Cardiac Arrest
The Science and Practice of Resuscitation Medicine

Second edition

Cardiac Arrest is the definitive and most comprehensive reference in advanced life support and resuscitation medicine.

This new edition brings the reader completely up-to-date with developments in the field, focusing on practical issues of decision making, clinical management and prevention, as well as providing clear explanations of the science informing the practice. The coverage includes information on the latest pharmacotherapeutic options, the latest chest compression techniques and airway management protocols, all backed by clearly explained, evidence-based scientific research. The content is consistent with the latest guidelines for practice in this area, as detailed by the major international governing organizations.

This volume is essential reading for all those working in the hospital environments of emergency medicine, critical care, cardiology and anesthesia, as well as those providing care in the pre-hospital setting, including paramedics and other staff from the emergency services.

Norman A. Paradis is Adjunct Professor of Surgery, University of Colorado Health Sciences Center.

Henry R. Halperin is Professor of Medicine, Radiology, and Biomedical Engineering at the Johns Hopkins University School of Medicine, Baltimore, USA.

Karl B. Kern is Professor of Medicine at the Sarver Heart Center, University of Arizona, USA.

Volker Wenzel is Associate Professor of Anesthesiology and Critical Care Medicine in the Department of Anesthesiology and Critical Care Medicine of Innsbruck Medical University, Innsbruck, Austria.

Douglas A. Chamberlain CBE is Honorary Professor of Resuscitation Medicine at the School of Medicine, Cardiff University, Wales and Visiting Professor of Cardiology at the University of Brighton, Sussex, UK.
From reviews of the first edition:

... It is a tribute to the editors of this book, and the contributors they have selected, that they have managed to produce a book of enormous quality on the science of resuscitation medicine. \textit{The Lancet}

The excellent book, the first of its kind in the field of cardiac arrest, provides a balance of theoretical and clinical information. It achieves a level of authority and sophistication well beyond that of the advanced cardiac life support guidelines and will be of considerable use to all those practicing or teaching clinical resuscitation. \textit{The New England Journal of Medicine}

The book has virtually everything one would ever want to know about the causes of cardiac arrest, the applied physiology, and its treatment. Physicians and nurses involved in the management of critically ill or injured patients should have Cardiac Arrest in their personal libraries for ready reference. \textit{Resuscitation}
In memory of Harold Paradis, M.D., without whose inspiration this effort would never have been undertaken, and for Christine, without whose patience it would never have been completed. **N.A.P.**

To my wife, Sharon Tusa Halperin, and children, Victoria and Eric Halperin, whose patience and support inspired me to complete my contributions to this work. In memory of Victor Halperin, D.D.S., who inspired me to undertake a career in academic medicine and complete this work. **H.R.H.**

To Martha, my wife, who always understood that the most worthwhile books are written with friends, and that true friendship develops best while fly fishing, and to Matt, my youngest son, who has helped me keep my perspective that each day is wonderful and full of promise. **K.B.K.**

To my daughter Katharina, whose love from Innsbruck to the moon and back keeps me going on good days and especially on bad days, and in memory of Gunther and Ute Wenzel. And to my friends worldwide providing ideas, critique, encouragement, and hard work. **V.W.**

To my wife Jennifer, who continues to be incredibly tolerant of a husband who is forever ensconced in his study and who offers no help with the washing up. **D.A.C.**
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>List of contributors</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>Foreword – Myron L. Weisfeldt M.D.</td>
<td>xxvii</td>
</tr>
<tr>
<td></td>
<td>Preface</td>
<td>xxxi</td>
</tr>
<tr>
<td>Part I</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A history of cardiopulmonary resuscitation</td>
<td>Mickey S. Eisenberg, Peter Baskett, and Douglas Chamberlain</td>
</tr>
<tr>
<td>2</td>
<td>The epidemiology of sudden death</td>
<td>Graham Nichol and David Baker</td>
</tr>
<tr>
<td>Part II</td>
<td>Basic science</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Global cellular ischemia/reperfusion during cardiac arrest: critical stress responses and the postresuscitation syndrome</td>
<td>Kimm Hamann, Dave Beiser, and Terry L. Vanden Hoek</td>
</tr>
<tr>
<td>4</td>
<td>Genetics, genomics and proteomics in sudden cardiac death</td>
<td>Lesley A. Kane, Silvia G. Priori, Carlo Napolitano, Dan E. Arking, and Jennifer E. Van Eyk</td>
</tr>
<tr>
<td>5</td>
<td>Intracellular signaling during myocardial ischemia</td>
<td>Peter H. Sugden</td>
</tr>
<tr>
<td>6</td>
<td>Electrophysiology of ventricular fibrillation and defibrillation</td>
<td>Wei Xiong and Gordon F. Tomaselli</td>
</tr>
<tr>
<td>7</td>
<td>The neuroendocrine response to global ischemia and reperfusion</td>
<td>Martin W. Dünser, Stefan Jochberger, Karl-Heinz Stadlbauer, and Volker Wenzel</td>
</tr>
</tbody>
</table>

© Cambridge University Press

www.cambridge.org
Contents

8 Inflammatory and Immunologic responses to ischemia and reperfusion 163
 Jason S. Haukoos, Ronald J. Korthuis, and James T. Niemann

Resuscitation research

9 Methodology of laboratory resuscitation research 179
 Menekhem Zviman and Henry R. Halperin

10 The methodology of clinical resuscitation research 206
 Johan Herlitz, Anouk van Alem, Volker Wenzel, and Karl Wegscheider

11 The special problem of consent for resuscitation research 216
 Henry R. Halperin and Douglas Chamberlain

Part III The pathophysiology of global ischemia and reperfusion

12 The etiology of sudden death 229
 Sunil K. Sinha, Arthur J. Moss, and Hugh G. Calkins

13 Global brain ischemia and reperfusion 236
 Brian J. O’Neil, Robert W. Neumar, Uwe Ebmeyer, and Gary S. Krause

14 Reperfusion injury in cardiac arrest and cardiopulmonary resuscitation 282
 Thomas Aversano

15 Visceral organ ischemia and reperfusion in cardiac arrest 298
 Kevin R. Ward and Andreas W. Prengel

16 Mechanisms of forward flow during external chest compression 326
 Henry R. Halperin

Perfusion pressures

17 Hemodynamics of cardiac arrest 347
 Michael P. Frenneaux and Stig. Steen

18 Coronary perfusion pressure during cardiopulmonary resuscitation 369
 Karl B. Kern, James T. Niemann, and Stig Steen

19 Methods to improve cerebral blood flow and neurological outcome after cardiac arrest 389
 Uwe Ebmeyer, Laurence M. Katz, and Alan D. Guerci

