
Part I

Foundations

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-84751-3 - Boolean Functions: Theory, Algorithms, and Applications
Yves Crama and Peter L. Hammer
Excerpt
More information

http://www.cambridge.org/9780521847513
http://www.cambridge.org
http://www.cambridge.org


1

Fundamental concepts and applications

The purpose of this introductory chapter is threefold. First, it contains the main
definitions, terminology, and notations that are used throughout the book.After the
introduction of our main feature characters – namely, Boolean functions – several
sections are devoted to a discussion of alternative representations, or expressions,
of Boolean functions. Disjunctive and conjunctive normal forms, in particular, are
discussed at length in Sections 1.4–1.11. These special algebraic expressions play
a very central role in our investigations, as we frequently focus on the relation
between Boolean functions and their normal forms. Section 1.12, however, also
provides a short description of different types of function representations, namely,
representations over GF(2), pseudo-Boolean polynomial expressions, and binary
decision diagrams.

A second objective of this chapter is to introduce several of the topics to be
investigated in more depth in subsequent chapters, namely: fundamental algorith-
mic problems (Boolean equations, generation of prime implicants, dualization,
orthogonalization, etc.) and special classes of Boolean functions (bounded-degree
normal forms, monotone functions, Horn functions, threshold functions, etc.).
Finally, the chapter briefly presents a variety of applications of Boolean functions
in such diverse fields as logic, electrical engineering, reliability theory, game the-
ory, combinatorics, and so on. These applications have often provided the primary
motivation for the study of the problems to be encountered in the next chapters.

In a sense, this introductory chapter provides a (very) condensed digest of
what’s to come. It can be considered a degustation: Its main purpose is to whet the
appetite, so that readers will decide to embark on the full course!

1.1 Boolean functions: Definitions and examples

This book is about Boolean functions, meaning: {0,1}-valued functions of a finite
number of {0,1}-valued variables.

3

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-84751-3 - Boolean Functions: Theory, Algorithms, and Applications
Yves Crama and Peter L. Hammer
Excerpt
More information

http://www.cambridge.org/9780521847513
http://www.cambridge.org
http://www.cambridge.org


4 1 Fundamental concepts and applications

Definition 1.1. A Boolean function of n variables is a function on Bn into B,
where B is the set {0,1}, n is a positive integer, and Bn denotes the n-fold carte-
sian product of the set B with itself. A point X∗ = (x1,x2, . . . ,xn)∈Bn is a true point
(respectively, false point) of the Boolean function f if f (X∗) = 1 (respectively,
f (X∗) = 0). We denote by T (f ) (respectively, F(f )) the set of true points (respec-
tively, false points) of f . We denote by 1n the function that takes constant value 1
on Bn and by 0n the function that takes constant value 0 on Bn.

It should be stressed that, in many applications, the role of the set B is
played by another two-element set, like {Yes,No}, {True,False}, {ON,OFF},
{Success,Failure}, {−1,1} or, more generally, {a,b}, where a and b are abstract
(uninterpreted) elements. In most cases, this distinction is completely irrelevant.
However, it is often convenient to view the elements of B as numerical quanti-
ties in order to perform arithmetic operations on these elements and to manipulate
algebraic expressions like 1−x,x+y−xy, and so on, wherex,y are elements ofB.

As an historical aside, it is interesting to note that the ability to perform algebraic
computations on logical symbols, in a way that is at least formally similar to what
we are used to doing for numerical quantities, was one of the driving forces behind
George Boole’s seminal work in logic theory. Let us quote from Boole [103],
Chapter V.6 (italics are Boole’s):

[...] any system of propositions may be expressed by equations involving symbols
x,y,z, which, whenever interpretation is possible, are subject to laws identical in form
with the laws of a system of quantitative symbols, susceptible only of the values 0 and
1. But as the formal processes of reasoning depend only upon the laws of the symbols,
and not upon the nature of their interpretation, we are permitted to treat the above
symbols, x,y,z, as if they were quantitative symbols of the kind above described. We
may in fact lay aside the logical interpretation of the symbols in the given equation;
convert them into quantitative symbols, susceptible only of the values 0 and 1; perform
upon them as such all the requisite processes of solution; and finally restore to them
their logical interpretation. And this is the mode of procedure which will actually be
adopted [...]

