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PREFACE

Motivation and Objectives

The purpose of this book is to introduce civil and

environmental engineering students – and those active in

engineering – to the fundamental principles of the earth

sciences as they affect their practice. In particular, this book

is intended for the use of geotechnical and geoenvironmental

students and those in that practice. Hopefully, the reader

will come to appreciate the complex problems that exist

in engineering practice in a geological environment and

find them intellectually rewarding. It also seeks to persuade

the engineer that he or she should not try to solve all

their problems without the advice of geoscientists. Rather,

it is written to give the engineer an appreciation of the

fundamentals of geological processes in order to work more

effectively in a team comprising engineers and geoscientists.

This book is divided into four parts: Rocks as engineering

materials; Soils and sediments; Groundwater; and Geologi-

cal hazards. Additionally, the book contains supplementary

material on a website, where additional case histories may be

studied and where useful software is discussed. In many cases,

this software is available free to the user; in other cases, the

software is available at reasonable prices from software houses

that cater to engineers. Chapters end with a set of questions

to test understanding of the topics covered. Answers to the

questions are to be found online in the material reserved for

instructors.

The objectives of the four parts of this book may be sum-

marized as follows:

Part I: Rocks as engineering materials. To understand the

structure and properties of rocks as engineering materials

in foundations, mineral extraction and waste disposal.

This part necessarily begins with a discussion of minerals

and the composition of rocks composed of these minerals

before introducing the reader to geological structures and

maps. The next chapter introduces the science of rock

mechanics to allow the reader to appreciate its role in

slope stability, tunnelling, waste disposal and seismicity,

among other areas of engineering importance. Finally,

Part I ends with a discussion of how engineers and geo-

scientists characterize the properties of rocks important in

their work.

Part II: Soils and sediments. To appreciate how soils and

sediments are produced, transported and obtain their

physical-chemical properties. This part introduces the

engineer to weathering, glacial and fluvial processes and

the characterization of soils and sediments. Furthermore,

Part II devotes a chapter to assist the geoenvironmental

engineer in understanding how geochemical processes and

mineralogy can affect his or her work.

Part III: Groundwater. To understand groundwater flow

and the cause and development of groundwater contam-

ination. Here we consider the nature of hydraulic conduc-

tivity, groundwater flow systems, aquifers and aquitards.

These discussions are followed by a review of the processes

that generate groundwater quality, whether natural or con-

taminated.

Part IV: Geological hazards. To recognize the conditions

under which geological hazards exist and may threaten

lives and infrastructure. The hazards considered include

land subsidence due to extraction of groundwater and

minerals and to karst development, earthquakes and active

faults, landslides in their many forms and coastal hazards,

such as storm surges and beach erosion in an era of climate

change.

Teaching Earth Sciences to Engineers

Geotechnical engineers face problems of enormous complex-

ity. When the late John Harvey wrote the predecessor of

this book – Geology for Geotechnical Engineers – in the early

1980s, the tunnel in the chalk beneath the English Channel

linking France and England had not yet been started, and it

was not completed until 1990. Vastly more difficult tunnels

have been completed since, such as those in faulted rock in

Taiwan, the Austrian Alps and Greece. Today, geotechnical

engineers sometimes operate the tunnel boring machines, so
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xii Preface

complex has their task become. Geotechnical engineers have

also learned much about protecting pipelines and transporta-

tion corridors from landslides and from seismic shock. Even

if we are not quite ready to pronounce on the magnitude and

timing of the next major displacement of the San Andreas

Fault, when a magnitude 7.9 earthquake ruptured the Denali

Fault in Alaska in 2002 and moved 4m laterally and 0.5m

vertically, the Trans Alaska Oil Pipeline did not rupture. In

fact, the pipeline had been designed to withstand 6.1m of

horizontal displacement and 1.5m of vertical displacement at

the location where the fault crossed the pipeline.

Similarly, today, geoenvironmental engineers design land-

fills, deep geological repositories and mine-tailings sites for

the safe storage of hazardous wastes. Before geoenvironmental

engineering developed, it was common for hazardous-waste

sites to leak contaminants to groundwater and cause the

closure of nearby public water-supply wells or to streams and

cause fish kills in rivers.