20 Pharmacology of cardiac arrest and reperfusion 395
 Tommaso Pellis, Jasmeet Soar, Gavin Perkins, and Raúl J. Gazmuri

21 Analysis and predictive value of the ventricular fibrillation waveform 417
 Trygve Eftestol, Hans-Ulrich Strohmenger, and Colin Robertson

22 Etiology, electrophysiology, and myocardial mechanics of pulseless electrical activity 426
 Tom P. Auderheide

Part IV Therapy of sudden death

23 Prevention of sudden cardiac death 449
 Catherine Campbell, Ty J. Gluckman, Charles Henrikson, Dominique M. Ashen, and Roger S. Blumenthal

24 Sequence of therapies during resuscitation: application of CPR 463
 Leonard A. Cobb

25 Transthoracic defibrillation 470
 Richard E. Kerber, Charles D. Deakin, and Willis A. Tacker, Jr.

26 Automated external defibrillators 482
 Rudolph W. Koster, Douglas Chamberlain, and Dianne L. Atkins

27 Public access defibrillation 496
 Roger D. White, Mick Colquhoun, Carys Sian Davies, Mary Ann Peberdy, and Sergio Timerman

28 The physiology of ventilation during cardiac arrest and other low blood flow states 506
 Ahamed H. Idris and Andrea Gabrielli

29 Airway techniques and airway devices 550
 Jerry P. Nolan and David A. Gabbott

External chest compression: standard and alternative techniques

30 Manual cardiopulmonary resuscitation techniques 571
 Henry R. Halperin and Barry K. Rayburn

31 Mechanical devices for cardiopulmonary resuscitation 585
 Henry R. Halperin

32 Invasive reperfusion techniques 600
 Mark G. Angelos

33 Routes of drug administration 614
 Thomas Kerz, Gideon Paret, and Holger Herff
Vasopressor therapy during cardiac arrest

34 Adrenergic agonists
Max Harry Weil, Shijie Sun, and Wanchun Tang

35 Vasopressin and other non-adrenergic vasopressors
Anette C. Krismer, Martin W. Dunser, Karl H. Stadlbauer, Karl H. Lindner, and Volker Wenzel

Antiarrhythmic therapy during cardiac arrest and resuscitation
Markus Zabel, Douglas Chamberlain, Paul Dorian, Peter Kudenchuk, Edward Platia, and Hans-Richard Arntz

Acid–base considerations and buffer therapy
Gad Bar-Joseph, Fulvio Kette, Martin von Planta, and Lars Wiklund

Cardiac arrest resuscitation monitoring
Kevin R. Ward and Joseph Bisera

Special considerations in the therapy of non-fibrillatory cardiac arrest
Tom P. Aufderheide, Todd M. Larabee, and Norman A. Paradis

Cardiocerebral resuscitation: a new approach to out-of-hospital cardiac arrest
Gordon A. Ewy and Michael J. Kellum

Thrombolysis during resuscitation from cardiac arrest
Fabian Spöhr and Bernd W. Böttiger

Percutaneous coronary intervention (PCI) after successful reestablishment of spontaneous circulation and during cardiopulmonary resuscitation
Marko Noc, Bjørn Bendz, and Karl B. Kern

Emergency medical services systems and out-of-hospital cardiac arrest
Matthias Fischer, Thomas Krafft, Luis Garcia-Castrillo Riesco, Freddy Lippert, Jerry Overton, and Iain Robertson-Steel

In-hospital resuscitation
Mary Ann Peberdy, Johan Herlitz, and Michelle Cretikos

Complications of CPR
Michael Baubin, Walter Rabl, and Robert Sebastian Hoke

Bringing it all together: state-of-the-art therapy for cardiac arrest
Max Harry Weil and Wanchun Tang

Contents

Part V Postresuscitation disease and its care

47 Postresuscitation syndrome
Erga L. Cerchiari

48 Prevention and therapy of postresuscitation myocardial dysfunction
Raul J. Gazmuri, Max Harry Weil, Karl B. Kern, Wanchun Tang, Iyad M. Ayoub, Juliesta Kolarova, and Jejebai Radhakrishnan

49 Prevention of postresuscitation neurologic dysfunction and injury by the use of therapeutic mild hypothermia
Wilhelm Behringer, Stephen Bernard, Michael Holzer, Kees Polderman, Risto Roine, and Marjaana Tainen

50 Postresuscitation neurologic prognostication and declaration of brain death
Romergyko G. Geocadin, Daniel F. Hanley, and Scott M. Eleff

51 Bringing it all together: brain-oriented postresuscitation critical care
Uwe Ebmeyer, Laurence M. Katz, Kevin R. Ward, and Robert W. Neumar

Part VI Special resuscitation circumstances

52 Prevention of sudden death in patients at risk: channelopathies and arrhythmic syndromes in the structurally normal heart
Alan Cheng, Gordon F. Tomaselii, and Ronald D. Berger

53 Pediatric cardiopulmonary resuscitation
Robert A. Berg and Vinay M. Nadkarni

54 Resuscitation in elder persons
Arthur B. Sanders

55 Asphyxial cardiac arrest
Peter Safar, Norman A. Paradis, and Max Harry Weil

56 Hemorrhagic shock and hypovolemic cardiac arrest
James L. Atkins, Michael I. Handrigan, and David Burris

57 Cardiopulmonary resuscitation in hypothermic patients
Peter Mair, Birgit Schwarz, Beat Walpoth, and Tom Silfvast

58 Cardiac arrest due to poisoning
Kenneth Heard and Norman A. Paradis

© Cambridge University Press www.cambridge.org
Part VII Special issues in resuscitation

66 The ethics of resuscitation and end of life decisions 1201
Peter Baskett, Arthur B. Sanders, and Petter Andreas Steen

67 The economics of treating sudden cardiac arrest 1212
Alastair Fischer and Graham Nichol

68 Medicolegal aspects 1226
Richard Pawl

69 The near-death experience, long-term psychological outcomes and support of survivors 1244
Sam Parnia, K. Spearpoint, and P.B. Fenwick

70 CPR training 1258
Michael Shuster, Walter Kloeck, Edward R. Stapleton, Ulrik Juul Christensen, and Allan Braslow

71 Consensus development in resuscitation: the growing movement towards international emergency cardiovascular care guidelines 1278
Jerry P. Nolan, Douglas Chamberlain, William H. Montgomery, and Vinay M. Nadkarni
Contributors

Mark G. Angelos
Department of Emergency Medicine
The Ohio State University
146 Means Hall
1654 Upham Drive
Columbus OH 43220
USA

Charles Antzelevitch
Masonic Medical Research laboratory
2150 Bleecker Street
Utica NY 13501–1787, USA

Dan E. Arking
McKusick-Nathans Institute of Genetic Medicine
Johns Hopkins University School of Medicine
Baltimore
MD
USA