In this book, we systematically follow Boole’s prescription and adhere to the
convention that B = {0,1}, where 0 and 1 can be viewed as either abstract symbols
or numerical quantities.

The most elementary way to define a Boolean function f is to provide its truth
table.

Definition 1.2. The truth table of a Boolean function on Bn is a complete list of
all the points in Bn together with the value of the function at each point.

Example 1.1. The truth table of a Boolean function on B3 is shown in
Table 1.1. �

Of course, the use of truth tables becomes extremely cumbersome when the
function to be defined depends on more than, say, 5 or 6 arguments. As a matter

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-84751-3 - Boolean Functions: Theory, Algorithms, and Applications
Yves Crama and Peter L. Hammer
Excerpt
More information

http://www.cambridge.org/9780521847513
http://www.cambridge.org
http://www.cambridge.org


1.1 Boolean functions: Definitions and examples 5

Table 1.1. Truth Table for Example 1.1

(x1,x2,x3) f (x1,x2,x3)

(0,0,0) 1
(0,0,1) 1
(0,1,0) 0
(0,1,1) 1
(1,0,0) 0
(1,0,1) 1
(1,1,0) 0
(1,1,1) 1

of fact, Boolean functions are often defined implicitly rather than explicitly, in the
sense that they are described through a procedure that allows us, for any 0−1 point
in the domain of interest, to compute the value of the function at this point. In some
theoretical developments, or when we analyze the computational complexity of
certain problems, such a procedure can simply be viewed as a black box oracle, of
which we can observe the output (that is, the function value) for any given input,
but not the inner working (that is, the details of the algorithm that computes the
output). In most applications, however, more information is available regarding
the process that generates the function of interest, as illustrated by the examples
below. (We come back to these applications in much greater detail in Section 1.13
and in many subsequent chapters of the book.)

Application 1.1. (Logic.) In many applications (such as those arising in artificial
intelligence), a Boolean function can be viewed as indicating the truth value of a
sentence of propositional (or Boolean) logic. Consider, for instance, the sentence
S: “If it rains in the morning, or if the sky is cloudy, then I carry my umbrella.” Let
us denote by x1, x2, and x3, respectively, the subsentences “it rains in the morning,”
“the sky is cloudy,” and “I carry my umbrella”. Then, S can be identified with the
sentence

(x1 OR x2) ⇒ x3.

It is easy to see that the function displayed in Table 1.1 computes the truth value of
S for all possible values of x1,x2,x3, under the usual correspondence True ↔ 1,
False ↔ 0. �

Application 1.2. (Electrical engineering.) In electrical or in computer engineer-
ing, a switching circuit is often abstracted into the following model, called a
combinational circuit. The wiring of the circuit is described by an acyclic directed
graph D = (V ,A). The vertices of D are the gates of the circuit. The indegree of
each gate is at most 2. Each gate with indegree 2 is labeled either AND or OR, and
each gate with indegree 1 is labeled NOT. The gates with indegree 0 are called
input gates and are denoted v1,v2, . . . ,vn. Also, all gates of D have outdegree 1,
except for a single gate f , called output gate, which has outdegree 0.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-84751-3 - Boolean Functions: Theory, Algorithms, and Applications
Yves Crama and Peter L. Hammer
Excerpt
More information

http://www.cambridge.org/9780521847513
http://www.cambridge.org
http://www.cambridge.org


6 1 Fundamental concepts and applications

Every such circuit can be viewed as representing a Boolean function
fD(x1,x2, . . . ,xn). First, for every (x1,x2, . . . ,xn) ∈ Bn, the state s(v) of gate v ∈ V

is computed according to the following recursive rules:

1. For each input gate vi , s(vi ) = xi (i = 1,2, . . . ,n).
2. For each AND-gate v ∈ V , if (u,v),(w,v) ∈ A are the arcs entering v, then

s(v) = min(s(u),s(w)).
3. For each OR-gate v ∈ V , if (u,v),(w,v) ∈ A are the arcs entering v, then

s(v) = max(s(u),s(w)).
4. For each NOT-gate v ∈ V , if (u,v) ∈ A is the arc entering v, then s(v) =

1 − s(u). Finally, we let fD(x1,x2, . . . ,xn) = s(f ).

