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1
Introduction to path integrals

Path integrals play an important role in modern quantum field theory.
One usually first encounters them as useful formal devices to derive Feyn-
man rules. For gauge theories they yield straightforwardly the Ward
identities. Namely, if BRST symmetry (the “quantum gauge invariance”
discovered by Becchi, Rouet, Stora and Tyutin [14]) holds at the quantum

derived from path integrals, but details of the path integral (for example,
the precise form of the measure) are not needed for this purpose.1 Once the
BRST Ward identities for gauge theories have been derived, unitarity and
renormalizability can be proven, and at this point one may forget about
path integrals if one is only interested in perturbative aspects of quantum
field theories. One can compute higher-loop Feynman graphs without
ever using path integrals.

However, for nonperturbative aspects, path integrals are essential. The
first place where one encounters path integrals in nonperturbative quantum
field theory is in the study of instantons and solitons. Here advanced
methods based on path integrals have been developed. For example, in the
case of instantons the correct measure for integration over their collective
coordinates (corresponding to the zero modes) is needed. In particular, for
supersymmetric nonabelian gauge theories, there are only contributions
from these zero modes, while the contributions from the nonzero modes
cancel between bosons and fermions. Another area where the path integral

1To prove that the BRST symmetry is free from anomalies, one may either use reg-
ularization-free cohomological methods, or one may perform explicit loop graph cal-
culations using a particular regularization scheme. When there are no anomalies, but
the regularization scheme does not preserve the BRST symmetry, one can always add
local counterterms to the action at each loop level to restore the BRST symmetry. In
these manipulations the path integral measure is usually not taken into account.

3

level, certain relations between Green functions (Ward indentities) can be
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4 1 Introduction to path integrals

measure is important is quantum gravity. In particular, in modern stud-
ies of quantum gravity based on string theory, the measure is crucial in
obtaining the correct correlation functions.

One can compute path integrals at the nonperturbative level by going
to Euclidean space, discretizing the path integrals on lattices and using
powerful computers. In this book we use a continuum approach. We study
a class of simple models which lead to path integrals in which no infinite
renormalization is needed, but some individual diagrams are divergent
and need be regulated, and subtle issues of regularization and measures
can be studied explicitly. These models are the quantum mechanical (one-
dimensional) nonlinear sigma models. The one- and two-loop diagrams in
these models are power-counting divergent, but the infinities cancel in the
sum of diagrams for a given process at a given loop level.

Quantum mechanical (QM) nonlinear sigma models can be described by
path integrals and are toy models for realistic path integrals in four dimen-
sions. They describe curved target spaces and contain double-derivative
interactions (quantum gravity has also double-derivative interactions).
The formalism for path integrals in curved space has been discussed in
great generality in several books and reviews [15–26]. In the first half of
this book we define the path integrals for these models and discuss various
subtleties. However, quantum mechanical nonlinear sigma models can also
be used to compute anomalies of realistic four- and higher-dimensional
quantum field theories, and this application is thoroughly discussed in the
second half of this book. Furthermore, quantum mechanical path integrals
can be used to compute correlation functions and effective actions. For ref-
erences in flat space see [27], and for some work in curved space see [28–30].

[15]. He first extended to curved space a result of Pauli [16] for the transi-
tion element for infinitesimal times which was the product of the exponent
of the classical action evaluated for a classical trajectory, times the Van
Vleck–Morette determinant [17]. He verified that this transition element
satisfied a Schrödinger equation with Hamiltonian Ĥ + 1

12 h̄
2R (− 1

12 h̄
2R

in our conventions for R), where Ĥ = 1
2 ĝ

−1/4p̂iĝ
ij ĝ1/2p̂j ĝ

−1/4. He also
claimed that this transition element could be written as a path integral
with a modified action, which was the sum of the classical action and
a term + h̄2

12R. The latter term comes from the Van Vleck determinant.2

His work has led to an enormous literature on this subject, with many
authors proposing various ingenuous definitions or approximations of the

2There exists some confusion in the literature about the coefficient of R in the action
in the path integral for the transition element related to the minimal hamiltonian
operator Ĥ (“the counter term with R”). Initially DeWitt obtained 1

6
[15]. However,

recently in [26] he rectified this to 1
8
, a result with which we agree, at least if one uses

the regularization schemes discussed in this book, see eqs. (2.81), (3.73), (4.28) and
Appendix B. (Note: some of these schemes have additional noncovariant ΓΓ terms.)

The studyof path integrals in curved spacewas studied indetail byDeWitt
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1.1 The simplest case: a particle in flat space 5

infinitesimal transition element, and various proposals for iterations which
should produce the finite transition amplitude, see for example [31–34].

