Brief Contents

1 **Introduction** .. page 1
 Holger Babinsky and John K. Harvey

2 **Physical Introduction** 5
 Jean Délery

3 **Transonic Shock Wave–Boundary-Layer Interactions** 87
 Holger Babinsky and Jean Délery

4 **Ideal-Gas Shock Wave–Turbulent Boundary-Layer Interactions (STBLIs) in Supersonic Flows and Their Modeling:**
 Two-Dimensional Interactions 137
 Doyle D. Knight and Alexander A. Zheltovodov

5 **Ideal-Gas Shock Wave–Turbulent Boundary-Layer Interactions in Supersonic Flows and Their Modeling: Three-Dimensional Interactions** .. 202
 Alexander A. Zheltovodov and Doyle D. Knight

6 **Experimental Studies of Shock Wave–Boundary-Layer Interactions in Hypersonic Flows** 259
 Michael S. Holden

7 **Numerical Simulation of Hypersonic Shock Wave–Boundary-Layer Interactions** 314
 Graham V. Candler

8 **Shock Wave–Boundary-Layer Interactions Occurring in Hypersonic Flows in the Upper Atmosphere** 336
 John K. Harvey
<table>
<thead>
<tr>
<th>Brief Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Shock-Wave Unsteadiness in Turbulent Shock Boundary-Layer Interactions</td>
</tr>
<tr>
<td>P. Dupont, J. F. Debiève, and J. P. Dussauge</td>
</tr>
<tr>
<td>10 Analytical Treatment of Shock Wave–Boundary-Layer Interactions</td>
</tr>
<tr>
<td>George V. Inger</td>
</tr>
<tr>
<td>Index</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Contributors</th>
<th>page xvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Structure of the Book</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1 George Inger</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Intended Audience</td>
<td>4</td>
</tr>
</tbody>
</table>

2 Physical Introduction	5
2.1 Shock Wave–Boundary-Layer Interactions: Why They Are Important	5
2.2 Discontinuities in Supersonic Flows	6
2.2.1 Shock Waves	6
2.2.2 The Shock-Polar Representation	7
2.2.3 Shock Intersections and the Edney Classification of Shock-Shock Interferences	11
2.2.4 Shock Waves, Drag, and Efficiency: The Oswatitsch Relationship	16
2.3 On the Structure of a Boundary-Layer Flow	19
2.3.1 Velocity Distribution through a Boundary Layer	19
2.3.2 The Multilayer Structure	24
2.3.3 The Boundary-Layer Response to a Rapid Pressure Variation	25
2.4 Shock Waves and Boundary Layers: The Confrontation	26
2.4.1 The Basic SBLI in Two-Dimensional Flows	26
2.4.2 The Boundary-Layer–Shock-Pressure-Jump Competition	28
2.5 Interactions without Separation: Weakly Interacting Flows	31
2.5.1 The Incident-Reflecting Shock	31
Overall Flow Organisation	31
Shock Penetration in a Rotational Layer	33
2.5.2 Ramp-Induced Shock	35
2.5.3 Normal Shock and Transonic Interactions	36
2.5.4 Upstream Influence Scaling	38
2.6 Interaction Producing Boundary-Layer Separation: Strongly Interacting Flows	39

© in this web service Cambridge University Press
www.cambridge.org
Table of Contents

2. Separation in Supersonic-Flow and Free-Interaction Processes

- **2.6.1** Separation Caused by an Incident Shock
 - Overall Flow Organisation
 - The Outer Inviscid-Flow Structure
 - Ramp-Induced Separation
 - Normal Shock-Induced Separation or Transonic Separation

- **2.7** Separation in Supersonic-Flow and Free-Interaction Processes
 - The Free-Interaction Theory
 - Incipient Shock-Induced Separation in Turbulent Flow

- **2.8** Transitional SBLIs

- **2.9** Specific Features of Hypersonic Interactions
 - Shock Pattern and Flowfield Organisation
 - Wall-Temperature Effect
 - Wall-Heat Transfer in Hypersonic Interactions
 - Entropy-Layer Effect
 - Real-Gas Effects on SBLI

- **2.10** A Brief Consideration of Three-Dimensional Interacting Flows
 - Separation in Three-Dimensional Flow
 - Topology of a Three-Dimensional Interaction
 - Reconsideration of Two-Dimensional Interaction

- **2.11** Unsteady Aspects of Strong Interactions

- **2.12** SBLI Control
 - Mechanisms for Control Action
 - Examination of Control Techniques
 - Active Control
 - Passive Control
 - Wall Contouring

