Earth Science for Civil and Environmental Engineers

This carefully targeted and rigorous new textbook introduces engineering students to the fundamental principles of applied earth science, highlighting how modern soil and rock mechanics, geomorphology, hydrogeology, seismology and environmental geochemistry affect geotechnical and environmental practice. Key geological topics of engineering relevance, including soils and sediments, rocks, groundwater and geologic hazards, are presented in an accessible and engaging way. A broad range of international case studies add real-world context and demonstrate practical applications in field and laboratory settings to guide site characterization. End-of-chapter problems are included for self-study and evaluation, and supplementary online materials include electronic figures, additional examples, solutions, and guidance on useful software.

Featuring a detailed glossary introducing key terminology, this text requires no prior geological training and is essential reading for senior undergraduate or graduate students in civil, geological, geotechnical and geoenvironmental engineering. It is also a useful reference and bridge for earth science graduates embarking on engineering geology courses.

Richard E. Jackson is a Fellow with Geofirma Engineering Ltd and Adjunct Professor of Earth and Environmental Sciences at the University of Waterloo, Ontario, Canada. He has practiced in the USA and Canada for 40 years and was responsible for establishing the Groundwater Contamination Program for the Canadian Department of the Environment. He is the recipient of several awards, including the 2008 Geoenvironmental Award from the Canadian Geotechnical Society, and the 2013 Robert N. Farvolden Award from the Canadian Geotechnical Society and the International Association of Hydrogeologists. He is an elected Honorary Fellow of Geoscientists Canada.

Cambridge University Press 978-0-521-84725-4 — Earth Science for Civil and Environmental Engineers Richard E. Jackson Frontmatter <u>More Information</u>

Earth Science for Civil and Environmental Engineers

Richard E. Jackson

Geofirma Engineering Ltd

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521847254 DOI: 10.1017/9781139046336

© Richard E. Jackson 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2019

Printed in the United Kingdom by TJ international Ltd, Padstow, Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-0-521-84725-4 Hardback

Additional resources for this publication at www.cambridge.org/Jackson2019

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Cambridge University Press 978-0-521-84725-4 - Earth Science for Civil and Environmental Engineers Richard E. Jackson Frontmatter

More Information

CONTENTS

Profaco

Preface	<i>page</i> xi
Acknowledgements	XV
List of Symbols Used in Earth Science	xvi
List of Greek Symbols	xix

1

Introduction

1.1	An Inti	roduction for Geotechnical Practice	1
1.2	An Inti	roduction to the Applied Earth Sciences	3
	1.2.1	Basic Geological Terms	3
	1.2.2	Heterogeneous Materials and the	
		Representative Elementary Volume	7
	1.2.3	Rates of Geologic Processes	9
1.3	Elemen	ntary Principles	9
	1.3.1	Amonton's Law of Friction	10
	1.3.2	Mohr-Coulomb Criterion	10
	1.3.3	Elasticity and Hooke's Law	13
	1.3.4	Terzaghi's Principle of Effective Stress	14
	1.3.5	Porous Media and Darcy's Law	15
1.4	Summ	ary	17
1.5	Furthe	er Reading	17
1.6	Quest	ions	18

PART I ROCKS AS ENGINEERING MATERIALS

2

The Structure and Composition of the Earth

2.1	Structure and Tectonics		
2.2	Earth F	listory	28
2.3	Rock-Forming Minerals		
	2.3.1	Silicate Minerals	31
	2.3.2 Carbonate Minerals		33
	2.3.3	Evaporite Minerals	33
	2.3.4	Oxide Minerals	33
	2.3.5	Sulfide Minerals	33

	2.3.6	Mineral Identification	33
2.4	Rocks a	as Mineral Assemblages	38
	2.4.1	Igneous Rocks	40
	2.4.2	Sedimentary Rocks	42
	2.4.3	Metamorphic Rocks	48
	2.4.4	Ore Deposits	50
2.5	Summ	ary	51
2.6	Furthe	er Reading	52
2.7	Questi	ions	52

3

1

Geological Structures and Maps 53 3.1 Introduction 53 3.2 **Basic Structural Measurements** 55 3.2.1 Strike and Dip in Folded Rocks 55 3.2.2 The Plunge of a Fold 56 3.2.3 **Cross-Sections** 57 3.2.4 Field Measurements 57 3.3 Faults and Shear Zones 60 3.4 Joints 64 3.5 Unconformities 65 3.6 Introduction to Geological and Engineering Geology Maps 67 3.7 Stereographic Projection 72 73 3.8 Summary **Further Reading** 3.9 73 3.10 Questions 73

4

19

21

Rock Mechanics 75 4.1 75 Introduction 4.2 Stress 75 4.2.1 Origin of Stress Regimes 75 4.2.2 Stress Regimes and Indicators 76 4.2.3 Variation of Stress with Depth in Hard Rocks 79

vi

Contents

	4.2.4	Variation of Stress with Depth in
		Sedimentary Basins
	4.2.5	Erosional Unloading
4.3	Strain ar	nd Deformation
	4.3.1	The Load–Deformation Curve
	4.3.2	Brittle and Ductile Deformation
	4.3.3	Discontinuities and Fractures
4.4	Strength	L
	4.4.1	Design of Underground Excavations
	4.4.2	Assessment of Dam Foundations
4.5	Flow in	Fractured Rocks
	4.5.1	The Cubic Law
	4.5.2	Groundwater Inflow into Tunnels
4.6	Rock-Slo	ope Failure
4.7	Summa	iry
4.8	Further	Reading