Hans-Richard Arntz
Division of Cardiology
Humboldt University
Campus Benjamin Franklin
Charité Berlin
Hindenburgdamm 30
Berlin D-12200
Germany

M. Dominique Ashen
Blalock 524 C – Cardiology
The Johns Hopkins Ciccarone Preventive Cardiology Center
600 North Wolfe Street
Baltimore MD 21287
USA
List of Contributors

Dianne L. Atkins
Division of Pediatric Cardiology
Children’s Hospital of Iowa
Department of Pediatrics
Carver College of Medicine
University of Iowa
Iowa City
USA

James L. Atkins
Division of Military Casualty Research
Walter Reed Army Institute of Research
Silver Spring
MD
USA

Tom P. Aufderheide
Department of Emergency Medicine
Medical College of Wisconsin
9200 West Wisconsin Avenue
FEH Room 1870
Milwaukee WI 53266
USA

Thomas Aversano
Johns Hopkins University
Baltimore
MD
USA

Iyad M. Ayoub
Medical Service
North Chicago VA Medical Center
3001 Green Bay Road
North Chicago IL 60064
USA

David Baker
University of Washington
Clinical Trial Center 1107 NE 45th Street
Suite 505
Seattle, WA 98105
USA

Gad Bar-Joseph
Pediatric Intensive Care
Meyer Children's Hospital
Rambam Medical Center
PO Box 9602
Haifa 31096
Israel

Peter Baskett
Formerly Department of Anaesthesia
Frenchay Hospital and the Royal Infirmary
Bristol UK

Michael Baubin
Department of Anaesthesia and Critical Care Medicine
Innsbruck Medical University
Anichstrasse 35
Innsbruck A-6020
Austria

Wilhelm Behringer
Department of Emergency Medicine
Vienna General Hospital
Waehringer Guertel 18–20
1090 Vienna
Austria

Dave Beiser
Department of Emergency Medicine
University of Chicago
5841 South Maryland Avenue MC5068
Chicago IL 60637
USA

Bjørn Bendz
Department of Cardiology
Rikshospitalet University Hospital
Oslo 0027
Norway
List of Contributors

Roger A. Berg
University of Arizona College of Medicine
Department of Pediatrics
P O Box 245017
Tucson AZ 85721-5017
USA

Ronald D. Berger
Johns Hopkins Medical Institutions
Carnegie 592
600 North Wolfe Street
Baltimore MD 21287
USA

Stephen Bernard
Department of Epidemiology and Preventive Medicine
Monash University
St Kilda Road
Prahran VIC 3181
Australia

Joost Bierens
Department of Anesthesiology
VU University Medical Centre
P O Box 7057
Amsterdam 1007 MB
The Netherlands

Joseph Bisera
Institute of Critical Care Medicine
35–100 Bob Hope Drive
Rancho Mirage CA 92270
USA

Roger S. Blumenthal
Blalock 524 C – Cardiology
The Johns Hopkins Ciccarone Preventive Cardiology Center
600 North Wolfe Street
Baltimore MD 21287
USA

Bernd W. Böttiger
Department of Anaesthesiology
University of Heidelberg
Im Neuenheimer Feld 110
D-69120 Heidelberg
Germany

Allan Braslow
45 Greenwich Hill Drive
Greenwich
CT 06831, USA

David Burris
Norman M Rich Department of Surgery
Uniformed Services University of the Health Sciences
Bethesda MD
USA

Hugh G. Calkins
Carnegie 520
Johns Hopkins University
600 North Wolfe Street
Baltimore MD 21287-0409
USA

Catherine Campbell
Blalock 524 C – Cardiology
The Johns Hopkins Ciccarone Preventive Cardiology Center
600 North Wolfe Street
Baltimore MD 21287
USA
List of Contributors

Erga L. Cerchiari
Department of Anaesthesiology and Intensive Therapy
Maggiore Hospital
Largo Nigrisoli 2
40131 Bologna
Italy

Douglas Chamberlain
Prehospital Research Unit
School of Medicine
Cardiff University
UK

Alan Cheng
Johns Hopkins Hospital
Carnegie 586
600 North Wolfe Street
Baltimore MD 21287
USA

Ulrik Juul Christensen
Sophus Medical ApS
Copenhagen
Denmark

Leonard A. Cobb
Medic One Support Group
Harborview Medical Center
325 9th Avenue
Box 359748
Seattle WA 98112
USA

Mick Colquhoun
Resuscitation Council
5th Floor
Tavistock House North
Tavistock Square
London WC1H 9HR
UK

Michelle Cretikos
Simpson Centre for Health Services Research
Liverpool Health Service
University of New South Wales
Sydney
Australia

Carys Sian Davies
Department of Health
Area 407
133–155 Waterloo Road
London SE1 8UG
UK

Charles D. Deakin
Shackleton Department of Anesthesia
Southampton University Hospitals NHS Trust
Tremona Road
Southampton SO16 6YD
UK

Paul Dorian
Division of Cardiology
St Michael's Hospital
Rm 7051, Queen Wing
30 Bond Street
Toronto ON M5B 1W8
Canada

Martin W. Dünser
Department of Anesthesiology and Critical Care Medicine
Innsbruck Medical University
Anichstrasse 35
Innsbruck 6020
Austria

Uwe Ebmeyer
Klinik für Anaesthesiologie und Intensivtherapie
Otto-von-Guericke University
Magdeburg
Leipziger Str 44
Magdeburg D-39120
Germany

Trygve Eftestøl
Department of Electrical and Computer Engineering
Stavanger University College
Stavanger N-4036
Norway
List of Contributors

Mickey S. Eisenberg
Department of Medicine
University of Washington, Seattle, WA, USA
King County EMS
999 Third Avenue, Suite 700
Seattle WA 98104
USA

Philip Eisenburger
Universitätsklinik für Notfallmedizin
Allgemeines Krankenhaus der Stadt Wien
Währinger Gurtel 18–20/6/D
Wien A-1090
Austria

Scott M. Eleff
Department of Emergency Medicine
William Beaumont Hospital
Royal Oak
MI
USA

Gordon A. Ewy
Sarver Heath Center Department of Cardiology
University of Arizona
Tucson
AZ
USA

P.B. Fenwick
Consciousness Research Group
University of Southampton
Southampton
UK

and

Critical Care Department
Hammersmith Hospitals NHS Trust
London
UK

Alastair Fischer
St. George's Hospital
University of London
Cranmer Terrace
London SW17 0RE
UK

Matthias Fischer
Department of Anaesthesiology and Intensive Care Medicine
Klinik am Eichert
Eichertstrasse 3
Göppingen 73035
Germany

Michael P. Frenneaux
Department of Cardiovascular Medicine
The Medical School
University of Birmingham
Edgbaston
Birmingham B15 2TT
UK