In Part I of this book we show how to define and compute the transition
element for finite times using path integrals. This yields, in particular,
the transition element for infinitesimal times in a series expansion. Path
integrals are of course just one of many ways of computing the transition
element, but for the calculation of anomalies the path integral method is
far superior as we hope to demonstrate in this book.

1.1 The simplest case: a particle in flat space

Before considering path integrals in curved space, we first review the
simple case of a nonrelativistic particle moving in an n-dimensional flat
space and subject to a scalar potential V (x). We are going to derive the
path integral from the canonical (operatorial) formulation of quantum
mechanics. We will also compute the transition amplitude in the free case
(i.e. with vanishing potential), a useful result to compare with when we
deal with the more complicated case of curved space.

Thus, let us consider a particle with coordinates xi, conjugate momenta
pi and mass m. As the quantum Hamiltonian we take

H(x̂, p̂) =
1

2m
p̂ip̂

i + V (x̂) (1.1)

where, as usual, hats denote quantum mechanical operators. We are inter-
ested in deriving a path integral representation of the transition amplitude

T (z, y;β) ≡ 〈z|e−β
h̄
Ĥ |y〉 (1.2)

for the particle to propagate from the point yi to the point zi in a
Euclidean time β. We use a language appropriate to quantum mechan-
ics (“transition amplitude”, etc.) even though we consider a Euclidean
approach. The usual quantum mechanics in Minkowskian time is obtained
by the substitution β→ it, which corresponds to the so-called Wick rota-
tion, an analytical continuation in the time coordinate that relates statis-
tical mechanics to quantum mechanics, and vice versa.

We use eigenstates |x〉 and |p〉 of the position operator x̂i and momen-
tum operator p̂i, respectively,

x̂i|x〉 = xi|x〉, p̂i|p〉 = pi|p〉, (1.3)

together with the completeness relations

I =
∫

dnx |x〉〈x| =
∫

dnp |p〉〈p| (1.4)

and the scalar products

〈x1|x2〉 = δn(x1 − x2), 〈p1|p2〉 = δn(p1 − p2), 〈x|p〉 =
1

(2πh̄)n/2
e

i
h̄
pix

i
.

(1.5)
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6 1 Introduction to path integrals

It is easy to show that the transition amplitude should satisfy the
Schrödinger equation (see (2.229) and (2.230))

−h̄
∂

∂β
T (z, y;β) = H(z)T (z, y;β) (1.6)

with the boundary condition

T (z, y; 0) = δn(z − y) (1.7)

where the Hamiltonian in the coordinate representation is, of course, given
by

H(z) = − h̄2

2m
∂

∂zi
∂

∂zi
+ V (z). (1.8)

A similar equation holds at the point yi.
The derivation of a path integral representation for the transition ampli-

tude is rather standard. The transition amplitude can be split into N
factors

T (z, y;β) = 〈z|
(
e−

β
h̄N

Ĥ
)N |y〉 = 〈z| e− ε

h̄
Ĥe−

ε
h̄
Ĥ · · · e− ε

h̄
Ĥ︸ ︷︷ ︸

N times

|y〉

=
∫ (N−1∏

k=1

dnxk

)
N∏
k=1

〈xk|e−
ε
h̄
Ĥ |xk−1〉 (1.9)

where we have denoted xi0 = yi, xiN = zi, ε = β/N , and used N − 1 times
the completeness relations with position eigenstates. Then one can use N
times the completeness relations with momentum eigenstates and obtain

T (z, y;β) =
∫ (N−1∏

k=1

dnxk

)(
N∏
k=1

dnpk

)
N∏
k=1

〈xk|pk〉〈pk|e−
ε
h̄
Ĥ |xk−1〉.

(1.10)
This is still an exact formula, but we are now going to evaluate it using
approximations which are correct in the limit N → ∞ (ε → 0). The key
point for deriving the path integral is to evaluate the following matrix
element

〈p|e− ε
h̄
Ĥ(x̂,p̂)|x〉 = 〈p|

[
1 − ε

h̄
Ĥ(x̂, p̂) + · · ·

]
|x〉

= 〈p|x〉 − ε

h̄
〈p|Ĥ(x̂, p̂)|x〉 + · · ·

= 〈p|x〉
[
1 − ε

h̄
H(x, p) + · · ·

]
= 〈p|x〉 e−

ε
h̄
H(x,p)+···. (1.11)