4.9 Questions

Characterization of Rocks and Rock Masses

5.1	The Elements of Site Characterization		97
	5.1.1	The Use of Geophysics	97
	5.1.2	Drilling, Cores and Core	
		Logging	100
5.2	Charac	terization of an Aggregate Quarry	101
5.3	Field a	nd Laboratory Measurements	106
	5.3.1	Index Tests	106
	5.3.2	Strength	107
	5.3.3	Porosity and Permeability	107
	5.3.4	Discontinuities	108
5.4	Rock-N	Mass Classification	109
	5.4.1	Rock-Mass Rating (RMR)	109
	5.4.2	The Q system	109
	5.4.3	Geological Strength Index (GSI)	110
	5.4.4	Weak Rocks	112
5.5	Hydrau	lic and Geomechanical Testing	
	in Bore	choles	113
	5.5.1	Hydraulic Testing	113
	5.5.2	Geomechanical Testing	115
5.6	The En	gineering Stratigraphic Column	116
5.7	Digital	Photogrammetry and Monitoring	116
5.8	Summ	ary	119
5.9	Furthe	er Reading	119
5.10	Questions		

SOILS AND SEDIMENTS Part II

Terra	rrain Evolution and Analysis		123
6.1	Climat	e and the Hydrologic Cycle	123
	6.1.1	Energy Budget of Solar	
		Radiation	123
	6.1.2	The Hydrologic Cycle	124
	6.1.3	Streamflow Generation	126
6.2	Weath	ering of Rock	127
	6.2.1	The Weathered Profile	127
	6.2.2	The Effects of Climate	128
	6.2.3	Mechanical Properties	
		of Weathered Rocks	131
6.3	Weath	ering and Slope Movement	132
	6.3.1	The Failure of Slopes	132
	6.3.2	Clays and Shales	134
	6.3.3	Igneous Rocks	136
	6.3.4	Volcanic Rocks	136
6.4	Alluvia	al Channels	136
	6.4.1	Stream Power	137
	6.4.2	Hydraulic Geometry of Channels	138
	6.4.3	Channel Morphology	139
	6.4.4	Avulsion	140
	6.4.5	Paleoflood Hydrology	142
6.5	Terraiı	n Analysis	143
	6.5.1	Air-Photo Analysis	144
	6.5.2	LiDAR	145
	6.5.3	Softcopy Mapping	146
	6.5.4	Satellite Imagery	147
6.6	Summ	hary	148
6.7	Furthe	er Reading	148
6.8	Quest	ions	149

Environmental Geochemistry and Mineralogy

Introduction	150
Chemical Weathering	150
Ionic Strength and Activity	154
Solubility of Minerals	155
Alkalinity and Carbonate Mineral	
Dissolution	157
Redox Processes	158
Sorption and Sorbents	161
	Chemical Weathering Ionic Strength and Activity Solubility of Minerals Alkalinity and Carbonate Mineral Dissolution Redox Processes

7.8	Acid-R	lock Drainage	164
	7.8.1	Metal-Sulfide Mineral Oxidation	164
	7.8.2	Mineral Deposits	164
	7.8.3	Reactions in Mine-Waste Tailings	166
7.9	Clay M	linerals	167
	7.9.1	Heave in Colorado Claystones	168
	7.9.2	The Hong Kong Landslides	170
	7.9.3	Clogging of Tunnel Boring	
		Machines in "Sticky" Clay Soils	173
7.10	Summ	ary	173
7.11	Furthe	er Reading	174
7.12	Quest	ions	174

Glad	ial Sed	iments and Permafrost	175
8.1	Glaciat	tion during the Quaternary	175
8.2	Ice Flo	w and Glaciotectonics	178
8.3	Glacial	Erosion and Landforms	181
8.4	Glacial	Sediments	184
	8.4.1	Till	184
	8.4.2	Glaciomarine Clays	186
	8.4.3	Glaciofluvial Sediments	187
8.5	Perma	frost	190
	8.5.1	Thermal Regime	190
	8.5.2	Periglacial Environments	191
	8.5.3	Geotechnical Issues	193
8.6	Summ	hary	194
8.7	Furthe	er Reading	195
8.8	Quest	ions	195

Fluvi	ial Proc	esses and Sediments	196
9.1	Sedime	ent Erosion and Transport	196
	9.1.1	Entrainment of Sediment	196
	9.1.2	Estimating Erosion Potential	199
	9.1.3	Sedimentation in Reservoirs	202
9.2	Fluvial	Sedimentary Regimes	204
	9.2.1	Alluvial Deposits	204
	9.2.2	Alluvial Fans	210
	9.2.3	Deltaic Deposits	212
9.3	Diagen	nesis of Clastic Sediments	214
9.4	Summ	nary	216
9.5	Furthe	er Reading	217
9.6	Quest	ions	217

Characterization of Soils and Sediments			219
10.1	Elemen	ts of Site Characterization	220
	10.1.1	Drilling Methods	222
	10.1.2	Core Acquisition	224
	10.1.3	Core Logs	226
	10.1.4	Cone Penetration Testing	227
	10.1.5	Geophysical Surveys	228
10.2	Textura	l Analysis of Soils and Sediments	231
	10.2.1	Udden-Wentworth Scale	232
	10.2.2	Inferences from Textural Analysis	232
10.3	Laborat	ory Testing of Soils and Sediments	236
	10.3.1	Hydraulic Conductivity	238
	10.3.2	Shear Strength	239
	10.3.3	Consolidation of Soils and Sediments	240
10.4	Charact	erization of Aggregate Sources	241
10.5	Summa	ary	242
10.6	Furthe	r Reading	243
10.7	Questions		