For instance, the circuit represented in Figure 1.1 computes the function given
in Example 1.1. This can easily be verified by computing the state of the output gate
(in this case, the OR-gate) for all possible 0–1 inputs. For example, if (x1,x2,x3) =
(0,0,0), then one successively finds that the state of each NOT-gate is 1 (= 1−0);
the state of the AND-gate is 1 (= min(1,1)); and the state of the output gate is 1
(= max(1,0)).

More generally, the gates of a combinational circuit may be “primitive”
Boolean functions forming another class from the {AND,OR,NOT} collection used
in our small example. In all cases, the gates may be viewed as atomic units of hard-
ware, providing the building blocks for the construction of larger circuits. �

Historically, propositional logic and electrical engineering have been the main
nurturing fields for the development of research on Boolean functions. However,
because they are such fundamental mathematical objects, Boolean functions have
also been used to model a large number of applications in a variety of areas. To
describe these applications, we introduce a few more notations.

Given a point X ∈ Bn, we denote by supp(X) the support of X, that is, supp(X)

is the set { i ∈ {1,2, . . . ,n} |xi = 1}. (Conversely, X is the characteristic vector of
supp(X).)

��
��

v2

��
��

v1 �

�

��
��

NOT

��
��

NOT

������

��������
��

AND ��������

��
��

v3 ����������
��

OR

Figure 1.1. A small combinational circuit.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-84751-3 - Boolean Functions: Theory, Algorithms, and Applications
Yves Crama and Peter L. Hammer
Excerpt
More information

http://www.cambridge.org/9780521847513
http://www.cambridge.org
http://www.cambridge.org


1.1 Boolean functions: Definitions and examples 7

Application 1.3. (Game theory.) Many group decision procedures (such as those
used in legislative assemblies or in corporate stockholder meetings) can be viewed,
in abstract terms, as decision rules that associate a single dichotomous “Yes–No”
outcome (for instance, adoption or rejection of a resolution) with a collection
of dichotomous “Yes–No” votes (for instance, assent or disagreement of indi-
vidual lawmakers). Such procedures have been studied in the game-theoretic
literature under the name of simple games or voting games. More formally, let
N = {1,2, . . . ,n} be a finite set, the elements of which are to be called players.
A simple game on N is a function v : {A | A ⊆ N} → B. Clearly, from our van-
tage point, a simple game can be equivalently modeled as a Boolean function fv

on Bn: The variables of fv are in 1-to-1 correspondence with the players of the
game (variable i takes value 1 exactly when player i votes “Yes”), and the value
of the function reflects the outcome of the vote for each point X∗ ∈ Bn describing
a vector of individual votes:

fv(X∗) =
{

1 if v(supp(X∗)) = 1,
0 otherwise.

�
Application 1.4. (Reliability theory.) Reliability theory investigates the relation-
ship between the operating state of a complex system S and the operating state
of its individual components, say components 1,2, . . . ,n. It is commonly assumed
that the system and its components can be in either of two states: operative or
failed. Moreover, the state of the system is completely determined by the state of
its components via a deterministic rule embodied in a Boolean function fS on Bn,
called the structure function of the system: For each X∗ ∈ Bn,

fS(X
∗)=

⎧⎨
⎩

1 if the system operates when all components in supp(X∗) operate
and all other components fail,

0 otherwise.