The replacement 〈p|Ĥ(x̂, p̂)|x〉 = 〈p|x〉H(x, p) follows from the simple
structure of the Hamiltonian in (1.1), which allows to act with the posi-
tion and momentum operators on the corresponding eigenstates, so that
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1.1 The simplest case: a particle in flat space 7

these operators are simply replaced by the corresponding eigenvalues. In
this way the Hamiltonian operator Ĥ(x̂, p̂) is replaced by the Hamiltonian
function H(x, p) = p2/2m + V (x). These approximations are justified in
the limit N→∞ for many physically interesting potentials (i.e. the “dots”
in (1.11) can be neglected in this limit), in which cases a rigorous math-
ematical proof is also available, and goes under the name of the “Trotter
formula”[21]. Finally, using the expression for 〈x|p〉 given in (1.5), and
recalling that 〈p|x〉 = 〈x|p〉∗, one obtains

〈xk|pk〉〈pk|e−
ε
h̄
Ĥ |xk−1〉 =

1
(2πh̄)n

e
i
h̄
pk·(xk−xk−1)− ε

h̄
H(xk−1,pk) (1.12)

which can now be inserted into (1.10). At this point the expression of the
transition amplitude does not contain any more operators, and reads as

T (z, y;β) = lim
N→∞

∫ (N−1∏
k=1

dnxk

)(
N∏
k=1

dnpk
(2πh̄)n

)

× exp

{
− ε

h̄

N∑
k=1

[
−ipk · (xk − xk−1)

ε
+ H(xk−1, pk)

]}

=
∫

DxDp e−
1
h̄
S[x,p]. (1.13)

This is the path integral in phase space. We recognize in the exponent a
discretization of the classical Euclidean phase space action

S[x, p] =
∫ β

0
dt [−ip · ẋ + H(x, p)]

→ ε
N∑
k=1

[
−ipk · (xk − xk−1)

ε
+ H(xk−1, pk)

]
(1.14)

where again β =Nε. The last line in (1.13) is symbolic and indicates a
formal sum over paths in phase space weighted by the exponential of
minus their classical action.

The configuration space path integral is easily derived by integrating
out the momenta in (1.13). Completing squares and using Gaussian inte-
gration one obtains

T (z, y;β) = lim
N→∞

∫ (N−1∏
k=1

dnxk

)( m

2πh̄ε

)nN/2

× exp

{
− ε

h̄

N∑
k=1

[
m

2

(xk − xk−1

ε

)2
+ V (xk−1)

]}

=
∫

Dx e−
1
h̄
S[x]. (1.15)
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8 1 Introduction to path integrals

This is the path integral in configuration space. In the exponent one
finds a discretization of the classical Euclidean configuration space
action

S[x] =
∫ β

0
dt

[
m

2
ẋ2 + V (x)

]

→ ε
N∑
k=1

[
m

2

(xk − xk−1

ε

)2
+ V (xk−1)

]
. (1.16)

Again the last line in (1.15) is symbolic, and indicates a sum over paths
in configuration space.

For the case of a vanishing potential, the path integral can be evalu-
ated exactly [45, 46, 21]. Performing successive Gaussian integrations one
obtains

T (z, y;β) =
( m

2πh̄β

)n/2
e−m(z−y)2/2βh̄. (1.17)

This final result is very suggestive. Up to a prefactor, it consists of the ex-
ponential of the classical action evaluated on the classical trajectory. This
is typical for the cases where the semiclassical approximation is exact. The
prefactor can be considered as containing the “one-loop” corrections which

The preceding approach is called time slicing, and will be applied
to nonlinear sigma models (models in curved target space) in Chapter
2. In Chapters 3 and 4 we shall use two other equivalent methods of
computing path integrals: mode regularization and dimensional regulari-
zation. shall use a somewhat different way to evaluate
path integrals We expand the continuous paths xi(t) into a fixed
classical “background” part xibg(t) plus “quantum fluctuations” qi(t)

xi(t) = xibg(t) + qi(t). (1.18)

Here xibg(t) is a fixed function: it solves the classical equations of motion
and takes into account the boundary conditions (xi(0) = yi and xi(β)=zi)

xibg(t) = yi + (zi − yi) t
β
, (1.19)

while the arbitrary fluctuations qi(t) vanish at the boundaries. One may
interpret xibg(t) as the origin and qi(t) as the coordinates of the “space of
paths”.

Now one can compute the path integral (1.15) for a vanishing potential

T (z, y;β) =
∫

Dx e−
1

h̄
S[x] =

∫
D(xbg + q) e−

1

h̄
S[x

bg
+q]

make up the full result (thus “semiclassical”=“classical + one-loop”) [21].

In these cases we
.