PART III GROUNDWATER

Hydrogeology 24			247
11.1	Flow th	rough Porous Media	247
	11.1.1	Porosity	247
	11.1.2	Velocity, Permeability and	
		Hydraulic Conductivity	247
	11.1.3	Factors Affecting Hydraulic	
		Conductivity	250
	11.1.4	Fluid Potential	250
11.2	Compre	essibility, Storage and the Flow Equation	251
	11.2.1	Compressibility	251
	11.2.2	Storage and Transmissivity	252
	11.2.3	The Groundwater Flow Equation	254
11.3	Wells a	nd Hydraulic Testing	255
	11.3.1	Wells	255
	11.3.2	Hydraulic Testing	256
11.4	Ground	lwater Flow Systems	258
	11.4.1	Idealized Flow Patterns in	
		Groundwater Basins	259
	11.4.2	Shallow Flow Systems	261
	11.4.3	Transient-State Flow Systems	266

Contents

vii

Cambridge University Press 978-0-521-84725-4 — Earth Science for Civil and Environmental Engineers Richard E. Jackson Frontmatter <u>More Information</u>

viii

ontents	

44 5	A	1 4 1	244
11.5	-	s and Aquitards	266
	11.5.1	Alluvial Aquifers	269
	11.5.2	1	269
	11.5.3	Aquitards	271
11.6	Summa	-	272
11.7	Furthe	r Reading	273
11.8	Questi	ons	273
4.2			
12			
Grou	ndwate	er Quality and Contamination	275
12.1	Ground	lwater Quality	275
12.2	Enviror	nmental Isotopes	277
	12.2.1	Applications of Environmental	
		Isotopes	277
	12.2.2	Radioisotopes	278
12.3	Ground	lwater Contamination	280
	12.3.1	The Geoenvironmental Perspective	280
	12.3.2	Solute Transport	281
12.4	Immisc	ible Contaminants	282
	12.4.1	Fluid Saturations and Interfacial	
		Behaviour	283
	12.4.2	Migration of NAPLs	284
	12.4.3	Plume Generation by NAPLs	288
	12.4.4	Fugitive Gas Migration	290
12.5	Fate of I	Dissolved Contaminants	290
	12.5.1	Contaminant Sorption	292
	12.5.2	Contaminant Biodegradation	292
	12.5.3	Landfill Leachate	293
12.6	Charact	terization of Contaminated Sites	294
12.7	Seawate	er Intrusion	294
12.8	Wellhea	ad Protection	297
12.9	Summa	ary	298
12.10		r Reading	298
12.11		5	298
	-		

PART IV GEOLOGICAL HAZARDS

Subsid	ence and Karst	303
Ground	lwater-Extraction-Induced	
Subside	ence	303
13.1.1	Compaction	304
13.1.2	Aquitard Drainage	305
13.1.3	Fissure Development and Growth	308
13.1.4	Measuring Subsidence	309
Mining	-Induced Subsidence	311
	Ground Subside 13.1.1 13.1.2 13.1.3 13.1.4	Subsidence and KarstGroundwater-Extraction-InducedSubsidence13.1.1Compaction13.1.2Aquitard Drainage13.1.3Fissure Development and Growth13.1.4Measuring SubsidenceMining-Induced Subsidence

Karst		316
13.3.1	Dissolution of Soluble Rocks	316
13.3.2	Groundwater Flow in Carbonate	
	Aquifers	317
13.3.3	Evolution of Karst Terrain	319
13.3.4	Engineering Problems Associated	
	with Karst	322
13.3.5	Site Investigation in Karst Terrain	324
Summa	ary	325
Furthe	r Reading	325
Questi	ons	326
	13.3.1 13.3.2 13.3.3 13.3.4 13.3.5 Summa Furthe	 13.3.1 Dissolution of Soluble Rocks 13.3.2 Groundwater Flow in Carbonate Aquifers 13.3.3 Evolution of Karst Terrain 13.3.4 Engineering Problems Associated

Seismicity and Earthquakes

14.1	Introduction to Seismic Faulting	327
14.2	Seismic Waves and Seismometry	331
14.3	Friction and Faults	335
14.4	Detection of Active Faults	337
14.5	Seismic Hazard Analysis	340
	14.5.1 Ground Motion	341
	14.5.2 Seismic Hazard Maps	344
	14.5.3 Liquefaction	348
14.6	Summary	352
14.7	Further Reading	352
14.8	Questions	353

Landslides

15.1	Definiti	ons, Types and Processes	354
15.2	Landslie	de Triggering Mechanisms	356
	15.2.1	Hydrologic Triggering	356
	15.2.2	Seismic Triggering	359
	15.2.3	Volcanic Triggering	361
15.3	Charact	erization and Monitoring of	
	Landslie	des	362
15.4	Slope Fa	ailure in Soils	366
	15.4.1	Measurement of the Critical	
		Parameters	366
	15.4.2	Soil Slope Stability Analysis	366
	15.4.3	Unsaturated Soils	368
15.5	Slope Fa	ailure in Rock Masses	370
	15.5.1	Characterizing the Strength of	
		Rock Slopes	370
	15.5.2	The Shear Strength of Discontinuities	372
	15.5.3	The Shear Strength of Rock Masses	373
	15.5.4	Rock-Slope Stability Analysis	373

					Contents
15.6	Case History: The Vaiont Reservoir		16.4	Stability of Coastal Cliffs and Bluffs	399
	Disaster	374		16.4.1 Lake Erie Bluffs	399
15.7	Summary	378		16.4.2 Californian Cliffs	401
15.8	Further Reading	378		16.4.3 The English Chalk Cliffs	401
15.9	Questions	379	16.5	Nearshore Hazards	403
				16.5.1 Iceberg Scouring	403
16				16.5.2 Gassy Sediments	406
Conc	tal Hazardo	201		16.5.3 Submarine Landslides	406
Coastal Hazards		381	16.6	Summary	408
16.1	Coastal Landforms	383	16.7	7 Further Reading	
16.2	Waves: Form and Energy	384	16.8	16.8 Questions	
16.3	Sea-Level Change	388			
	16.3.1 Tides	388	Gloss	ary	410
	16.3.2 The Rise in Mean Sea Level	389	Refe	rences	430
	16.3.3 Storm Surges	392	Index	(455
	16.3.4 Tsunamis	397	The plate section can be found between pages		
	16.3.5 Coastal Subsidence	398		and 237	2