- **2.13** Concluding Remarks

Appendix A: Discontinuities in Supersonic Flow and the Rankine-Hugoniot Equations

3 Transonic Shock Wave–Boundary-Layer Interactions

- **3.1** Introduction to Transonic Interactions

- **3.2** Applications of Transonic SBLIs and Associated Performance Losses
 - Transonic Airfoils and Cascades
 - Shock Losses on Transonic Wings
 - Supersonic Engine Intakes
 - Internal Flows

- **3.3** Normal SBLIs in Detail
 - Attached-Flow Interaction
 - Region I (Upstream of Main Shock)
 - Region II (Downstream of Main Shock)
 - Inflow–Shape-Factor Effects
 - The Onset of Shock-Induced Separation
 - Separated SBLIs
 - Boundary-Layer Behavior in Separated Transonic Interactions

© in this web service Cambridge University Press
www.cambridge.org
Contents

3.3.4 Other Effects on Transonic SBLIs
- Confinement Effects (Channels) 114
- Surface-Curvature Effects 117
- Sweep Effects 118

3.3.5 Large-Scale Unsteadiness of Normal SBLIs 118

3.4 Control of Transonic SBLIs
- Shock Control 123
- Methods of Shock Control 127
 - Contoured-Surface Bump 127
 - ‘Passive’ Control 129
 - Other Methods of Shock Control 130
 - Three-Dimensional Shock-Control Methods 130
- Methods of Boundary-Layer Control 132

4 Ideal-Gas Shock Wave–Turbulent Boundary-Layer Interactions (STBLIs) in Supersonic Flows and Their Modeling: Two-Dimensional Interactions

4.1 Introduction 137

- Problems and Directions of Current Research 137
- Computational Fluid Dynamics 138

4.2 Two-Dimensional Turbulent Interactions 141
- Normal STBLI: Flow Regimes and Incipient Separation Criteria 142
- Examples of NSTBLI Numerical Modeling 148
- Gas Dynamics Flow Structure in Compression Ramps and Compression-Decompression Ramps with Examples of Their Numerical Modeling 151
- Incipient Separation Criteria, STBLI Regimes, and Scaling Laws for CR and CDR Flows 159
- Heat Transfer and Turbulence in CR and CDR Flows 166
- Unsteadiness of Flow Over CR and CDR Configurations and Its Numerical Modeling 169
- Oblique Shock Wave–Turbulent Boundary-Layer Interaction 185

4.3 Summary 193

5 Ideal-Gas Shock Wave–Turbulent Boundary-Layer Interactions in Supersonic Flows and Their Modeling: Three-Dimensional Interactions

5.1 Introduction 202

5.2 Three-Dimensional Turbulent Interactions 202

5.3 Three-Dimensional Nature of Separated Flows 203

5.3.1 Introduction 203

5.3.2 STBLI in the Vicinity of Sharp Unswept Fins 205

- Flow Regimes and Incipient Separation Criteria 205
6 Experimental Studies of Shock Wave–Boundary-Layer Interactions in Hypersonic Flows 259

6.1 Introduction ... 259

6.2 SBLI in Laminar Two-Dimensional and Axisymmetric Hypersonic Flows ... 263

6.2.1 Introduction ... 263

6.2.2 Salient Characteristics for Laminar Regions of SBLI in Hypersonic Flows ... 263

6.2.3 Boundary-Layer Models of Shock Wave–Laminar Boundary-Layer Interaction .. 265

6.2.4 Early Navier-Stokes Validation Studies 268

6.2.5 Recent Navier-Stokes and DSMC Code-Validation Studies of Hypersonic SBLIs 273

6.3 SBLI in Turbulent and Transitional Flows 275

6.3.1 Introduction ... 275

6.3.2 Characteristics of Turbulent SBLI in Two-Dimensional Configurations .. 276

6.3.4 SBLI in Turbulent Hypersonic Flow on Axisymmetric Configurations: Comparison Between Measurements and Computations .. 281