Nevertheless, even today, many civil engineers graduate

and enter practice without any academic introduction to the

applied earth sciences irrespective of the onus on the engineer

to protect public safety. Despite the advice of some of the

greatest geotechnical engineers and engineering geologists

of the twentieth century, there is no requirement for civil

engineers to take a course in geology as applied to engineering

in the USA; the situation is better in the UK and Canada, and

perhaps elsewhere.

Karl Terzaghi, the father of geotechnical engineering, rec-

ommended “a two-semester course combined with field trips”

taught by “a geologist who appreciates the requirements of

engineers and an engineer who has learned from personal

experience that geology is indispensable in the practice of his

profession” (cited by Proctor, 1981). While acknowledging

the need for natural science courses in the undergraduate

civil engineering curriculum, the American Society of Civil

Engineers (ASCE, 2008) merely suggests that geotechnical

and environmental engineers would be well served by taking

an introductory course in geology and geomorphology.

However, a typical elective course in physical geology is not

necessarily helpful in that the lecturer is unlikely to have expe-

rience of geologic practice in engineering projects, because

such lecturers are rare in earth science or civil engineering

departments. Courses in introductory physical geology should

be considered part of the liberal education of the engineer, not

as preparation for engineering practice where public safety is

the responsibility of the engineer.

This book subscribes to Terzaghi’s opinion that geological

training for civil engineers is essential to a civil engineer’s

education – in particular for those entering geotechnical and

geoenvironmental practice – and therefore is not marginal

to the engineer’s future career. It has developed from John

Harvey’s earlier textbook (Harvey, 1982), which was based

upon his lectures given to undergraduate civil engineers at

the former Plymouth Polytechnic, now the University of

Plymouth, in England. It has been written on the basis of

the author’s experience in practice in North America and

through his links to European workers in environmental

and engineering geoscience. Some of Harvey’s original text

remains in Chapter 2 and is acknowledged here to honour his

role in teaching engineers.

One implicit goal of the book is to develop some prelim-

inary judgement in evaluating geological phenomena. Here

we will follow the advice of Terzaghi’s colleague, Ralph Peck,

late Professor of Geotechnical Engineering at the University

of Illinois, who stressed the need for empiricism and theory

in the development of engineering judgement (Peck, 1991).

The former tells us what works and what does not, while

the latter provides guidance when the engineer must project

designs into unknown empirical territory. Judgement in deci-

sion making is not something that comes with an engineering

degree; it is progressively learned. John Burland (2007), Emer-

itus Professor of Soil Mechanics at Imperial College, London,

refers to this as “well-winnowed experience” (see Figure 1.1).

Richard Goodman of the University of California wrote

(Goodman, 1993):

No doubt, mastering advanced engineering mathematics or

thermodynamics is “harder” for some students than

understanding the principles of engineering geology. But in

the practice of engineering, geology may prove to be the

harder subject. The penalties for geologic mistakes can be

severe, whereas the confidence that comes from having made

the right choice cannot be obtained from a formula or theory.

In my experience, most engineering students are more at

home with formulas and analysis than with colors and grades

of truth.

A second implicit goal of this book is to address the need

to weave hydrogeological principles into geotechnical and

geoenvironmental practice. In his brief history of geotechnical

engineering, Burland (2012a) cited Terzaghi’s complaint of

1939 that “in engineering practice difficulties with soils are

almost exclusively due, not to the soils themselves, but to

the water contained in their voids. On a planet without any

water there would be no need for soil mechanics”. Thus,

Burland (2007) had earlier noted of geotechnical failures

associated with site investigations that “nine failures out of

ten result from a lack of knowledge about the ground profile –

often the groundwater conditions”.
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Here I try to provide a physical context to interpret

variations in hydraulic head and hydraulic gradient that

might assist geotechnical engineers in site investigations.