David A. Gabbott
Department of Anaesthetics
Gloucester Royal Hospital
Great Western Road
Gloucester GL1 3NN
UK

Andrea Gabrielli
Division of Critical Care Medicine
University of Florida
1600 SW Archer Road
Gainesville FL 32610-0254
USA

Luis García-Castrillo Riesgo
Universidad de Cantabria
Hospital Universitario Marqués de Valdecilla
Santander
Spain

Raúl J. Gazmuri
Medical Service
North Chicago VA Medical Center
3001 Green Bay Road
North Chicago IL 60064
USA
List of Contributors

Romerygko G. Geocadin
Department of Neurology
The Johns Hopkins Hospital
Meyer 8-140
600 North Wolfe Street
Baltimore MD 21287
USA

Daniel F. Hanley
Department of Neurology
Neurosurgery and Anesthesiology-Critical Care Medicine
Johns Hopkins University School of Medicine
Baltimore MD
USA

Ty J. Gluckman
Blalock 524 C – Cardiology
The Johns Hopkins Ciccarone Preventive Cardiology Center
600 North Wolfe Street
Baltimore MD 21287
USA

Jason S. Haukoos
Department of Emergency Medicine
Denver Health Medical Center
777 Bannock Street
Mail Code 0108
Denver CO 80204
USA

Henry R. Halperin
Johns Hopkins University
Blalock 524A
Bayview Campus
600 North Wolfe Street
Baltimore MD 21287
USA

Kenneth Heard
University of Colorado School of Medicine, Department of Surgery (Emergency Medicine)
4200 E 9th Avenue, 4215
Denver CO 80262
USA

Alan D. Guerci
Department of Medicine, St. Francis Hospital
100 Port Washington Blvd.
Roslyn, New York 11576, USA

Charles Henrikson
Blalock 425 C – Cardiology
The Johns Hopkins Ciccarone Preventive Cardiology Center
600 North Wolfe Street
Baltimore MD 21287
USA

Holger Herff
Department of Anesthesiology and Critical Care Medicine
Innsbruck Medical University
Anichstr. 35, 6020 Innsbruck, Austria

Johan Herlitz
Department of Metabolism and Cardiovascular Research
Sahlgrenska University Hospital
SE-413 45 Goteborg
Sweden

Kimm Hamann
Department of Emergency Medicine
University of Chicago
5841 South Maryland Avenue MC5068
Chicago IL 60637
USA

Quinn H. Hogan
Medical College of Wisconsin
Department of Anesthesiology
8701 Watertown Plank Road
Milwaukee, WI 53226-0509, USA

Michael T. Handrigan
Department of Resuscitation Medicine
Naval Medical Research Center
Silver Spring MD 20910
USA
List of Contributors

Robert Hoke
Department of Cardiology-Angiology
University of Leipzig
Johannisallee 32
04103 Leipzig
Germany

Michael Holzer
University Klinik für Notfallmedizin
AKH Wien
Waehringer Guertel 18–20
Vienna A-1090
Austria

Benjamin Honigman
Emergency Medicine B215
4200 East 9th Avenue
Denver CO 75390-8579
USA

Ahamed H. Idris
University of Texas Southwestern
Medical Center at Dallas
5323 Harry Hines Boulevard
Dallas TX 75390-8579
USA

Stefan Jochberger
Department of Anesthesiology and Critical Care Medicine
Innsbruck Medical University
Anichstrasse 35
6020 Innsbruck
Austria

Janice Jones
Department of Physiology and Biophysics
Georgetown University
Washington
DC
USA

Lesley A. Kane
Department of Biological Chemistry
Johns Hopkins University
Bayview Campus
Mason F Lord Building
Center Tower, Room 601
Baltimore MD 21224
USA

Laurence M. Katz
Department of Emergency Medicine
University of North Carolina School of Medicine
Neuroscience Hospital
Ground Floor
101 Manning Drive
Chapel Hill NC 27599
USA

Michael J. Kellum
Department of Emergency
Mercy Walworth Medical Center
Lake Geneva
WI
USA

Karl B. Kern
Sarver Heart Center
University of Arizona
1501 North Campbell Avenue
Tucson AZ 85724
USA
List of Contributors

Thomas Kerz
Department of Neurosurgery Intensive Care Unit
Johannes Gutenberg-Universität Klinikum
Langenbeckstr 1
Mainz D-55131
Germany

Fulvio Kette
Emergency Department and Intensive Care Unit
S. Vito al Tagliamento Hospital
Via Savorgnano 2
33078 San Vito al Tagliamento
Italy

Walter Kloeck
72 Sophia Street
Fairland
2195 Johannesburg
South Africa

Peter Kohl
University Laboratory of Physiology
The Cardiac Mechano-Electric Feedback Lab
Oxford OX1 3PT

Julieta Kolarova
21730 Boschome Drive
Kildeer IL 60047
USA

Ronald J. Korthuis
Department of Medical Pharmacology and Physiology
School of Medicine
One Hospital Drive, MA415
University of Missouri-Columbia
Columbia MO 65212
USA

Rudolph W. Koster
Department of Cardiology
Academic Medical Center
University of Amsterdam
Room F-239
Meibergdreef 9
Amsterdam 1105 AZ
The Netherlands

Thomas Krafft
Geographisches Institut
Universität Köln
Albertus-Magnus-Platz
D-50923 Köln
Germany

Gary S. Krause
Department of Emergency Medicine
Wayne State University
550 East Canfield Avenue
51.2 Lande Building
Detroit MI 48201
USA

Anette C. Krismer
Department of Anesthesiology and Critical Care Medicine
Innsbruck Medical University
Anichstrasse 35
Innsbruck A-6020
Austria

Peter Kudenchuk
University of Washington Medical Center
Campus Box 356422
1959 NE Pacific Street
Seattle WA 98195
USA

Todd M. Larabee
Division of Emergency Medicine
UCHSC B215
4200 East 9th Avenue
Denver CO 80262
USA
List of Contributors

Wolfgang Lederer
Department of Anaesthesiology and Critical Care Medicine
University of Innsbruck
Anichstrasse 25
A-6020 Innsbruck
Austria

Howard R. Levin
Department of Surgery
Division of Cardiothoracic Surgery
College of Physicians and Surgeons
Columbia University
New York, NY 10032, USA

Karl H. Lindner
Department of Anesthesiology and Critical Care Medicine
Innsbruck Medical University
Anichstrasse 35
Innsbruck A-6020
Austria

Mark Link
Tufts University School of Medicine
NEMC Box #197
750 Washington Street
Boston MA 02111
USA

Freddy Lippert
Copenhagen Hospital Corporation
Copenhagen University Hospital
Denmark