A central issue is to compute the probability that the system operates (meaning
that fS takes value 1) when each component is subject to probabilistic failure.
Thus, reliability theory deals primarily with the stochastic theory of Boolean
functions. �

Application 1.5. (Combinatorics.) Consider a hypergraph H = (N ,E), where
N = {1,2, . . . ,n} is the set of vertices of H, and E is a collection of subsets of N ,
called edges of the hypergraph. A subset of vertices is said to be stable if it does
not contain any edge of H. With H, we associate the Boolean function fH defined
as follows: For each X∗ ∈ Bn,

fH(X∗) =
{

1 if supp(X∗) is not stable,
0 otherwise.

The function fH is the stability function of H. �

Of course, the kinship among the models presented in Applications 1.3–1.5 is
striking: It is immediately apparent that we are really dealing here with a single

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-84751-3 - Boolean Functions: Theory, Algorithms, and Applications
Yves Crama and Peter L. Hammer
Excerpt
More information

http://www.cambridge.org/9780521847513
http://www.cambridge.org
http://www.cambridge.org


8 1 Fundamental concepts and applications

class of mathematical objects, in spite of the distinct motivations that originally
justified their investigation.

Applications of Boolean functions will be discussed more thoroughly in
Section 1.13, after we have introduced some of the fundamental theoretical
concepts that underlie them.

Before we close this section, let us add that, in this book, our view of Boolean
functions will be mostly combinatorial and algorithmic. For algebraic or logic-
oriented treatments, we refer the reader to the excellent books by Rudeanu
[795, 796] or Brown [156]. In these books, as in many related classical publi-
cations by other authors, Boolean functions are actually defined more broadly
than in Definition 1.1, as (special) mappings of the form f : An → A, where A
is the carrier of an arbitrary Boolean algebra (A,∪,∩,¬,0,1). By contrast, we
shall essentially restrict ourselves in this book to the two-element Boolean algebra
(B,∨,∧, · ,0,1), where B = {0,1} (see Section 1.2). Brown [156], in particular,
discusses in great detail the pros and cons of working with two-element, rather
than more general, Boolean algebras. While acknowledging the relevance of his
arguments, we feel that, at the risk of giving up some generality, our restricted
framework is already sufficiently rich to model a variety of interesting applica-
tions and to allow us to handle a host of challenging algorithmic problems of
a combinatorial nature. Also, the terminology introduced in Definition 1.1 has
become sufficiently entrenched to justify its continued use, rather than the alterna-
tive terminology switching functions or truth functions which, though less liable
to create confusion, has progressively become obsolete.

1.2 Boolean expressions

As the above examples illustrate, Boolean functions can be described in many alter-
native ways. In this section, we concentrate on a type of representation derived from
propositional logic, namely, the representation of Boolean functions by Boolean
expressions (see, for instance, [156, 680, 795, 848] for different presentations).

Boolean expressions will be used extensively throughout the book. In fact, the
emphasis on Boolean expressions (rather than truth tables, circuits, oracles, etc.)
can be seen as a main distinguishing feature of our approach and will motivate
many of the issues we will tackle in subsequent chapters.

Our definition of Boolean expressions will be recursive, starting with three
elementary operations as building blocks.

Definition 1.3. The binary operation ∨ (disjunction, Boolean OR), the binary
operation ∧ (conjunction, Boolean AND), and the unary operation · (comple-
mentation, negation, Boolean NOT) are defined on B by the following rules:

0 ∨ 0 = 0, 0 ∨ 1 = 1, 1 ∨ 0 = 1, 1 ∨ 1 = 1;

0 ∧ 0 = 0, 0 ∧ 1 = 0, 1 ∧ 0 = 0, 1 ∧ 1 = 1;

0 = 1, 1 = 0.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-84751-3 - Boolean Functions: Theory, Algorithms, and Applications
Yves Crama and Peter L. Hammer
Excerpt
More information

http://www.cambridge.org/9780521847513
http://www.cambridge.org
http://www.cambridge.org


1.2 Boolean expressions 9

For a Boolean variable x, we sometimes use the following convenient notation:

xα =
{

x, if α = 1,
x, if α = 0.