6.3.5 Swept and Skewed SBLIs in Turbulent Supersonic and Hypersonic Flows ... 285

6.3.6 Shock-Wave Interaction in Transitional Flows Over Axisymmetric/Indented Nose Shapes 289

6.4 Characteristics of Regions of Shock-Shock Boundary-Layer Interaction ... 292

6.4.1 Introduction ... 292

6.4.2 Shock-Shock Heating in Laminar, Transitional, and Turbulent Interactions .. 293

6.4.3 Comparison Between Measurements in Laminar Flows and Navier-Stokes and DSMC Predictions 295

6.5 SBLI Over Film- and Transpiration-Cooled Surfaces 296

6.5.1 Introduction ... 296

6.5.2 Shock Interaction with Film-Cooled Surfaces 297

6.5.3 Shock Interaction with Transpiration-Cooled Surfaces 298
Contents

6.5.4 Shock-Shock Interaction on Transpiration-Cooled Leading Edges 299

6.6 Real-Gas Effects on Viscous Interactions Phenomena 300

6.6.1 Introduction 300

6.6.2 Studies of Real-Gas Effects on Aerothermal Characteristics of Control Surfaces on a U.S. Space Shuttle Configuration 305

6.7 Concluding Remarks 308

7 **Numerical Simulation of Hypersonic Shock Wave–Boundary-Layer Interactions** .. 314

7.1 Introduction 314

7.2 Hypersonic SBLI Physics 315

7.2.1 Shock Wave–Laminar Boundary-Layer Interactions at High Mach Number 315

7.2.2 Hypersonic Compression-Corner Flows 317

7.2.3 Hypersonic Shock-Shock Interactions 321

7.3 Numerical Methods for Hypersonic Shock–Boundary-Layer Interaction Flows 324

7.4 Example: Double-Cone Flow for CFD Code Validation 327

7.5 Conclusions 332

Acknowledgments 333

8 **Shock Wave–Boundary-Layer Interactions Occurring in Hypersonic Flows in the Upper Atmosphere** 336

8.1 Introduction 336

8.2 Prediction of Rarefied Flows 337

8.2.1 Classical Kinetic Theory for Dilute Gases 337

8.3 Characteristics of Rarefied Flows 338

8.3.1 Structural Changes that Occur in Rarefied Flows 339

8.4 Examples of SBLIs in Rarefied Hypersonic Flows 343

8.4.1 Introduction 343

8.4.2 SBLIs on a Hollow-Cylinder–Flare Body 344

8.4.3 Velocity-Slip and Temperature-Jump Effects 349

8.4.4 SBLIs Occurring on a Sharp Bicone Body 353

8.4.5 Flows Involving Chemical Reactions 359

8.5 Concluding Remarks 363

Appendix A: Kinetic Theory and the DSMC Method 365

A.1 Particle-Simulation Methods 366

A.2 The DSMC Method 366

9 **Shock-Wave Unsteadiness in Turbulent Shock Boundary-Layer Interactions** ... 373

9.1 Introduction 373

9.2 The Upper Branch: Unseparated Flows 373

9.3 The Lower Branch: Separated Flows 376

9.3.1 Introduction 376
Table of Contents

9.3.2 Separated Flows with Far Downstream Influence
- 9.3.3 Separated Flows without Far-Downstream Influence
 - 9.3.3.1 General Organization
 - 9.3.3.2 Separated Flows: Frequency Content

9.4 Conclusions: A Tentative Classification of Unsteadiness and Related Frequencies

10 Analytical Treatment of Shock Wave–Boundary-Layer Interactions

10.1 Introduction
- 10.1.1 Motivation for Analytical Work in the Computer Age
- 10.1.2 Scope of the Present Survey
- 10.1.3 Content

10.2 Qualitative Features of SBLIs
- 10.2.1 High-Reynolds-Number Behavior: Laminar versus Turbulent
- 10.2.2 General Scenario of a Nonseparating SBLI
 - 10.2.2.1 Incident-Oblique Shock
 - 10.2.2.2 Compression Corner
- 10.2.3 Basic Structure of the Interaction Zone
 - 10.2.3.1 Triple Deck: General Features
 - 10.2.3.2 Further Local Subdivisions

10.3 Detailed Analytical Features of the Triple Deck
- 10.3.1 Middle Deck
 - 10.3.1.1 General Aspects
 - 10.3.1.2 Purely Laminar Flows
 - 10.3.1.3 Turbulent Flows at Large Reynolds Numbers
- 10.3.2 Inner Deck
 - 10.3.2.1 General Aspects
 - 10.3.2.2 Laminar Flows
 - 10.3.2.3 Turbulent Flows
- 10.3.3 Middle-Inner-Deck Matching
 - 10.3.3.1 Laminar Flows
 - 10.3.3.2 Turbulent Flows
- 10.3.4 Inviscid-Pressure–Flow Deflection Relationships for the Outer Deck
- 10.3.5 Combined Matching of All Decks
 - 10.3.5.1 Laminar Flows
 - 10.3.5.2 Turbulent Flows
- 10.3.6 Summary of Scaling Properties and Final Canonical Forms of Triple-Deck Equations
 - 10.3.6.1 Laminar Flows
 - 10.3.6.2 Turbulent Flows