Peter Mair
Department of Anaesthesia and Intensive Care Medicine
Innsbruck Medical University
Anichstrasse 35
Innsbruck A-6020
Austria

James Mennegazzi
University of Pittsburgh School of Medicine
Pittsburgh PA
USA

William H. Montgomery
Department of Anesthesiology
Straub Clinic and Hospital
University of Hawaii School of Medicine
888 South King Street
Honolulu
Hawaii 96813
USA

Peter Morley
Intensive Care Unit
Royal Melbourne Hospital
Grattan Street
Parkville VIC 3050
Australia

Stephen Morris
Department of Anaesthesia
Llandough Hospital
Penarth
Cardiff CF64 2XX
UK

Arthur J. Moss
University of Rochester Medical Center
Department of Medicine
Rochester, New York, USA

Vinay M. Nadkarni
Departments of Anesthesia, Critical Care and Pediatrics
The Children’s Hospital of Philadelphia
34th Street and Civic Center Blvd
Philadelphia PA 19104-4399
USA

Carlo Napolitano
Department of Medicine and Department of Biomedical Engineering
Johns Hopkins University
Baltimore
USA
List of Contributors

Robert W. Neumar
Department of Emergency Medicine
University of Pennsylvania School of Medicine
Hospital of the University of Pennsylvania
3400 Spruce Street
Philadelphia PA 19104-4283
USA

Graham Nichol
University of Washington
Clinical Trial Center
1107 NE 45th Street
Suite 505
Seattle WA 98105
USA

James T. Niemann
Department of Emergency Medicine
Harbor-UCLA Medical Center
1000 West Carson Street, Box 21
Torrance CA 90509
USA

Susan Niermeyer
Division of Neonatology
University of Colorado
School of Medicine
The Children’s Hospital
4200 East 9th Avenue
Denver, CO 80218, USA

Marko Noc
University Ljubljana Medical Center
Center for Intensive Internal Medicine
Zaloska Cesta 7
Ljubljana 1000
Slovenia

Jerry P. Nolan
Anaesthesia and Intensive Care Medicine
Royal United Hospital
Combe Park
Bath BA1 3ND
UK

Brian J. O’Neil
Department of Emergency Medicine
William Beaumont Hospital
3601 W Thirteen Mile Road
Royal Oak MI 48073
USA

Joseph P. Ornato
Department of Emergency Medicine
Virginia Commonwealth University
401 N 12th Street
Richmond, VA 23298
USA

Jerry Overton
Richmond Ambulance Authority
Richmond VA
USA

Norman A. Paradis
University of Colorado
Denver
Colorado
USA

Gideon Paret
Department of Pediatric Critical Care
The Chaim Sheba Medical Center
Safra Children's Hospital
Tel Hashomer, Israel

Sam Parnia
Consciousness Research Group
University of Southampton
Southampton
UK
and
Critical Care Department
Hammersmith Hospitals NHS Trust
London
UK

Richard Pawl
Department of Emergency Medicine
Medical College of Georgia
1120 15th Street
AF 2014
Augusta GA 30912-2800
USA

Mary Ann Peberdy
Department of Medicine and Emergency Medicine
Virginia Commonwealth University Health System
1200 East Broad Street,
West Hospital, 10th Floor
Room 1042, P O Box 980204
Richmond VA 23298
USA
List of Contributors

Tommaso Pellis
Cardiac Mechano-Electric Feedback Lab
The University Laboratory of Physiology
Oxford OX1 3PT

Gavin Perkins
26 Hollie Lucas Road
Kings Heath
Birmingham
B13 0QL, UK

Edward Platia
Cardiac Arrhythmia Center
Washington Hospital Center DC
110 Irving Street
Washington DC 2010
USA

Kees Polderman
Department of Intensive Care
VU University Medical Center
Amsterdam
The Netherlands

Andreas W. Prengel
Department of Anesthesiology, Critical Care Medicine,
and Pain Therapy
Ruhr University Hospital Bochum
In der Schornau 23–25
44892 Bochum
Germany

Silvia G. Priori
Department of Molecular Cardiology
IRCCS Fondazione Salvatore Maugeri
Via Maugeri 10 / 10a
27100 Pavia
Italy

Richard Pumphrey
Department of Immunology
Manchester Royal Infirmary
Manchester M13 9WL
UK

Walter Rabl
Institute of Legal Medicine
Innsbruck Medical University
Muellerstrasse 44
Innsbruck A-6020
Austria

Jeejabai Radhakrishnan
Department of Medicine
Rosalind Franklin University of Medicine and Science
3333 Green Bay Road
North Chicago IL
USA

Barry K. Rayburn
School of Medicine
University of Alabama
Tinsley Harrison Tower THT 321
1530 3rd Avenue S
Birmingham AL 35294-0006
USA

Robert Roach
Division of Neonatology
University of Colorado School of Medicine
The Children's Hospital
4200 East 9th Avenue
Denver, CO 80218, USA

Colin Robertson
Department of Accident and Emergency
The Royal Infirmary of Edinburgh
51 Little France Crescent
Edinburgh EH16 4SA
Scotland
UK

Iain Robertson-Steel
West Midlands Ambulance Service NHS Trust
Dudley
West Midlands
UK

Risto O. Roine
Department of Neurology, Turku University Hospital,
Finland

Peter Safar
deceased
List of Contributors

Arthur B. Sanders
Department of Emergency Medicine
University of Arizona
P O Box 245057
1501 N Campbell Avenue
Tucson AZ 85724-5057
USA

Birgit Schwarz
Department of Anaesthesia and Intensive Care Medicine
Innsbruck Medical University
Anichstrasse 35
Innsbruck A-6020
Austria

Michael Shuster
Department of Emergency Medicine
Mineral Springs Hospital
Box 1050
Banff AB T1L 1H7
Canada

Tom Silfvast
Department of Anaesthesia and Intensive Care Medicine
Meilhati Hospital
Helsinki University Hospital
P O Box 340
FIN-00029
Helsinki
Finland

Michiel Sinaasappel
Laser Center
Academic Medical Center
University of Amsterdam
Meibergdreef 9
1105 AZ
Amsterdam
The Netherlands

Sunil K. Sinha
The Johns Hopkins Hospital
Carnegie 530
600 North Wolfe Street
Baltimore MD 21287-1345
USA

Jasmeet Soar
Anaesthetics and Intensive Care
Southmead Hospital
N. Bristol NHS Trust
Westburg-on-Trym
Bristol BS10 5NB
UK

Eldar Soreide
Intensive Care Unit
Division of Acute Care Medicine
Stavanger University Hospital
PB 8100
4068 Stavanger
Norway

K. Spearpoint
Department of Anaesthetics and Intensive Care
5th Floor, Hammersmith House
Hammersmith Hospital
Du Cane Road
London W12 0HS
UK