Keeping in line with our focus on functions, we often regard the three elemen-
tary Boolean operations as defining Boolean functions on B2: disj(x,y) = x ∨ y,
conj(x,y) = x ∧ y, and on B: neg(x) = x. When the elements of B = {0,1} are
interpreted as integers rather than abstract symbols, these operations can be defined
by simple arithmetic expressions: For all x,y ∈ B,

x ∨ y = max{x,y} = x + y − x y,

x ∧ y = min{x,y} = x y,

x = 1 − x.

Observe that the conjunction of two elements of B is equal to their arithmetic
product. By analogy with the usual convention for products, we often omit the
operator ∧ and denote conjunction by mere juxtaposition.

We can extend the definitions of all three elementary operators to Bn by writing:
For all X,Y ∈ Bn,

X ∨ Y = (x1 ∨ y1,x2 ∨ y2, . . . ,xn ∨ yn),

X ∧ Y = (x1 ∧ y1,x2 ∧ y2, . . . ,xn ∧ yn) = (x1y1,x2y2, . . . ,xnyn),

X = (x1,x2, . . . ,xn).

Let us enumerate some of the elementary properties of disjunction, conjunc-
tion, and complementation. (We note for completeness that the properties listed
in Theorem 1.1 can be viewed as the defining properties of a general Boolean
algebra.)

Theorem 1.1. For all x,y,z ∈ B, the following identities hold:

(1) x ∨ 1 = 1 and x ∧ 0 = 0;
(2) x ∨ 0 = x and x ∧ 1 = x;
(3) x ∨ y = y ∨ x and x y = y x (commutativity);
(4) (x ∨ y)∨ z = x ∨ (y ∨ z) and x (y z) = (x y)z (associativity);
(5) x ∨ x = x and x x = x (idempotency);
(6) x ∨ (x y) = x and x (x ∨ y) = x (absorption);
(7) x ∨ (y z) = (x ∨ y)(x ∨ z) and x (y ∨ z) = (x y)∨ (x z) (distributivity);
(8) x ∨ x = 1 and x x = 0;
(9) x = x (involution);

(10) (x ∨ y) = x y and (x y) = x ∨ y (De Morgan’s laws);
(11) x ∨ (x y) = x ∨ y and x (x ∨ y) = x y (Boolean absorption).

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-84751-3 - Boolean Functions: Theory, Algorithms, and Applications
Yves Crama and Peter L. Hammer
Excerpt
More information

http://www.cambridge.org/9780521847513
http://www.cambridge.org
http://www.cambridge.org


10 1 Fundamental concepts and applications

Proof. These identities are easily verified, for example, by exhausting all possible
values for x,y,z. �

Building upon Definition 1.3, we are now in a position to introduce the important
notion of Boolean expression.

Definition 1.4. Given a finite collection of Boolean variables x1,x2, . . . ,xn, a
Boolean expression (or Boolean formula) in the variables x1,x2, . . . ,xn is defined
as follows:

(1) The constants 0,1, and the variables x1,x2, . . . ,xn are Boolean expressions
in x1,x2, . . . , xn.

(2) If φ and ψ are Boolean expressions in x1,x2, . . . ,xn, then (φ ∨ ψ), (φψ)

and φ are Boolean expressions in x1,x2, . . . ,xn.
(3) Every Boolean expression is formed by finitely many applications of the

rules (1)–(2).

We also say that a Boolean expression in the variables x1,x2, . . . ,xn is a Boolean
expression on Bn.

We use notations like φ(x1,x2, . . . ,xn) or ψ(x1,x2, . . . ,xn) to denote Boolean
expressions in the variables x1,x2, . . . ,xn.

Example 1.2. Here are some examples of Boolean expressions:
φ1(x) = x,
φ2(x) = x,
ψ1(x,y,z) = (((x ∨ y)(y ∨ z))∨ ((xy)z)),
ψ2(x1,x2,x3,x4) = ((x1x2)∨ (x3x4)). �

Now, since disjunction, conjunction, and complementation can be interpreted as
Boolean functions, every Boolean expression φ(x1,x2, . . . ,xn) can also be viewed
as generating a Boolean function defined by composition.