Splendid examples of such practice have been published

recently for landslide sites in Western Canada (Eshraghian

et al., 2008) and Northern Ireland (Hughes et al., 2016) and by

Wyllie (2018) in his revision of Hoek and Bray’s Rock

Slope Engineering. Burland (2007) cites other examples from

Terzaghi where hydrogeological phenomena – high heads and

piping – complicated geotechnical practice; Burland (2012b)

describes similar issues in his own work in guiding the

design of the underground car park beneath the Houses

of Parliament in London. Furthermore, hydrogeology has

become central both to the practice of geoenvironmental

engineering, where landfills and mine-tailings facilities must

be designed and plumes of contaminated groundwater

controlled and remediated, and to the control of land

subsidence from over-extraction of groundwater and

enhanced dissolution of karst rock.

In the pages that follow, we shall bear in mind ten areas of

competency identified by Professor Allen Hatheway (2005),

formerly of the Missouri School of Mines, as being required

of the young engineer about to enter practice:

• an ability to define the physical properties and characteris-

tics of soils, rock – especially weak rock – and groundwater;

• an appreciation of the manner in which these materials are

found in nature;

• an appreciation of the regional geomorphology as the

expression of the combined effects of climate, weathering

and the sum history of all geologic forces and phenomena

over history on the geology of the region;

• an understanding of how geological field data are collected,

tested, evaluated, interpreted and then converted to specifi-

cations concerning the properties of the site;

• a sense of how anomalies occur routinely in geological

materials and how such features can alter, disturb or remove

what is most predictable about subsurface interpretations

and projections;

• a realization of how geologic discontinuities can alter the

properties of geological materials;

• a realization of how the presence of water in geological

materials can effectively influence the nature of a site in

terms of the construction and performance of engineered

works;

• an appreciation of how dynamic earth processes are

continually bringing change to the landscape and to the

subsurface;

• a sense of the nature of risk as it relates to the potential for

the presence and potential impact of undetected geologic

features, or the absence thereof; and

• an appreciation of how to prepare a scope of work to

seek geological specification of the nature of the proposed

construction location, i.e., site characterization.

Like Terzaghi, the geotechnical engineer is urged to make

geology an abiding interest. Ruth Doggett Terzaghi, his

spouse, used her skills in the petrography of concrete and

soils to advise the founder of soil mechanics. Perhaps this

book will suffice as an introduction to the applied earth

sciences for young engineers – and marriage to a geologist

will not be necessary!

Readership

This book is suitable for (i) undergraduates in their final

years of their degree course, (ii) graduate students entering

geotechnical and/or geoenvironmental engineering courses

and (iii) engineers in training and those beginning geotechni-

cal and geoenvironmental practice. It is my belief that earth

science is best introduced to engineering students follow-

ing (i) their introduction to practice through work terms

or summer jobs and (ii) their education in fluid, solid and

soil mechanics. It is then that they can see that geological

processes are cut from the same cloth as taught in engineering

mechanics.

Earth Science for Civil and Environmental Engineers is

intended to be suitable for those entering an M.Sc. or M.S.

degree program – referred to elsewhere as MSCE, M.Eng. or

MASc – in these engineering subdisciplines and those enter-

ing practice who have not had the benefit of earlier training in

the applied earth sciences. Because licensing of US engineers

may in future require an M.S. degree or equivalent, this

book may become useful as the civil engineering profession

in the USA develops the necessary “Body of Knowledge for

Professional Practice” (ASCE, 2008) and engineering students

in Europe enter new courses – often in the English language –

guided by the Bologna process.