Fabian Spöhr
Department of Anaesthesiology
University of Heidelberg
Im Neuenheimer Feld 110
D-69120 Heidelberg
Germany

Mark Stacey
Anaesthetics Department
Llandough Hospital
Penarth
Cardiff CF64 2XX
UK
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karl-Heinz Stadlbauer</td>
<td>Department of Anesthesiology and Critical Care Medicine</td>
</tr>
<tr>
<td></td>
<td>Innsbruck Medical University</td>
</tr>
<tr>
<td></td>
<td>Anichstrasse 35</td>
</tr>
<tr>
<td></td>
<td>Innsbruck A-6020</td>
</tr>
<tr>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td>Edward R. Stapleton</td>
<td>Department of Emergency Medicine</td>
</tr>
<tr>
<td></td>
<td>080, Level 4, Health Science Center</td>
</tr>
<tr>
<td></td>
<td>State University of NY</td>
</tr>
<tr>
<td></td>
<td>at Stony Brook,</td>
</tr>
<tr>
<td></td>
<td>Stony Brook</td>
</tr>
<tr>
<td></td>
<td>New York 11794-8350</td>
</tr>
<tr>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>Petter Andreas Steen</td>
<td>Department of Anaesthesiology</td>
</tr>
<tr>
<td></td>
<td>Ulleval University Hospital</td>
</tr>
<tr>
<td></td>
<td>Oslo N-0407</td>
</tr>
<tr>
<td></td>
<td>Norway</td>
</tr>
<tr>
<td>Stig Steen</td>
<td>Department of Cardiothoracic Surgery</td>
</tr>
<tr>
<td></td>
<td>University Hospital of Lund</td>
</tr>
<tr>
<td></td>
<td>Lund University</td>
</tr>
<tr>
<td></td>
<td>Box 117</td>
</tr>
<tr>
<td></td>
<td>Lund S-22100</td>
</tr>
<tr>
<td></td>
<td>Sweden</td>
</tr>
<tr>
<td>Hans-Ulrich Strohmenger</td>
<td>Department of Anaesthesiology and Critical Care Medicine</td>
</tr>
<tr>
<td></td>
<td>Medical University Innsbruck</td>
</tr>
<tr>
<td></td>
<td>Anichstrasse</td>
</tr>
<tr>
<td></td>
<td>6020 Innsbruck</td>
</tr>
<tr>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td>Peter H. Sugden</td>
<td>Imperial College London</td>
</tr>
<tr>
<td></td>
<td>NHLI Division (Cardiac Medicine)</td>
</tr>
<tr>
<td></td>
<td>Flowers Building (4th Floor)</td>
</tr>
<tr>
<td></td>
<td>Armstrong Road</td>
</tr>
<tr>
<td></td>
<td>London SW7 2AZ</td>
</tr>
<tr>
<td></td>
<td>UK</td>
</tr>
<tr>
<td>Shijie Sun</td>
<td>Weil Institute of Critical Care Medicine</td>
</tr>
<tr>
<td></td>
<td>1696 North Sunrise Way</td>
</tr>
<tr>
<td></td>
<td>Building 3</td>
</tr>
<tr>
<td></td>
<td>Palm Springs CA 92262</td>
</tr>
<tr>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>David Szpilman</td>
<td>Intensive Care Unit</td>
</tr>
<tr>
<td></td>
<td>Hospital Miguel Couto</td>
</tr>
<tr>
<td></td>
<td>Av das Americas 3555</td>
</tr>
<tr>
<td></td>
<td>Bloco 2, Sala 302</td>
</tr>
<tr>
<td></td>
<td>Barra da Tijuca</td>
</tr>
<tr>
<td></td>
<td>Rio de Janeiro 22631-004</td>
</tr>
<tr>
<td></td>
<td>Brazil</td>
</tr>
<tr>
<td>Willis A. Tacker Jr</td>
<td>Basic Medical Sciences</td>
</tr>
<tr>
<td></td>
<td>Purdue University</td>
</tr>
<tr>
<td></td>
<td>625 Harrison Street</td>
</tr>
<tr>
<td></td>
<td>West Lafayette IN 47907-2006</td>
</tr>
<tr>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>Wanchun Tang</td>
<td>Weil Institute of Critical Care Medicine</td>
</tr>
<tr>
<td></td>
<td>1696 North Sunrise Way</td>
</tr>
<tr>
<td></td>
<td>Building 3</td>
</tr>
<tr>
<td></td>
<td>Palm Springs CA 92262</td>
</tr>
<tr>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>Marjaana Tiainen</td>
<td>Department of Neurology, Helsinki University</td>
</tr>
<tr>
<td></td>
<td>Hospital, Finland</td>
</tr>
<tr>
<td></td>
<td>Finland</td>
</tr>
<tr>
<td>Sergio Timerman</td>
<td>Resuscitation Department</td>
</tr>
<tr>
<td></td>
<td>Heart Institute of Sao Paolo</td>
</tr>
<tr>
<td></td>
<td>Av Dr Eneas de Carvalho</td>
</tr>
<tr>
<td></td>
<td>Aguiar 4</td>
</tr>
<tr>
<td></td>
<td>Sao Paulo 05403-900</td>
</tr>
<tr>
<td></td>
<td>Brazil</td>
</tr>
<tr>
<td>Gordon F. Tomaselli</td>
<td>Cardiovascular Clinical Research Center</td>
</tr>
<tr>
<td></td>
<td>Johns Hopkins University School of Medicine</td>
</tr>
<tr>
<td></td>
<td>600 North Wolfe Street</td>
</tr>
<tr>
<td></td>
<td>Baltimore MD 21287</td>
</tr>
<tr>
<td></td>
<td>USA</td>
</tr>
</tbody>
</table>
List of Contributors

Wolfgang Ummenhofer
Department of Anaesthesia
University Hospital
21 Spital Strasse
CH-4031 Basel
Switzerland

Beat Walpoth
Cardiovascular Research
Service of Cardiovascular Surgery
University Hospital
Geneva 1211
Switzerland

Anouk Van Alem
Department of Cardiology
Academic Medical Center
Room B2-238
Meibergdreef 9
1105 AZ Amsterdam
The Netherlands

Kevin R. Ward
Department of Emergency Medicine
Virginia Commonwealth University
401 N 12th Street
Richmond VA 23298
USA

David S. Warner
Departments of Anesthesiology, Neurobiology and Surgery
Duke University Medical Center
Box 3094
Durham NC 27710
USA

Terry L. Vanden Hoek
Department of Emergency Medicine
University of Chicago
5841 South Maryland Avenue MC 5068
Chicago IL 60637
USA

Jennifer E. Van Eyk
Johns Hopkins University – Bayview Campus
5200 Eastern Avenue
Mason F Lord Building
Center Tower, Room 602
Baltimore MD 21224
USA