Cambridge University Press 978-0-521-84725-4 — Earth Science for Civil and Environmental Engineers Richard E. Jackson Frontmatter <u>More Information</u>

PREFACE

Motivation and Objectives

The purpose of this book is to introduce civil and environmental engineering students – and those active in engineering – to the fundamental principles of the earth sciences as they affect their practice. In particular, this book is intended for the use of geotechnical and geoenvironmental students and those in that practice. Hopefully, the reader will come to appreciate the complex problems that exist in engineering practice in a geological environment and find them intellectually rewarding. It also seeks to persuade the engineer that he or she should not try to solve all their problems without the advice of geoscientists. Rather, it is written to give the engineer an appreciation of the fundamentals of geological processes in order to work more effectively in a team comprising engineers and geoscientists.

This book is divided into four parts: Rocks as engineering materials; Soils and sediments; Groundwater; and Geological hazards. Additionally, the book contains supplementary material on a website, where additional case histories may be studied and where useful software is discussed. In many cases, this software is available free to the user; in other cases, the software is available at reasonable prices from software houses that cater to engineers. Chapters end with a set of questions to test understanding of the topics covered. Answers to the questions are to be found online in the material reserved for instructors.

The objectives of the four parts of this book may be summarized as follows:

Part I: Rocks as engineering materials. To understand the structure and properties of rocks as engineering materials in foundations, mineral extraction and waste disposal. This part necessarily begins with a discussion of minerals and the composition of rocks composed of these minerals before introducing the reader to geological structures and maps. The next chapter introduces the science of rock mechanics to allow the reader to appreciate its role in slope stability, tunnelling, waste disposal and seismicity, among other areas of engineering importance. Finally, Part I ends with a discussion of how engineers and geoscientists characterize the properties of rocks important in their work.

- Part II: Soils and sediments. To appreciate how soils and sediments are produced, transported and obtain their physical-chemical properties. This part introduces the engineer to weathering, glacial and fluvial processes and the characterization of soils and sediments. Furthermore, Part II devotes a chapter to assist the geoenvironmental engineer in understanding how geochemical processes and mineralogy can affect his or her work.
- Part III: Groundwater. To understand groundwater flow and the cause and development of groundwater contamination. Here we consider the nature of hydraulic conductivity, groundwater flow systems, aquifers and aquitards. These discussions are followed by a review of the processes that generate groundwater quality, whether natural or contaminated.
- Part IV: Geological hazards. To recognize the conditions under which geological hazards exist and may threaten lives and infrastructure. The hazards considered include land subsidence due to extraction of groundwater and minerals and to karst development, earthquakes and active faults, landslides in their many forms and coastal hazards, such as storm surges and beach erosion in an era of climate change.

Teaching Earth Sciences to Engineers

Geotechnical engineers face problems of enormous complexity. When the late John Harvey wrote the predecessor of this book – *Geology for Geotechnical Engineers* – in the early 1980s, the tunnel in the chalk beneath the English Channel linking France and England had not yet been started, and it was not completed until 1990. Vastly more difficult tunnels have been completed since, such as those in faulted rock in Taiwan, the Austrian Alps and Greece. Today, geotechnical engineers sometimes operate the tunnel boring machines, so

ore informatio

xii

Preface

complex has their task become. Geotechnical engineers have also learned much about protecting pipelines and transportation corridors from landslides and from seismic shock. Even if we are not quite ready to pronounce on the magnitude and timing of the next major displacement of the San Andreas Fault, when a magnitude 7.9 earthquake ruptured the Denali Fault in Alaska in 2002 and moved 4 m laterally and 0.5 m vertically, the Trans Alaska Oil Pipeline did not rupture. In fact, the pipeline had been designed to withstand 6.1 m of horizontal displacement and 1.5 m of vertical displacement at the location where the fault crossed the pipeline.

Similarly, today, geoenvironmental engineers design landfills, deep geological repositories and mine-tailings sites for the safe storage of hazardous wastes. Before geoenvironmental engineering developed, it was common for hazardous-waste sites to leak contaminants to groundwater and cause the closure of nearby public water-supply wells or to streams and cause fish kills in rivers.

Nevertheless, even today, many civil engineers graduate and enter practice without any academic introduction to the applied earth sciences irrespective of the onus on the engineer to protect public safety. Despite the advice of some of the greatest geotechnical engineers and engineering geologists of the twentieth century, there is no requirement for civil engineers to take a course in geology as applied to engineering in the USA; the situation is better in the UK and Canada, and perhaps elsewhere.

Karl Terzaghi, the father of geotechnical engineering, recommended "a two-semester course combined with field trips" taught by "a geologist who appreciates the requirements of engineers and an engineer who has learned from personal experience that geology is indispensable in the practice of his profession" (cited by Proctor, 1981). While acknowledging the need for natural science courses in the undergraduate civil engineering curriculum, the American Society of Civil Engineers (ASCE, 2008) merely suggests that geotechnical and environmental engineers would be well served by taking an introductory course in geology and geomorphology.