Terminology

The terminology used in this book is broadly North Amer-

ican, although some specific British usage is acknowledged,

e.g., superficial rather than surficial deposits. Common geo-

scientific terms that are printed in bold in the text should
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xiv Preface

be memorized: many are defined in the glossary at the end

of the book; the definitions of others may be found in Bates

and Jackson (1984). The term geoenvironmental is used to

identify those issues that concern environmental engineers

but are confined to the subsurface. Its use by the ASCE,

as in their Journal of Geotechnical and Geoenvironmental

Engineering, indicates that it is well established at least in the

English-speaking world. Some terms in this book may strike

American readers as somewhat unusual but it is important

that they learn to understand documents written in English

by the international engineering community because so much

important work originates outside America.
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LIST OF SYMBOLS USED IN

EARTH SCIENCE

a annum or year; annual rate as in mm/a or m/a

a, ac, amax ground acceleration (seismic) (m2/s)

a(f ) acceleration spectral density function for

stochastic model of ground motion,

ground acceleration as a function of

frequency of waveform

ai activity coefficient of ion i

b aquifer thickness (m)

C concentration of an analyte, in Chapter 12

C, C0, Cs celerity of sequence of wave crests in deep (0)

or shallow (s) water, in Chapter 16 (m/s)

C clay in the USCS of soil textures, e.g., GC, CH

and CL for clayey gravel, high-plasticity

clay and lean clay, respectively

CD damping parameter in slug testing

(dimensionless)

Ce,i effective solubility of an NAPL

CH Hazen coefficient (dimensionless)

Cs,i aqueous solubility of an NAPL

Cu uniformity coefficient (dimensionless)

c′ effective cohesion in a Mohr–Coulomb

strength analysis (kPa)

cP centipoise (unit of viscosity)

cv coefficient of consolidation (m2/s)

D darcy (unit of permeability in petroleum

engineering, in Chapter 11)

D deuterium (2H)

DH hydraulic diameter of stream channel (m)

Di,j dispersion tensor, in Chapter 12 (m2/s)

Dm coefficient of molecular diffusion (m2/s)

DN Newmark displacement (cm)

d grain-size diameter (m)

d slip distance in an earthquake (m)

dmin minimum grain-size diameter in sieving (m)

d10 grain-size diameter of which 10% of the

grains are finer than (m)

E Young’s modulus of elasticity (Pa)

E wave energy per unit surface area, in

Chapter 16 (J/m2)

EH redox potential, in Chapter 7 (V)

Em rock mass deformation modulus (Pa)

Es strain energy released by an earthquake (J or Nm)

Ew bulk modulus of water (Pa−1 or m2/N)

e void ratio

emax maximum void ratio (dimensionless)

F force, as in FT or FN , in Part I (N)

FD, FL drag and lift coefficients, in Chapter 9 (N)

F fine facies, i.e., silts and clays, in Parts II and III,

see Table 11.5

FS factor of safety

fc seismic-source corner frequency, number of wave

cycles per second (Hz)

fs sleeve resistance in cone penetration testing

G gravel facies, in Chapter 9; and in USCS

terminology as GW, GP, GM and GC for

well-graded, poorly graded, silty and clayey

gravel, respectively

Gs specific gravity of soil grains (dimensionless)

g acceleration of gravity (m/s2)

H hydrogen, as in pH or H2O

H0 initial water-level change in a slug test (m)

Hb breaking wave height, in Chapter 16 (m)

Hc minimum thickness for the dense flow phase of a

turbidity current to begin migration (m)

Hmax maximum wave height, in Chapter 16 (m)

h hydraulic head (m)

he environmental water head (m)

hf equivalent fresh-water hydraulic head (m)

h water depth, in Chapter 16 (m)

I inflow or recharge rate in Figure 11.9 (m/s)

I major textural component of hydrofacies, in

Chapter 9

Ia Arias intensity, in Chapter 15 (m/s)

IL index of liquidity in Atterberg limits (%)

IP index of plasticity in Atterberg limits (%)

i well-loss exponent (dimensionless)

i angle of inclination of rough surface in Patton’s

principle, in Chapter 4
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Symbols Used in Earth Science xvii

K hydraulic conductivity (m/s)

K0 saturated hydraulic conductivity; a term used only

in the context of unsaturated soils (m/s)

Kh hydraulic conductivity in the horizontal

direction (m/s)

Kv hydraulic conductivity in the vertical

direction (m/s)

Kx,y,z hydraulic conductivity in x, y and z

directions (m/s)

Kf hydraulic conductivity of a fracture, in Chapter 4

(m/s)

