of [Barequet

and Har-Peled 2001] for computing the minimum-volume bounding box to con-

vert P into an α-fat set, and they used the ANN library [Arya and Mount 1998]

for answering approximate nearest-neighbor queries. Table 1 shows the running

time of their algorithm for a variety of synthetic inputs: (i) points uniformly

distributed on a sphere, (ii) points distributed on a cylinder, and (iii) clustered

point sets, consisting of 20 equal sized clusters. The running time is decomposed

into two components: (i) preprocessing time that includes the time spent in con-

verting P into a fat set and in preprocessing P for approximate nearest-neighbor

queries, and (ii) query time that includes the time spent in computing ϕ(x) for

x ∈ I. Figure 3 shows how the error err(Q,P ) changes as the function of ker-

nel. These experiments show that their algorithm works extremely well in low

dimensions (≤ 4) both in terms of size and running time. See [Yu et al. 2004]

for more detailed experiments.
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8 P. K. AGARWAL, S. HAR-PELED, AND K. R. VARADARAJAN

Input Input d = 2 d = 4 d = 6 d = 8
Type Size Pre Que Pre Que Pre Que Pre Que

104 0.03 0.01 0.06 0.05 0.10 9.40 0.15 52.80
sphere 105 0.54 0.01 0.90 0.50 1.38 67.22 1.97 1393.88

106 9.25 0.01 13.08 1.35 19.26 227.20 26.77 5944.89

104 0.03 0.01 0.06 0.03 0.10 2.46 0.16 17.29
cylinder 105 0.60 0.01 0.91 0.34 1.39 30.03 1.94 1383.27

106 9.93 0.01 13.09 0.31 18.94 87.29 26.12 5221.13

104 0.03 0.01 0.06 0.01 0.10 0.08 0.15 2.99
clustered 105 0.31 0.01 0.63 0.02 1.07 1.34 1.64 18.39

106 5.41 0.01 8.76 0.02 14.75 1.08 22.51 54.12

Table 1. Running time for computing ε-kernels of various synthetic data sets,

ε < 0.05. Prepr denotes the preprocessing time, including converting P into a

fat set and building ANN data structures. Query denotes the time for performing

approximate nearest-neighbor queries. Running time is measured in seconds. The

experiments were conducted on a Dell PowerEdge 650 server with a 3.06GHz

Pentium IV processor and 3GB memory, running Linux 2.4.20.
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Figure 3. Approximation errors under different sizes of computed ε-kernels.

Left: sphere. Right: various geometric models. All synthetic inputs had 100,000

points.

Applications. Theorem 2.2 can be used to compute coresets for faithful mea-

sures, defined in Section 2. In particular, if we have a faithful measure µ that can

be computed in O(nα) time, then by Theorem 2.2, we can compute a value µ,

(1−ε)µ(P ) ≤ µ ≤ µ(P ) by first computing an (ε/c)-kernel Q of P and then using

an exact algorithm for computing µ(Q). The total running time of the algorithm

is O(n + 1/εd−(3/2) + 1/εα(d−1)/2). For example, a (1 + ε)-approximation of the

diameter of a point set can be computed in time O(n + 1/εd−1) since the exact

diameter can be computed in quadratic time. By being a little more careful, the

running time of the diameter algorithm can be improved to O(n + 1/εd−(3/2))

[Chan 2004]. Table 2 gives running times for computing an (1+ε)-approximation

of a few faithful measures.

We note that ε-kernels in fact guarantee a stronger property for several faithful

measures. For instance, if Q is an ε-kernel of P , and C is some cylinder containing

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521848628 - Combinatorial and Computational Geometry
Edited by Jacob E. Goodman, Janos Pach and Emo Welzl
Excerpt
More information

http://www.cambridge.org/0521848628
http://www.cambridge.org
http://www.cambridge.org


GEOMETRIC APPROXIMATION VIA CORESETS 9

Extent Time complexity

Diameter n + 1/εd−(3/2)

Width (n + 1/εd−2) log(1/ε)

Minimum enclosing cylinder n + 1/εd−1

Minimum enclosing box(3D) n + 1/ε3

Table 2. Time complexity of computing (1 + ε)-approximations for certain

faithful measures.

Q, then a “concentric” scaling of C by a factor of (1 + cε), for some constant c,

contains P . Thus we can compute not only an approximation to the minimum

radius r∗ of a cylinder containing P , but also a cylinder of radius at most (1+ε)r∗

that contains P .