However, a typical elective course in physical geology is not necessarily helpful in that the lecturer is unlikely to have experience of geologic practice in engineering projects, because such lecturers are rare in earth science or civil engineering departments. Courses in introductory physical geology should be considered part of the liberal education of the engineer, not as preparation for engineering practice where public safety is the responsibility of the engineer.

This book subscribes to Terzaghi's opinion that geological training for civil engineers is essential to a civil engineer's

education – in particular for those entering geotechnical and geoenvironmental practice – and therefore is not marginal to the engineer's future career. It has developed from John Harvey's earlier textbook (Harvey, 1982), which was based upon his lectures given to undergraduate civil engineers at the former Plymouth Polytechnic, now the University of Plymouth, in England. It has been written on the basis of the author's experience in practice in North America and through his links to European workers in environmental and engineering geoscience. Some of Harvey's original text remains in Chapter 2 and is acknowledged here to honour his role in teaching engineers.

One implicit goal of the book is to develop some preliminary judgement in evaluating geological phenomena. Here we will follow the advice of Terzaghi's colleague, Ralph Peck, late Professor of Geotechnical Engineering at the University of Illinois, who stressed the need for empiricism and theory in the development of engineering judgement (Peck, 1991). The former tells us what works and what does not, while the latter provides guidance when the engineer must project designs into unknown empirical territory. Judgement in decision making is not something that comes with an engineering degree; it is progressively learned. John Burland (2007), Emeritus Professor of Soil Mechanics at Imperial College, London, refers to this as "well-winnowed experience" (see Figure 1.1).

Richard Goodman of the University of California wrote (Goodman, 1993):

No doubt, mastering advanced engineering mathematics or thermodynamics is "harder" for some students than understanding the principles of engineering geology. But in the practice of engineering, geology may prove to be the harder subject. The penalties for geologic mistakes can be severe, whereas the confidence that comes from having made the right choice cannot be obtained from a formula or theory. In my experience, most engineering students are more at home with formulas and analysis than with colors and grades of truth.

A second implicit goal of this book is to address the need to weave hydrogeological principles into geotechnical and geoenvironmental practice. In his brief history of geotechnical engineering, Burland (2012a) cited Terzaghi's complaint of 1939 that "in engineering practice difficulties with soils are almost exclusively due, not to the soils themselves, but to the water contained in their voids. On a planet without any water there would be no need for soil mechanics". Thus, Burland (2007) had earlier noted of geotechnical failures associated with site investigations that "nine failures out of ten result from a lack of knowledge about the ground profile – often the groundwater conditions".

> Here I try to provide a physical context to interpret variations in hydraulic head and hydraulic gradient that might assist geotechnical engineers in site investigations. Splendid examples of such practice have been published recently for landslide sites in Western Canada (Eshraghian et al., 2008) and Northern Ireland (Hughes et al., 2016) and by Wyllie (2018) in his revision of Hoek and Bray's Rock Slope Engineering. Burland (2007) cites other examples from Terzaghi where hydrogeological phenomena - high heads and piping – complicated geotechnical practice; Burland (2012b) describes similar issues in his own work in guiding the design of the underground car park beneath the Houses of Parliament in London. Furthermore, hydrogeology has become central both to the practice of geoenvironmental engineering, where landfills and mine-tailings facilities must be designed and plumes of contaminated groundwater controlled and remediated, and to the control of land subsidence from over-extraction of groundwater and enhanced dissolution of karst rock.

> In the pages that follow, we shall bear in mind ten areas of competency identified by Professor Allen Hatheway (2005), formerly of the Missouri School of Mines, as being required of the young engineer about to enter practice:

- an ability to define the physical properties and characteristics of soils, rock – especially weak rock – and groundwater;
- an appreciation of the manner in which these materials are found in nature;
- an appreciation of the regional geomorphology as the expression of the combined effects of climate, weathering and the sum history of all geologic forces and phenomena over history on the geology of the region;
- an understanding of how geological field data are collected, tested, evaluated, interpreted and then converted to specifications concerning the properties of the site;
- a sense of how anomalies occur routinely in geological materials and how such features can alter, disturb or remove what is most predictable about subsurface interpretations and projections;
- a realization of how geologic discontinuities can alter the properties of geological materials;
- a realization of how the presence of water in geological materials can effectively influence the nature of a site in terms of the construction and performance of engineered works;
- an appreciation of how dynamic earth processes are continually bringing change to the landscape and to the subsurface;

- a sense of the nature of risk as it relates to the potential for the presence and potential impact of undetected geologic features, or the absence thereof; and
- an appreciation of how to prepare a scope of work to seek geological specification of the nature of the proposed construction location, i.e., site characterization.

Like Terzaghi, the geotechnical engineer is urged to make geology an abiding interest. Ruth Doggett Terzaghi, his spouse, used her skills in the petrography of concrete and soils to advise the founder of soil mechanics. Perhaps this book will suffice as an introduction to the applied earth sciences for young engineers – and marriage to a geologist will not be necessary!

Readership

This book is suitable for (i) undergraduates in their final years of their degree course, (ii) graduate students entering geotechnical and/or geoenvironmental engineering courses and (iii) engineers in training and those beginning geotechnical and geoenvironmental practice. It is my belief that earth science is best introduced to engineering students following (i) their introduction to practice through work terms or summer jobs and (ii) their education in fluid, solid and soil mechanics. It is then that they can see that geological processes are cut from the same cloth as taught in engineering mechanics.

Earth Science for Civil and Environmental Engineers is intended to be suitable for those entering an M.Sc. or M.S. degree program – referred to elsewhere as MSCE, M.Eng. or MASc – in these engineering subdisciplines and those entering practice who have not had the benefit of earlier training in the applied earth sciences. Because licensing of US engineers may in future require an M.S. degree or equivalent, this book may become useful as the civil engineering profession in the USA develops the necessary "Body of Knowledge for Professional Practice" (ASCE, 2008) and engineering students in Europe enter new courses – often in the English language – guided by the Bologna process.