10.4 Application to Laminar-Flow Interactions
- 10.4.1 Supersonic Adiabatic Flows
 - 10.4.1.1 General Aspects
 - 10.4.1.2 Free Interaction and Upstream Influence

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3.2 Separated Flows with Far Downstream Influence</td>
<td>376</td>
</tr>
<tr>
<td>9.3.3 Separated Flows without Far-Downstream Influence</td>
<td>377</td>
</tr>
<tr>
<td>9.3.3.1 General Organization</td>
<td>377</td>
</tr>
<tr>
<td>9.3.3.2 Separated Flows: Frequency Content</td>
<td>382</td>
</tr>
<tr>
<td>9.4 Conclusions: A Tentative Classification of Unsteadiness and Related Frequencies</td>
<td>389</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4.1.3 Wall-Pressure Distribution and Incipient Separation</td>
<td>427</td>
</tr>
<tr>
<td>10.4.1.4 Linearized Solutions</td>
<td>428</td>
</tr>
<tr>
<td>10.4.2 Hypersonic Nonadiabatic Flows</td>
<td>428</td>
</tr>
<tr>
<td>10.4.2.1 Streamline Divergence Effect</td>
<td>428</td>
</tr>
<tr>
<td>10.4.2.2 Upstream Influence</td>
<td>428</td>
</tr>
<tr>
<td>10.4.2.3 Incipient Separation</td>
<td>430</td>
</tr>
<tr>
<td>10.4.2.4 Interactive Heat Transfer</td>
<td>430</td>
</tr>
<tr>
<td>10.4.3 Transonic Regime</td>
<td>433</td>
</tr>
<tr>
<td>10.4.4 Three-Dimensional Interactions</td>
<td>434</td>
</tr>
<tr>
<td>10.5 Application to Turbulent Interactions</td>
<td>435</td>
</tr>
<tr>
<td>10.5.1 Supersonic/Hypersonic Interactions in Asymptotic Theory</td>
<td>435</td>
</tr>
<tr>
<td>10.5.1.1 Upstream Region</td>
<td>435</td>
</tr>
<tr>
<td>10.5.1.2 Downstream Region</td>
<td>437</td>
</tr>
<tr>
<td>10.5.2 Transonic Flows in Asymptotic Theory</td>
<td>440</td>
</tr>
<tr>
<td>10.5.2.1 Small-Scale Features</td>
<td>440</td>
</tr>
<tr>
<td>10.5.2.2 Purely Supersonic Flows</td>
<td>440</td>
</tr>
<tr>
<td>10.5.2.3 Mixed Supersonic/Subsonic Flows</td>
<td>442</td>
</tr>
<tr>
<td>10.5.3 Three-Dimensional Effects</td>
<td>442</td>
</tr>
<tr>
<td>10.6 Limitations of the Triple-Deck Approach</td>
<td>443</td>
</tr>
<tr>
<td>10.6.1 Laminar Flows</td>
<td>443</td>
</tr>
<tr>
<td>10.6.2 Turbulent Flows</td>
<td>445</td>
</tr>
<tr>
<td>Appendix A The Wall-Slip Boundary Conditions</td>
<td>446</td>
</tr>
<tr>
<td>Appendix B Evaluation of Boundary-Layer Profile Integrals and Related Matters</td>
<td>448</td>
</tr>
<tr>
<td>B.1 Limit Expression in the Laminar Interaction Theory</td>
<td>448</td>
</tr>
<tr>
<td>B.2 Evaluation of I_m for Laminar Flow</td>
<td>449</td>
</tr>
<tr>
<td>B.3 Evaluation of I_m for Turbulent Flow</td>
<td>449</td>
</tr>
<tr>
<td>Appendix C Summary of Constants in the Scaling Relationships for Laminar Flow</td>
<td>450</td>
</tr>
<tr>
<td>C.1 Supersonic–Hypersonic Flow</td>
<td>450</td>
</tr>
<tr>
<td>C.2 Adiabatic Shockless Transonic Flow</td>
<td>450</td>
</tr>
<tr>
<td>Appendix D Nomenclature</td>
<td>451</td>
</tr>
<tr>
<td>D.1 Subscripts</td>
<td>453</td>
</tr>
<tr>
<td>D.2 Special Symbols</td>
<td>453</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>459</td>
</tr>
</tbody>
</table>