K average ratio of horizontal to vertical total

stresses, in Chapter 4

KD distribution coefficient of a contaminant (m3/kg)

Keq equilibrium constant, in Chapter 7

Ks0 solubility product at zero ionic strength

KAD conditional equilibrium sorption constant

KD sorption distribution coefficient

K ′ average ratio of horizontal to vertical effective

stresses, in Chapter 4

Kf hydraulic conductivity of uniformly fractured

rocks, in Chapter 4 (m/s)

Koc organic carbon partition coefficient (mL/g)

k specific or intrinsic permeability (m2; darcy in

petroleum engineering)

ka thousand years ago

kf permeability of uniformly fractured rocks, in

Chapter 4

krw,

krd

relative permeabilities of groundwater and NAPL

(dimensionless)

L original thickness of soil or rock sample under

compression (m)

L fault length, in Chapter 14

LSR length of surface rupture along fault (km)

L, L0 wavelength, in Chapter 16

L0 the deep-water wavelength (m)

Le effective length of the water column in slug

testing (m)

LSR surface rupture length of a fault (km)

M molality, in Chapter 7

M silt, in Chapter 10, as in MH and GM, silt with

high elasticity and silty gravel, respectively

MAW multiple aquifer well

M0 seismic moment (Nm, i.e., J)

MW moment magnitude; Richter magnitude

ML moment magnitude

MW surface-wave magnitude

MS empirical measure (dimensionless)

m mass of object (kg)

mD millidarcy (unit of permeability in petroleum

engineering)

mi molarity, in Chapter 7

Myr duration in million years of a geologic event

n porosity

ne effective porosity

nf fracture porosity, in equation (5.2)

O organic matter, in Chapter 10; in USCS as OL

and OH for organic silt and organic clay,

respectively

O oxygen, as in dissolved oxygen, in Chapters 7

and 12; or oxygen-18, in Chapters 8 and 12

P poise (unit of viscosity, in Chapter 11)

P partial pressure, as in PCO2 , in Chapter 7

P⋆ period of oscillation of sinusoid in

temperature, in Chapter 8

Pb wave power in watts per metre of shoreline

(W/m)

PD, Pd percentage of soil particles retained by

consecutive sieves of sizes D and d, in

Chapter 10

PHA peak horizontal acceleration (g)

Pt peat in USCS of soil textures, in Chapter 10

p fluid pressure (Pa)

pw pore pressure (Pa)

pc capillary pressure (Pa)

p(d) Tóth’s pore pressure profile (Pa)

pe entry pressure (Pa)

pf fracture pressure (Pa)

pr reopening pressure (Pa)

per mil, 0/00 parts per thousand

Q total fluid discharge or flow rate (m3/t)

q specific discharge, also known as Darcy flux,

i.e., Q/A (m3/m2 t)

qc sleeve resistance in cone penetration testing

qd, qw flow rates of DNAPL and groundwater in a

porous medium (L3/t)

R recession rate of coastal cliffs or bluffs, in

Chapter 16 (m/a)

Rf retardation factor of a contaminant versus

groundwater (dimensionless)

R(t) residual component of the measured sea

level (m)

REV representative elementary volume

RQD rock quality designation (%)

Sal salinity of pore water, in Chapter 8 (g/L)

SSA specific surface area of a soil sample (m2/kg)
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xviii Symbols Used in Earth Science

S sand facies, in Table 11.5

S shear force applied to the fracture, in

Chapter 4 (N)

S fluid saturation, fractional or percentage of

pore volume

Sr specific retention, fractional or percentage of

total soil or rock volume

Sy specific yield, fractional or percentage of total

soil or rock volume

Sw water saturation, fractional or percentage of

pore volume, in Part III

S shear waves, in Chapter 14

SH horizontal component of shear wave

SV vertical component of shear wave

St sensitivity of clay sample, in Chapter 8

(dimensionless)

S storativity, in Part III (dimensionless)

SI saturation index of a mineral in aqueous

solution, in Chapter 7

ss specific storage, in Part III (m−1)

s, su, sur shear strength terms, in Parts II and IV (kPa)