Definition 1.5. The Boolean function fφ represented (or expressed) by a Boolean
expression φ(x1,x2, . . . ,xn) is the unique Boolean function on Bn defined as fol-
lows: For every point (x∗

1 ,x∗
2 , . . . ,x∗

n) ∈ Bn, the value of fφ(x∗
1 ,x∗

2 , . . . ,x∗
n) is

obtained by substituting x∗
i for xi (i = 1,2, . . . ,n) in the expression φ and by

recursively applying Definition 1.3 to compute the value of the resulting expression.
When f = fφ on Bn, we also say that f admits the representation or the

expression φ, and we simply write f = φ.

Example 1.3. Consider again the expressions defined in Example 1.2. We can
compute, for instance:

fφ1(0) = 0, fφ1(1) = 1,
fφ2(0) = 0 = 1, fφ2(1) = 1 = 0,
fψ1(0,0,0) = (((0 ∨ 0)(0 ∨ 0))∨ ((00)0)) = 1, . . .

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-84751-3 - Boolean Functions: Theory, Algorithms, and Applications
Yves Crama and Peter L. Hammer
Excerpt
More information

http://www.cambridge.org/9780521847513
http://www.cambridge.org
http://www.cambridge.org


1.2 Boolean expressions 11

In fact, the expression ψ1 in Example 1.2 represents the function f , where

f (0,0,1) = f (1,0,0) = f (1,0,1) = 0,

f (0,0,0) = f (0,1,0) = f (0,1,1) = f (1,1,0) = f (1,1,1) = 1.

Thus, we can write

f (x,y,z) = ψ1(x,y,z) = (((x ∨ y)(y ∨ z))∨ ((xy)z)). �

Remark. So that we can get rid of parentheses when writing Boolean expressions,
we assume from now on a priority ranking of the elementary operations: Namely,
we assume that disjunction has lower priority than conjunction, which has lower
priority than complementation. When we compute the value of a parentheses-free
expression, we always start with the operations of highest priority: First, all com-
plementations; next, all conjunctions; and finally, all disjunctions. (This is similar
to the convention that assigns a lower priority to addition than to multiplication, and
to multiplication than to exponentiation when evaluating an arithmetic expression
like 3x2 + 5xy.) Moreover, we also discard any parentheses that become redun-
dant as a consequence of the associativity property of disjunction and conjunction
(Theorem 1.1).

Example 1.4. The expression ψ1 in Example 1.2 (and hence, the function f in
Example 1.3) can be rewritten with fewer parentheses as f (x,y,z) = ψ1(x,y,z) =
(x ∨y)(y ∨z)∨xyz. Similarly, the expression ψ2 in Example 1.2 can be rewritten
as ψ2(x1,x2,x3,x4) = x1x2 ∨ x3x4. �

The relation between Boolean expressions and Boolean functions, as spelled
out in Definition 1.5, deserves to be carefully pondered.

On one hand, it is important to understand that every Boolean function can
be represented by numerous Boolean expressions (see, for instance, Theorem 1.4
in the next section). In fact, it is easy to see that there are “only” 22n

Boolean
functions of n variables, while there are infinitely many Boolean expressions in n

variables. These remarks motivate the distinction we draw between functions and
expressions.

On the other hand, since every Boolean expression φ represents a unique
Boolean function fφ , we are justified in interpreting φ itself as a function, and we
frequently do so. The notation f = φ introduced in Definition 1.5, in particular,
may initially seem confusing, since it equates a function with a formal expression,
but this notational convention is actually innocuous: It is akin to the convention
for real-valued functions of real variables, where it is usual to assimilate a function
with its analytical expression and to write, for instance, equalities like

f (x,y) = x2 + 2xy + y2 = (x + y)2. (1.1)

As a matter of fact, since Definition 1.5 implies that we write both f =ψ and f =φ

when ψ and φ represent the same function f (compare with Equation (1.1)), it
also naturally leads to the next notion.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-84751-3 - Boolean Functions: Theory, Algorithms, and Applications
Yves Crama and Peter L. Hammer
Excerpt
More information

http://www.cambridge.org/9780521847513
http://www.cambridge.org
http://www.cambridge.org