Terminology

The terminology used in this book is broadly North American, although some specific British usage is acknowledged, e.g., *superficial* rather than *surficial* deposits. Common geoscientific terms that are printed in **bold** in the text should

Preface

xiv

Preface

be memorized: many are defined in the glossary at the end of the book; the definitions of others may be found in Bates and Jackson (1984). The term geoenvironmental is used to identify those issues that concern environmental engineers but are confined to the subsurface. Its use by the ASCE, as in their Journal of Geotechnical and Geoenvironmental Engineering, indicates that it is well established at least in the English-speaking world. Some terms in this book may strike American readers as somewhat unusual but it is important that they learn to understand documents written in English by the international engineering community because so much important work originates outside America.

Cambridge University Press 978-0-521-84725-4 — Earth Science for Civil and Environmental Engineers Richard E. Jackson Frontmatter <u>More Information</u>

ACKNOWLEDGEMENTS

I am most grateful to the late John Harvey, who wrote the predecessor book to this - Geology for Geotechnical Engineers (Cambridge University Press, 1982) - for encouraging me to write a sequel. Also, I am indebted to the many colleagues who helped me with text and illustrations: Jeff Keaton, of AMEC (now Wood) in Los Angeles, in particular, for all his help; Maurice Dusseault here at the University of Waterloo for his extensive reviews; Tony Philpotts of the University of Connecticut for his review of Chapter 2; and Bob Anderson of the State Seismic Commission in Sacramento for identifying errors and omissions in Chapter 14. I am also indebted to Chris Neville with Papadopulos, to Rob Sengebush and my former colleagues with INTERA in Texas, and to Ken Raven, John Avis and Robert Walsh with Geofirma Engineering for many helpful discussions over the years. All remaining errors and omissions in the book are mine alone.

Many others helped with comments on preliminary text or illustrations, including: Greg Brooks, Steve Grasby, Alfonso Rivera, David Sharpe and Baolin Wang of the Geological Survey of Canada; David Boore, Jeff Coe, Brian Collins, Devin Galloway, Cheryl Hapke, Ralph Haugerud, Lynn Highland, Tom Holzer, Steve Ingebritsen and Valerie Sahakian of the US Geological Survey; and, elsewhere, Philippa Black, Rob Blair, Terry Blair, Jean-Louis Briaud, Mike Church, John Clague, Ian Clark, John Dunnicliff, Grant Ferguson, Emil Frind, Martin Geertsema, Monica Ghirotti, Bob Graham, Bill Haneberg, Mike Hart, Stuart Haszeldine, Jurgen Heinz, Neal Iverson, Jean-Michel Lemieux, Jacques Locat, Jim Lolcama, Derek Martin, Piotr Migon, David Noe, Chuck O'Dale, Pete Pehme, Lynden Penner, George Priest, Pat Pringle, Peter Robertson, Eva Schandl, Paolo Semenza, Martin Shepley, Roy Shlemon, Norm Smith, Kevin Trenberth, Sai Vanapalli, Steve Worthington and Duncan Wyllie.

Susan Francis at Cambridge University Press and her merry band of assistants have been most encouraging and helpful throughout my writing – despite the fact I missed my original deadline by ten years! Carley Crann provided splendid figures and advice on the illustrations. Above all, I am indebted to my wife, Mary Sinclair, for her common sense, encouragement and forbearance in this task that I took on many years ago.

More Information

Cambridge University Press 978-0-521-84725-4 — Earth Science for Civil and Environmental Engineers Richard E. Jackson Frontmatter

LIST OF SYMBOLS USED IN EARTH SCIENCE

a	annum or year; annual rate as in mm/a or m/a	E_H	redox potential, in Chapter 7 (V)
a, a_c, a_{max}	ground acceleration (seismic) (m ² /s)	E_m	rock mass deformation modulus (Pa)
a(f)	acceleration spectral density function for	E_s	strain energy released by an earthquake (J or N m)
	stochastic model of ground motion,	E_{w}	bulk modulus of water (Pa^{-1} or m^2/N)
	ground acceleration as a function of	е	void ratio
	frequency of waveform	e _{max}	maximum void ratio (dimensionless)
a_i	activity coefficient of ion <i>i</i>	F	force, as in F_T or F_N , in Part I (N)
b	aquifer thickness (m)	F_D, F_L	drag and lift coefficients, in Chapter 9 (N)
С	concentration of an analyte, in Chapter 12	F	fine facies, i.e., silts and clays, in Parts II and III,
C, C_0, C_s	celerity of sequence of wave crests in deep (0)		see Table 11.5
	or shallow (<i>s</i>) water, in Chapter 16 (m/s)	FS	factor of safety
С	clay in the USCS of soil textures, e.g., GC, CH	f_c	seismic-source corner frequency, number of wave
	and CL for clayey gravel, high-plasticity	5-	cycles per second (Hz)
	clay and lean clay, respectively	f_s	sleeve resistance in cone penetration testing
C_D	damping parameter in slug testing	G	gravel facies, in Chapter 9; and in USCS
	(dimensionless)		terminology as GW, GP, GM and GC for
$C_{e,i}$	effective solubility of an NAPL		well-graded, poorly graded, silty and clayey
C_H	Hazen coefficient (dimensionless)		gravel, respectively
$C_{s,i}$	aqueous solubility of an NAPL	G_s	specific gravity of soil grains (dimensionless)
C_u	uniformity coefficient (dimensionless)	g	acceleration of gravity (m/s^2)
<i>c</i> ′	effective cohesion in a Mohr–Coulomb	Н	hydrogen, as in pH or H_2O
	strength analysis (kPa)	H_0	initial water-level change in a slug test (m)
cP	centipoise (unit of viscosity)	H_b	breaking wave height, in Chapter 16 (m)
C_V	coefficient of consolidation (m^2/s)	H_{c}	minimum thickness for the dense flow phase of a
D	darcy (unit of permeability in petroleum		turbidity current to begin migration (m)
	engineering, in Chapter 11)	H _{max}	maximum wave height, in Chapter 16 (m)
D	deuterium (² H)	h	hydraulic head (m)
D_H	hydraulic diameter of stream channel (m)	h_e	environmental water head (m)
$D_{i,j}$	dispersion tensor, in Chapter 12 (m ² /s)	h_f	equivalent fresh-water hydraulic head (m)
D_m	coefficient of molecular diffusion (m ² /s)	h	water depth, in Chapter 16 (m)
D_N	Newmark displacement (cm)	Ι	inflow or recharge rate in Figure 11.9 (m/s)
d	grain-size diameter (m)	Ι	major textural component of hydrofacies, in
d	slip distance in an earthquake (m)		Chapter 9
d_{min}	minimum grain-size diameter in sieving (m)	Ia	Arias intensity, in Chapter 15 (m/s)
d_{10}	grain-size diameter of which 10% of the	I_L	index of liquidity in Atterberg limits (%)
	grains are finer than (m)	I_P	index of plasticity in Atterberg limits (%)
Ε	Young's modulus of elasticity (Pa)	i	well-loss exponent (dimensionless)
Ε	wave energy per unit surface area, in	i	angle of inclination of rough surface in Patton's
	Chapter 16 (J/m ²)		principle, in Chapter 4