T transmissivity, in Part III (m2/s)

T, Ts, Tamp temperature terms, in Chapter 8

T wave period, in Chapter 16 (s)

T(t) component of sea level associated with

astronomical tide (m)

TD DNAPL thickness causing penetration (m)

t time

U uniformity coefficient (dimensionless)

UCS unconfined or uniaxial compressive strength,

often denoted as qu, C0 or σc (MPa)

u̇ long-term slip rate of an active fault (mm/a)

V mean streamflow velocity, in Chapter 9

Vp pore volume (m3)

Vpm volume of porous medium, pore volume,

etc. (m3)

Vs volume of solids (m3)

Vw volume of groundwater (m3)

v velocity, average linear velocity of

groundwater, in Part III (m/s)

vS S-wave velocity (km/s)

vP P-wave velocity (km/s)

vol volume of water entraining a particle (m3)

w water content

wL, wP liquid limit and plastic limit, in Atterberg

limits, in Part II (%)

w0 settling velocity of a stream particle (mm/s)

w(t)/H0 normalized head change in slug test, in

Chapter 11

Xi mole fraction of compound i, in Chapter 12

X(t) measured sea level (m)

y displacement of a sinusoidal wave (m)

ÿ acceleration of a point by seismic vibration

(m/s2)

Z0(t) mean sea level over time (m)

Ż erosion rate (m/s)

z elevation head, in Part III (m)

z, zactive, z⋆ depth terms, in Chapter 8
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LIST OF GREEK SYMBOLS

α compressibility of porous medium (Pa−1 or

m2/N)

αL, αT longitudinal and transverse dispersivities (m)

β angle of the failure plane in Mohr–Coulomb

criterion (◦)

β compressibility of water (Pa−1 or m2/N)

γ , γw specific or unit weight of soil or fluid (kN/m3)

�pw excess pore pressure induced by seismic

shaking (Pa)

ǫa axial strain (dimensionless)

ǫl lateral strain (dimensionless)

η(x, t) displacement of water surface from mean sea

level, in Chapter 16 (m)

θ fractional moisture content of soil, referenced to

porosity or angle of slope

κ compressibility bulk modulus (Pa)

μ dynamic viscosity (Pa s)

μ coefficient of friction in Mohr–Coulomb

criterion

μ shear or rigidity modulus, in Chapter 14 (Pa)

μp plastic viscosity of a non-Newtonian fluid (Pa s)

ν kinematic viscosity, in Chapter 10 (m2/s)

ν Poisson’s ratio, in Chapters 1 and 4

(dimensionless)

ρ fluid density (kg/m3)

ρf , ρs density of fresh water and of salt water

(kg/m3)

ρd dry bulk density (kg/m3)

ρs particle density (kg/m3)

ρavg average density of water between two depths

(kg/m3)

σ stress

σa axial stress

σe effective stress

σn normal stress

σv vertical stress

σHmax, σHmin maximum and minimum horizontal

stresses (Pa)

σc compressive strength of rock

σci laboratory intact uniaxial compressive

strength

σcm rock mass uniaxial compressive strength

σ angular frequency of waves (1/s, Hz)

τ shear stress (Pa)

τh horizontal cyclic shear stress (Pa)

τ0 cohesion, in Mohr–Coulomb criterion or

average bed shear stress, in Chapter 9 (Pa)

τfs frictional force per unit area (Pa)

τ∗ Shields parameter (Pa)

τ ′ time required for >90% of ultimate

compaction

τy yield strength of a non-Newtonian fluid (Pa)

� fluid potential (m2/s2)

φ friction angle, in Chapters 1, 4 and 15 (◦)

φ′ effective friction angle in shear-strength

tests (◦)

φ′
r residual strength friction angle for drained

samples, in Part II (◦)

ψ soil–water tension or suction (Pa)

ω stream power per unit bed area (W/m2)

ω wave power or energy flux in watts per meter

of wave, in Chapter 16 (W/m)
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