Karl Wegscheider
Institute for Statistics and Econometry
University of Hamburg
Von-Melle-Park 5
20146 Hamburg
Germany

Wolfgang Voelckel
Department of Anaesthesiology and Critical Care
Innsbruck Medical University
Anichstrasse 35
Innsbruck A-6020
Austria

Max Harry Weil
Weil Institute of Critical Care Medicine
35-100 Bob Hope Drive
Rancho Mirage CA 92270
USA

Martin von Planta
Department of Internal Medicine
University of Basel
St Johanns-Vorstadt 44
CH-4056 Basel
Switzerland

Myron Weisfeldt
Johns Hopkins University Medical Center
Department of Medicine
1830 E. Monument St., 9th Floor
Baltimore, MD 21287, USA

Volker Wenzel
Department of Anaesthesiology and Critical Care Medicine
Innsbruck Medical University
Anichstrasse 35
Innsbruck A-6020
Austria
List of Contributors

Roger D. White
Mayo Clinic College of Medicine
200 First Street SW
Rochester Minn
USA

Lars Wiklund
Department of Surgical Sciences
Uppsala University Hospital
75185 Uppsala
Sweden

Wei Xiong
Cardiovascular Clinical Research Center
Johns Hopkins University School of Medicine
600 North Wolfe Street
Baltimore MD 21287
USA

Markus Zabel
Division of Cardiology
University of Göttingen
Germany

Mathias Zuercher
Department of Anaesthesia
University Hospital
21 Spital Strasse
CH-4031 Basel
Switzerland

Menekhem Zviman
Cardiovascular Clinical Research Center
Johns Hopkins University School of Medicine
600 N. Wolfe St.
Baltimore, MD 21287, USA
Foreword

Myron L. Weisfeldt, M.D.

This monograph on cardiac resuscitation medicine is the standard reference in the field. This Second Edition a decade later presents an entirely changed and dynamic field. Advances in resuscitative medicine encompass the basic science understanding of physiology and pathophysiology as well as advances in understanding of the causal mechanisms involved in successful or non-successful resuscitation. There are new programs and approaches at a practical and real-world level that improve survival and the quality of survival from cardiac arrest. I would maintain that these prerequisites relate to the need for this updated monograph. It is important that this text be acquired and used by providers of emergency cardiac care in both the out-of-hospital and in-hospital settings. It will be of value universally in the emergency departments. Clinical investigators will find this text of tremendous value when pursuing the improvement of survival from cardiac arrest, as well as laboratory-based clinical investigators attempting to identify and justify approaches to improving the outcome of cardiac arrest. As the underlying science of resuscitation deepens, basic scientists will value these state-of-the-art discussions. Resuscitation Science has broadened the focus from mechanics to reperfusion injury, post-resuscitation inflammation and programmed cell death.

To substantiate my statements about this update and its value to the medical and resuscitative community, I have identified what I consider to be the eight major advances in resuscitative medicine over the last decade.

1. The advent of inexpensive, easy-to-use Automatic External Defibrillators (AEDs) for use by the lay public. Ten years ago, industry was just beginning to produce these revolutionary devices. The FDA considered use of these AEDs by other than physicians, nurses and trained Emergency Medical Technicians (EMTs) as "illegal," off label, over-the-counter use of an approved
device. Ten years ago, only one or two states referred to defibrillation as being covered by the Good Samaritan law. Now all states consider such resuscitative efforts by members of the lay public to be encompassed by the Good Samaritan statutes. Ten years ago there were no convincing data that AEDs are effective in improving the outcome of resuscitation. Perhaps the most remarkable result was in the casinos of Las Vegas where Terry Valenzuela and his colleagues measured time from collapse to defibrillation precisely (on video cameras). Security guards could defibrillate with an average time of 4.4 minutes and survival of 59% in 90 subjects. If defibrillation was performed within 3 minutes \((n = 20)\), survival was over 70%. As well, in the Public Access Defibrillation study (PAD), we now have data to support the value of the AEDs in the public arenas when added to CPR instruction. Ten years ago we had no conscientious programs to implement AEDs in full public view in airports and other transportation facilities, on-board airlines, in exercise facilities, or recently by government mandate in large public buildings. Although these programs clearly have had little impact on the overall public health survival rate from cardiac arrest, they have produced some of the most rewarding survivals because of the promptness of resuscitation and the clear ability of those resuscitated very quickly to recover fully and rapidly.

2. Change in the characteristics of the population suffering cardiac arrest. Ten years ago, broad population studies showing that 70% or so of people suffering cardiac arrest have ventricular fibrillation (or ventricular tachycardia) as the first documented electrocardiographic rhythm. Now, multiple large population studies note that 20% to 30% of those suffering a cardiac arrest have ventricular tachycardia (VT) or ventricular fibrillation (VF) as their initial rhythm. The majority now have an absence of electrical activity, or occasionally will have electromechanical dissociation. The reason for this major change, one can only speculate. One possibility is that, in fact, modern drug treatment of coronary disease and heart failure combined with implantation of automatic defibrillators in their target population has led to this change. For survivors of cardiac arrest caused by ventricular tachycardia or fibrillation, implantation of defibrillators has provided an increasing standard of care. This is also true for patients with congenitally inherited causes of sudden death, and many individuals with reduced left ventricular function due to previous myocardial infarction or cardiomyopathy. It is possible that we are implanting defibrillators currently at sufficient rate to have an impact in the United States on the overall public health’s incidence of cardiac arrest from these arrhythmias. Drug and procedural treatment strategies for chronic coronary disease and heart failure may also be impacting on the incidence of sudden death from VT/VF. It is very clear that, in these broad populations, beta-blocking agents as well as angiotensin II receptor blockers, and anti-platelet drugs (for coronary disease), and aldosterone antagonist improve survival from these chronic cardiac states. It is less clear that they reduce the incidence of sudden death particularly sudden death from VF or VT. That is a likely possibility. A final speculation is that cardiac arrest in advanced age is more likely not VT/VF. With the striking decline in age-adjusted mortality from cardiovascular disease, we have less incidence of death and perhaps less sudden death from VT/VF in younger individuals on a population basis.

This change in the initial arrhythmia has a number of significant impacts. First, survival of this group of patients who do not have VT/VF is much lower and we know little about what are effective ways of resuscitating this population. We also know less about the long-term management and care of these patients that may result in their survival since it is likely that placing automatic implantable defibrillators in these patients will not improve their long-term outcome even if they survive their initial arrest. These, and a whole host of other theoretical and practical problems, emanate from this change in population suffering cardiac arrest.