Symbols Used in Earth Science

Κ	hydraulic conductivity (m/s)	т	mass of object (kg)
<i>K</i> ₀	saturated hydraulic conductivity; a term used only in the context of unsaturated soils (m/s)	mD	millidarcy (unit of permeability in petroleum engineering)
K_h	hydraulic conductivity in the horizontal	m_i	molarity, in Chapter 7
	direction (m/s)	Myr	duration in million years of a geologic event
K_{ν}	hydraulic conductivity in the vertical	п	porosity
	direction (m/s)	n_e	effective porosity
$K_{x,y,z}$	hydraulic conductivity in x , y and z	n_f	fracture porosity, in equation (5.2)
	directions (m/s)	Ο	organic matter, in Chapter 10; in USCS as OL
K _f	hydraulic conductivity of a fracture, in Chapter 4 (m/s)		and OH for organic silt and organic clay, respectively
Κ	average ratio of horizontal to vertical total	0	oxygen, as in dissolved oxygen, in Chapters 7
	stresses, in Chapter 4		and 12; or oxygen-18, in Chapters 8 and 12
K_D	distribution coefficient of a contaminant (m ³ /kg)	Р	poise (unit of viscosity, in Chapter 11)
K _{eq}	equilibrium constant, in Chapter 7	Р	partial pressure, as in P_{CO_2} , in Chapter 7
K_{s0}	solubility product at zero ionic strength	P^{\star}	period of oscillation of sinusoid in
K_{AD}	conditional equilibrium sorption constant		temperature, in Chapter 8
K _D K'	sorption distribution coefficient average ratio of horizontal to vertical effective	P_b	wave power in watts per metre of shoreline (W/m)
	stresses, in Chapter 4	P_D, P_d	percentage of soil particles retained by
K _f	hydraulic conductivity of uniformly fractured rocks, in Chapter 4 (m/s)	- D) - u	consecutive sieves of sizes <i>D</i> and <i>d</i> , in Chapter 10
K _{oc}	organic carbon partition coefficient (mL/g)	PHA	peak horizontal acceleration (<i>g</i>)
k	specific or intrinsic permeability (m ² ; darcy in	Pt	peat in USCS of soil textures, in Chapter 10
	petroleum engineering)	p	fluid pressure (Pa)
ka	thousand years ago	p_w	pore pressure (Pa)
k_f	permeability of uniformly fractured rocks, in	Р w Р c	capillary pressure (Pa)
. Ij	Chapter 4	p(d)	Tóth's pore pressure profile (Pa)
k _{rw} ,	relative permeabilities of groundwater and NAPL	p_e	entry pressure (Pa)
k _{rd}	(dimensionless)	Pe Pf	fracture pressure (Pa)
L	original thickness of soil or rock sample under	p_r	reopening pressure (Pa)
	compression (m)	per mil, $^{0}/_{00}$	parts per thousand
L	fault length, in Chapter 14	Q 7,00	total fluid discharge or flow rate (m^3/t)
L_{SR}	length of surface rupture along fault (km)	9	specific discharge, also known as Darcy flux,
L, L_0	wavelength, in Chapter 16	1	i.e., Q/A (m ³ /m ² t)
L_0	the deep-water wavelength (m)	q_c	sleeve resistance in cone penetration testing
L _e	effective length of the water column in slug testing (m)	q_d , q_w	flow rates of DNAPL and groundwater in a porous medium (L^3/t)
L_{SR}	surface rupture length of a fault (km)	R	recession rate of coastal cliffs or bluffs, in
M	molality, in Chapter 7		Chapter 16 (m/a)
М	silt, in Chapter 10, as in MH and GM, silt with high elasticity and silty gravel, respectively	R_f	retardation factor of a contaminant versus groundwater (dimensionless)
MAW	multiple aquifer well	R(t)	residual component of the measured sea
M_0	seismic moment (N m, i.e., J)		level (m)
M_W	moment magnitude; Richter magnitude	REV	representative elementary volume
M_L	moment magnitude	RQD	rock quality designation (%)
M_W	surface-wave magnitude	Sal	salinity of pore water, in Chapter 8 (g/L)