The approach described in this section for approximating faithful measures

had been used for geometric approximation algorithms before the framework of

ε-kernels was introduced; see [Agarwal and Procopiuc 2002; Barequet and Har-

Peled 2001; Chan 2002; Zhou and Suri 2002], for example. The framework of

ε-kernels, however, provides a unified approach and turns out to be crucial for

the approach developed in the next section for approximating measures that are

not faithful.

3. Kernels for Sets of Functions

The crucial notion used to derive coresets and efficient approximation algo-

rithms for measures that are not faithful is that of a kernel of a set of functions.

x x

EF(x)

EG(x)

UF(x)

LF(x)

EF(x)

Figure 4. Envelopes, extent, and ε-kernel.

Envelopes and extent. Let F = {f1, . . . , fn} be a set of n d-variate real-

valued functions defined over x = (x1, . . . , xd−1, xd) ∈ Rd. The lower envelope

of F is the graph of the function LF : Rd → R defined as LF(x) = minf∈F f(x).

Similarly, the upper envelope of F is the graph of the function UF : Rd → R

defined as UF(x) = maxf∈F f(x). The extent EF : Rd → R of F is defined as

EF(x) = UF(x) − LF(x).
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10 P. K. AGARWAL, S. HAR-PELED, AND K. R. VARADARAJAN

Let ε > 0 be a parameter. We say that a subset G ⊆ F is an ε-kernel of F if

(1 − ε)EF(x) ≤ EG(x) ∀x ∈ Rd.

Obviously, EG(x) ≤ EF(x), as G ⊆ F.

Let H = {h1, . . . , hn} be a family of d-variate linear functions and ε > 0 a

parameter. We define a duality transformation that maps the d-variate function

(or a hyperplane in Rd+1) h : xd+1 = a1x1 + a2x2 + · · · + adxd + ad+1 to the

point h� = (a1, a2, . . . , ad, ad+1) in Rd+1. Let H� = {h� | h ∈ H}. It can be

proved [Agarwal et al. 2004] that K ⊆ H is an ε-kernel of H if and only if K∗ is

an ε-kernel of H∗. Hence, by computing an ε-kernel of H∗ we can also compute

an ε-kernel of H. The following is therefore a corollary of Theorem 2.2.

Corollary 3.1 [Agarwal et al. 2004; Chan 2004]. Given a set F of n d-variate

linear functions and a parameter ε > 0, one can compute an ε-kernel of F of size

O(1/εd/2) in time O(n + 1/εd−(1/2)).

We can compute ε-kernels of a set of polynomial functions by using the notion

of linearization.

Linearization. Let f(x, a) be a (d+p)-variate polynomial, x ∈ Rd and a ∈ Rp.

Let a1, . . . , an ∈ Rp, and set F =
{
fi(x) ≡ f(x, ai) | 1 ≤ i ≤ n

}
. Suppose we can

express f(x, a) in the form

f(x, a) = ψ0(a) + ψ1(a)ϕ1(x) + · · · + ψk(a)ϕk(x), (3–1)

where ψ0, . . . , ψk are p-variate polynomials and ϕ1, . . . , ϕk are d-variate polyno-

mials. We define the map ϕ : Rd → Rk

ϕ(x) = (ϕ1(x), . . . , ϕk(x)).

Then the image Γ =
{
ϕ(x) | x ∈ Rd

}
of Rd is a d-dimensional surface in Rk (if

k ≥ d), and for any a ∈ Rp, f(x, a) maps to a k-variate linear function

ha(y1, . . . , yk) = ψ0(a) + ψ1(a)y1 + · · · + ψk(a)yk

in the sense that for any x ∈ Rd, f(x, a) = ha(ϕ(x)). We refer to k as the

dimension of the linearization ϕ, and say that F admits a linearization of di-

mension k. The most popular example of linearization is perhaps the so-called

lifting transform that maps Rd to a unit paraboloid in Rd+1. For example, let

f(x1, x2, a1, a2, a3) be the function whose absolute value is some measure of the

“distance” between a point (x1, x2) ∈ R2 and a circle with center (a1, a2) and

radius a3, which is the 5-variate polynomial

f(x1, x2, a1, a2, a3) = a2
3 − (x1 − a1)

2 − (x2 − a2)
2 .

We can rewrite f in the form

f(x1, x2, a1, a2, a3) = [a2
3 − a2

1 − a2
2] + [2a1x1] + [2a2x2] − [x2

1 + x2
2] , (3–2)
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