3. In recent years there has been recognition of the need to extend animal data on CPR performance and effectiveness from the laboratory into the clinical arena. It is very clear from animal studies that all interruptions of chest compressions are detrimental to the hemodynamics of CPR, particularly coronary blood flow. It has long been recognized that indices of coronary blood flow are very closely related to human survival. Interruptions from repeated looks at the electrocardiogram, multiple defibrillation attempts, or procedures such as inefficient intubation, have been minimized on the basis of these data. In addition, it has been demonstrated in animal models very convincingly that hyperventilation or even “usual” ventilation during resuscitation is too much ventilation and is detrimental. Related to these issues, performance of cardiopulmonary resuscitation in the real-world situation, both in the hospital by healthcare professionals and out-of-the hospital by EMTs, is characterized by multiple, prolonged and repeated interrupts of chest compression and hyperventilation. Monitoring systems, feedback systems, and other systems for controlling or at least documenting the way resuscitation is
We are beginning to see devices that may improve perfu-

4. In VT/VF-Arrest, Dr. Lance Becker and I proposed a three-

5. We are beginning to see devices that may improve perfu-

6. Moderate hypothermia may be useful in patients who

after out-of-hospital cardiac arrest have not awakened when they reach the emergency department. Two studies

appear to show benefit of 12 to 24 hours of 32 ° to 33 °C, hypothermia in terms of improving survival and brain function following such episodes of out-of-hospital cardiac arrest. This benefit has been accepted in AHA guidelines, but is not accepted by the FDA. Much is happen-

7. Registry-based information on in-hospital and out-of-

hospital CPR. Detailed performance data with results are now available for thousands of in-hospital resuscitations. There are also increasing numbers of epidemi-

8. There is a new horizon of technology that will certainly impact on resuscitation This technology revolution I predict will include patient sensors that identify futility of cardiac resuscitation. Diagnosis of death is inadequa-

ly made in many individuals with current clinical criteria. Perhaps more importantly, we will use sensors that will identify patient status from the point of view of metabolism blood flow and oxygen delivery. They will provide an assessment of the current status of the patient and/or what the resuscitative maneuvers have accomplished. This type of information will dictate care patterns and strategies to improve survival from the point of view of drug administration as well as device and hemodynamic strategies. The strategies are likely to be complex and therefore it is highly likely that devices will integrate the clinical status of the patient with the information obtained with sensors into a care and management. These will emerge particularly as metabolic phase markers lead to specific therapeutic strategies. Information will likely be used at the scene and in the emergency department that is ultimately going to receive the patient. Similar devices and approaches will almost certainly change in-hospital and ED manage-

ment of the arrest occurring in that circumstance.

9. In summary, this new volume on the science and prac-

tice of resuscitative medicine is extraordinarily timely. The depth and breadth of new material and chapters are remarkable and valuable. The new authors include...
the current generation of the most contributory and thoughtful leaders of the field. The text should be embraced by a broad and deep audience of those interested in this exciting and forward-moving field and branch of medicine. The worldwide authorship reflects the fact that sudden death is a worldwide problem that is increasingly gaining true worldwide attention!

July 12, 2006
Preface to the first edition

O, that I could but call these dead to life!

King Henry VI
William Shakespeare

There is a no more frightening experience for a clinician than a patient’s sudden and complete loss of vital signs. The need to initiate multiple complex therapies, all the while knowing that each minute that passes dramatically decreases the chances for a good outcome, makes sudden death the penultimate medical emergency.

Premature death is the adversary of physicians. For millennia, the loss of life signs was considered the victory of death. Students were taught that once patients had succumbed they were beyond the healing arts. Only relatively recently have physicians regularly attempted to wrest such patients back from death.

Accurate numbers are difficult to obtain. It is said that more than 300,000 persons die each year from sudden cardiac death in the United States alone. Worldwide the figure is in the millions. Sudden death is not, however, caused by coronary artery disease alone. Hemorrhage and asphyxiation, among others, can kill physiologically competent patients without warning. Sudden death is not defined by etiology; it is the circumstance of cardiopulmonary arrest in a person with functional vital organ systems. It is death in the midst of life, and it is always tragic.

We are just beginning to appreciate the magnitude of this problem and the potential for therapy. Just a 5% improvement in outcome – something that could be achieved in many communities by better application of standard care – would save more lives than therapies that have received far more attention. The potential for good is astounding; the relationship of cost to benefit compelling.

Sudden cardiopulmonary arrest is the most difficult disease state to treat. Remarkable improvement in the
quality of care has been achieved in a relatively short time by the American Heart Association’s and the European Resuscitation Council’s guidelines to therapy. Their efforts define the standard; this text is an attempt to delineate state-of-the-art. Our efforts are complementary. One cannot hope to individualize therapy to the patient’s benefit without excellent basic care, and international consensus provides this basis.

Our difficulty in treating cardiopulmonary arrest reflects a limited understanding of the pathophysiology of global ischemia and reperfusion. Physicians are naturally uncomfortable in using therapies that are poorly understood and that have not been clearly demonstrated effective. However, these patients do not allow us the luxury of waiting for more definite knowledge. We must apply all our skill and limited knowledge immediately if persons with “hearts and brains too good to die” are not to be lost forever.

This text is for clinicians who wish to practice both the science and the art of resuscitation. Every physician will at some time attempt to resuscitate a patient from sudden death, but few will have had the opportunity to learn from teachers dedicated to this skill. That is the purpose of this book. In each chapter, a recognized authority has been asked not only to review present knowledge, but also to describe the state of their art. Cardiac arrest patients do not have the luxury of seeking out experts. You must bring that expertise to the bed or curb side.

This is intended to be a comprehensive text incorporating critical analysis of material not readily available elsewhere. The text begins with chapters that place our current knowledge into context, describing the magnitude of the problem. The next two sections describe the basic science of ischemia and reperfusion at the cellular, organ system, and organismal levels and the pathophysiology of cardiopulmonary arrest and resuscitation. The fourth and fifth sections focus on state-of-the-art therapy for cardiopulmonary arrest, first without respect to etiology and then under specific circumstances. Contributors were asked to provide insights that complement widely disseminated guidelines. The sixth section focuses on the pathophysiology and therapy of postresuscitation syndrome, a complex disease state that is increasingly believed to underlie the morbidity and death following resuscitation. The therapy sections conclude with summaries intended to bring together concepts discussed throughout the chapters on cardiopulmonary resuscitation and postreperfusion syndrome.

We are at the beginning of what will be a rapid expansion in our knowledge of the pathophysiology and therapy of sudden death, global ischemia, and reperfusion injury. This text is intended not only to reflect the field, but also to affect it. We hope to convince the reader that there is art even in the management of this, the most dire medical emergency. “Life is short and the art is long.” Considering the millions of lives that are cut short and the limits of our knowledge, the art must be very long indeed.

The Editors