xviii Symbols Used in Earth Science

S	sand facies, in Table 11.5	UCS	unconfined or uniaxial compressive strengtl
S	shear force applied to the fracture, in		often denoted as q_u , C_0 or σ_c (MPa)
	Chapter 4 (N)	ù	long-term slip rate of an active fault (mm/a)
S	fluid saturation, fractional or percentage of	V	mean streamflow velocity, in Chapter 9
	pore volume	V_p	pore volume (m ³)
S _r	specific retention, fractional or percentage of total soil or rock volume	V _{pm}	volume of porous medium, pore volume, etc. (m ³)
S_y	specific yield, fractional or percentage of total	V_s	volume of solids (m ³)
	soil or rock volume	V_{w}	volume of groundwater (m ³)
S _w	water saturation, fractional or percentage of pore volume, in Part III	ν	velocity, average linear velocity of groundwater, in Part III (m/s)
S	shear waves, in Chapter 14	v_S	S-wave velocity (km/s)
S_H	horizontal component of shear wave	v_P	P-wave velocity (km/s)
S_V	vertical component of shear wave	vol	volume of water entraining a particle (m ³)
S_t	sensitivity of clay sample, in Chapter 8	W	water content
S	(dimensionless) storativity, in Part III (dimensionless)	w_L, w_P	liquid limit and plastic limit, in Atterberg limits, in Part II (%)
SI	saturation index of a mineral in aqueous	w ₀	settling velocity of a stream particle (mm/s)
S _S	solution, in Chapter 7 specific storage, in Part III (m^{-1})	$w(t)/H_0$	normalized head change in slug test, in Chapter 11
s, s_u, s_{ur}	shear strength terms, in Parts II and IV (kPa)	X_i	mole fraction of compound <i>i</i> , in Chapter 12
Т	transmissivity, in Part III (m ² /s)	X(t)	measured sea level (m)
$T, \overline{T}_s, T_{amp}$	temperature terms, in Chapter 8	у	displacement of a sinusoidal wave (m)
T	wave period, in Chapter 16 (s)	ÿ	acceleration of a point by seismic vibration
T(t)	component of sea level associated with		(m/s ²)
	astronomical tide (m)	$Z_0(t)$	mean sea level over time (m)
T_D	DNAPL thickness causing penetration (m)	Ż	erosion rate (m/s)
t	time	z	elevation head, in Part III (m)
U	uniformity coefficient (dimensionless)	z, z_{active}, z_{\star}	depth terms, in Chapter 8

Cambridge University Press 978-0-521-84725-4 — Earth Science for Civil and Environmental Engineers Richard E. Jackson Frontmatter <u>More Information</u>

LIST OF GREEK SYMBOLS

α	compressibility of porous medium (Pa^{-1} or	σ	stress
	m ² /N)	σ_a	axial stress
α_L, α_T	longitudinal and transverse dispersivities (m)	σ_e	effective stress
β	angle of the failure plane in Mohr–Coulomb	σ_n	normal stress
	criterion (°)	σ_{v}	vertical stress
β	compressibility of water (Pa^{-1} or m^2/N)	σ_{Hmax} , σ_{Hmin}	maximum and minimum horizontal
γ, γ_w	specific or unit weight of soil or fluid (kN/m ³)		stresses (Pa)
Δp_w	excess pore pressure induced by seismic	σ_c	compressive strength of rock
	shaking (Pa)	σ_{ci}	laboratory intact uniaxial compressive
ϵ_a	axial strain (dimensionless)		strength
ϵ_l	lateral strain (dimensionless)	σ_{cm}	rock mass uniaxial compressive strength
$\eta(x,t)$	displacement of water surface from mean sea	σ	angular frequency of waves (1/s, Hz)
	level, in Chapter 16 (m)	τ	shear stress (Pa)
θ	fractional moisture content of soil, referenced to	$ au_h$	horizontal cyclic shear stress (Pa)
	porosity or angle of slope	$ au_0$	cohesion, in Mohr-Coulomb criterion or
κ	compressibility bulk modulus (Pa)		average bed shear stress, in Chapter 9 (Pa)
μ	dynamic viscosity (Pas)	$ au_{fs}$	frictional force per unit area (Pa)
μ	coefficient of friction in Mohr-Coulomb	$ au_*$	Shields parameter (Pa)
	criterion	au'	time required for >90% of ultimate
μ	shear or rigidity modulus, in Chapter 14 (Pa)		compaction
μ_p	plastic viscosity of a non-Newtonian fluid (Pas)	$ au_y$	yield strength of a non-Newtonian fluid (Pa)
ν	kinematic viscosity, in Chapter 10 (m ² /s)	Φ	fluid potential (m^2/s^2)
ν	Poisson's ratio, in Chapters 1 and 4	ϕ	friction angle, in Chapters 1, 4 and 15 (°)
	(dimensionless)	ϕ'	effective friction angle in shear-strength
ρ	fluid density (kg/m ³)		tests (°)
ρ_f, ρ_s	density of fresh water and of salt water (kg/m ³)	ϕ_r'	residual strength friction angle for drained samples, in Part II (°)
ρ_d	dry bulk density (kg/m ³)	ψ	soil-water tension or suction (Pa)
$ ho_s$	particle density (kg/m ³)	ω	stream power per unit bed area (W/m ²)
ρ_{avg}	average density of water between two depths	ω	wave power or energy flux in watts per meter
-	(kg/m ³)		of wave, in Chapter 16 (W/m)