.
For a free particle one has“ ”
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1.2 QM path integrals in curved space require regularization 9

=
∫

Dq e−
1
h̄
(S[xbg ]+S[q]) = e−

1
h̄
S[xbg ]

∫
Dq e−

1
h̄
S[q]

= Ae−
1
h̄
S[xbg ] = Ae−

m(z−y)2

2βh̄ (1.20)

where we have used the translational invariance of the path integral mea-
sure Dx=D(xbg + q) =Dq (at the discretized level this is evident from
writing dnxk = dn(xk,bg + qk) = dnqk) and the fact that in the action there
is no term linear in qi (the action is quadratic in qi, but the term lin-
ear in qi must also be linear in xbg, but then this term must vanish by
the equations of motion). Finally, the constant A=

∫
Dq exp(− 1

h̄S[q]) is
not determined by this method, but it can be fixed by requiring that
(1.20) solves the Schrödinger equation (1.6) with the boundary condition
in (1.7). The value A= (m/2πh̄β)n/2 is sometimes called the Feynman
measure.

1.2 Quantum mechanical path integrals in curved space
require regularization

The path integrals for the quantum mechanical systems we shall discuss
have a Hamiltonian Ĥ(x̂, p̂) which is more general than T̂ (p̂) + V̂ (x̂).
We shall typically be considering models with a Euclidean Lagrangian
of the form L= 1

2gij(x)dx
i

dt
dxj

dt + iAi(x)dx
i

dt + V (x), where i, j = 1, . . . , n.
These systems are one-dimensional quantum field theories with double-
derivative interactions, and hence they are not ultraviolet finite by power
counting; rather, the one- and two-loop diagrams are divergent as we shall
discuss in detail in the next section. The ultraviolet infinities cancel in the
sum of diagrams, but one needs to regularize individual diagrams which
are divergent. The results of individual diagrams are then regularization-
scheme dependent, and also the results for the sum of diagrams are finite
but scheme dependent. One must then add finite counterterms which
are also scheme dependent, and which must be chosen such that cer-
tain physical requirements are satisfied (renormalization conditions). Of
course, the final physical answers should be the same, no matter which
scheme one uses. Since we shall be working with actions defined on a
compact time-interval, there are no infrared divergences. We shall also
discuss nonlinear sigma models with fermionic point particles ψa(t) with
again a= 1, . . . , n. Also one- and two-loop diagrams containing fermions
can be power-counting divergent. For applications to chiral and gravita-
tional anomalies the most important cases are the rigidly supersymmet-
ric models, in particular the quantum mechanical models with N = 1 and
N = 2 supersymmetry, but nonsupersymmetric models with or without
fermions will also be used as they are needed for applications to trace
anomalies.
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10 1 Introduction to path integrals

Quantum mechanical path integrals can be used to compute anoma-
lies of n-dimensional quantum field theories. This was first shown by
Alvarez-Gaumé and Witten (AGW) [1, 35, 36], who studied various chiral
and gravitational anomalies (see also [37, 38]). Subsequently, Bastianelli
and van Nieuwenhuizen [39, 40] extended their approach to trace anoma-
lies. With the formalism developed below one can now, in principle, com-
pute any anomaly, and not only chiral anomalies. In the work of Alvarez-
Gaumé and Witten, the chiral anomalies themselves were written directly
as a path integral in which the fermions have periodic boundary condi-
tions. Similarly, the trace anomalies lead to path integrals with antiperi-
odic boundary conditions for the fermions. These are, however, only spe-
cial cases, and in our approach any Jacobian will lead to a corresponding
set of boundary conditions.

Because chiral anomalies have a topological character, one would expect
details of the path integral to be unimportant and only one-loop graphs
on the worldline to contribute. In fact, in the approach of AGW this is
indeed the case.3 On the other hand, for trace anomalies, which have
no topological interpretation, the details of the path integral do mat-
ter and higher loops on the worldline contribute. In fact, it was pre-
cisely because three-loop calculations of the trace anomaly based on
quantum mechanical path integrals initially did not agree with results
known from other methods, that we started a detailed study of path
integrals for nonlinear sigma models. These discrepancies have been
resolved in the meantime, and the resulting formalism is presented in this
book.

The reason that we do not encounter infinities in loop calculations for
QM nonlinear sigma models is different from a corresponding statement
for QM linear sigma models. For a linear sigma model with a kinetic
term 1

2 ẋ
iẋi on an infinite t-interval, the propagator behaves as 1/k2

for large momenta, and vertices from V (x) do not contain derivatives,
hence loops

∫
dk[· · ·] will always be finite. For nonlinear sigma models

with L = 1
2gij(x)ẋiẋj , propagators still behave like k−2 but vertices now

behave like k2 (as in ordinary quantum gravity), hence single loops are
linearly divergent by power counting and double loops are logarithmically

3Their approach uses a particular linear combination of general coordinate and local
Lorentz transformations, and for this symmetry one only needs to evaluate single
loops on the worldline. However if one directly computes the anomaly of the Lorentz
operator γµνγ5, using the same steps as in the case of the chiral operator γ5 for gauge
fields in flat space, one needs higher loops on the worldline. We discuss this at the
end of Section 6.3.
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