ASTROPHYSICS PROCESSES

Bridging the gap between physics and astronomy textbooks, this book provides physical explanations of twelve fundamental astrophysical processes underlying a wide range of phenomena in stellar, galactic, and extragalactic astronomy. The book has been written for upper-level undergraduates and graduate students, and its strong pedagogy ensures solid mastery of each process and application. It contains tutorial figures and step-by-step mathematical and physical development with real examples and data. Topics covered include the Kepler–Newton problem, stellar structure, radiation processes, special relativity in astronomy, radio propagation in the interstellar medium, and gravitational lensing. Applications presented include Jeans length, Eddington luminosity, the cooling of the cosmic microwave background (CMB), the Sunyaev–Zeldovich effect, Doppler boosting in jets, and determinations of the Hubble constant. This text is a stepping stone to more specialized books and primary literature. Review exercises allow students to monitor their progress. Password-protected solutions are available to instructors at www.cambridge.org/9780521846561.

Hale Bradt is Professor Emeritus of Physics at the Massachusetts Institute of Technology (MIT). During his 40 years on the faculty, he carried out research in cosmic ray physics and x-ray astronomy and taught courses in physics and astrophysics. Bradt founded the MIT sounding rocket program in x-ray astronomy and was a senior or principal investigator on three missions for x-ray astronomy. He was awarded the NASA Exceptional Science Medal for his contributions to HEAO-1 (High-Energy Astronomical Observatory) as well as the 1990 Buechner Teaching Prize of the MIT Physics Department and shared the 1999 Bruno Rossi prize of the American Astronomical Society for his contributions to the RXTE (Rossi X-ray Timing Explorer) program. His previous book, Astronomy Methods: A Physical Approach to Astronomical Observations, was published by Cambridge University Press in 2004.
Cover information

Views of the entire sky at six wavelengths in galactic coordinates: the equator of the Milky Way system is the central horizontal axis and the galactic center direction is at the center. Except for the far infrared x-ray sky, the colors represent intensity with the greatest intensities lying along the equator. In all cases, the radiation shows an association with the galactic equator, the general direction of the galactic center, or both. The maps are in frequency sequence as listed here: top to bottom on the back cover followed on the front cover by top inset, background map, lower inset.

Radio sky at 408 Hz exhibiting a diffuse glow of synchrotron radiation from the entire sky. High-energy electrons spiraling in the magnetic fields of the Galaxy emit this radiation. Note the North Polar Spur projecting above the equator to the left of center. From three observatories: Jodrell Bank, MPIfR, and Parkes. [Glyn Haslam et al., MPIfR, SkyView]

Radio emission at 1420 MHz, the spin-flip (hyperfine) transition in the ground state of hydrogen, which shows the locations of clouds of neutral hydrogen gas. The gas is heavily concentrated in the galactic plane and manifests pronounced filamentary structure off the plane. [J. Dickey (UM), F. Lockman (NRAO), SkyView; ARAA 28, 235 (1990)]

Far infrared (60–240 µm) sky from the COBE satellite showing primarily emission from small grains of graphite and silicates (“dust”) in the interstellar medium of the Galaxy. The faint, large S-shaped curve (on its side) is emission from dust and rocks in the solar system; reflection of solar light from this material causes the zodiacal light at optical wavelengths. Color coding: 60 µm (blue), 100 µm (green), 240 µm (red). [E. L. Wright (UCLA), COBE, DIRBE, NASA]

Optical sky from a mosaic of 51 wide-angle photographs showing mostly stars in our Milky Way Galaxy with significant extinction by dust along the galactic plane. Galaxies are visible at higher galactic latitudes, the most prominent being the two nearby Magellanic Clouds (lower right). [©Axel Mellinger]

X-ray sky at 1–20 keV from the A1 experiment on the HEAO–1 satellite showing 842 discrete sources. The circle size represents intensity of the source, and the color denotes the type of object. The most intense sources shown (green, larger circles) signify compact binary systems containing white dwarfs, neutron stars, and black holes. Other objects are supernova remnants (blue), clusters of galaxies (pink), active galactic nuclei (orange), and stellar coronae (white). [Kent Wood, NRL; see ApJ Suppl. 56, 507 (1984)]

Gamma-ray sky above 100 MeV from the EGRET experiment on the Compton Gamma-Ray Observatory. The diffuse glow from the galactic equator is due to the collisions of cosmic-ray protons with the atoms of gas clouds; the nuclear reactions produce the detected gamma rays. Discrete sources include pulsars and jets from distant active galaxies (“blazars”). [The EGRET team, NASA, CGRO]
ASTROPHYSICS PROCESSES

HALE BRADT

Massachusetts Institute of Technology
To my three sisters,
 Val, Abby, and Dale Anne
 They are my fans and I theirs
Contents

List of figures page xv
List of tables xx
Preface xxi
Also by the author xxv
Acknowledgments xxvii

1 Kepler, Newton, and the mass function 1
 1.1 Introduction 2
 1.2 Binary star systems 2
 Celestial laboratories • Visual binaries • Eclipsing binaries • Spectroscopic binaries
 1.3 Kepler and Newton 9
 Kepler's laws ($M \gg m$) • Ellipse • The Newtonian connection • Earth-orbiting satellites – Orbit change – Launch inclination
 1.4 Newtonian solutions $M \gg m$ 15
 Components of the equation of motion • Angular momentum (Kepler II) • Elliptical motion (Kepler I) – Trial solution transformed – Radial equation transformed – Solution • Angular momentum restated • Period and semimajor axis (Kepler III) • Total energy
 1.5 Arbitrary masses 22
 Relative motions – Relative coordinates: reduced mass – Equation of motion – Equivalence to the $M \gg m$ problem • Solutions – Angular momentum – Elliptical motion – Period and semimajor axis (Kepler III) – Total energy
 1.6 Mass determinations 28
Contents

1.7 Exoplanets and the galactic center

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exoplanets</td>
<td>39</td>
</tr>
<tr>
<td>Galactic center</td>
<td>Distance to the galactic center</td>
</tr>
<tr>
<td>Massive black hole</td>
<td>39</td>
</tr>
</tbody>
</table>

2 Equilibrium in stars

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>50</td>
</tr>
<tr>
<td>Jeans length</td>
<td>50</td>
</tr>
<tr>
<td>Collapse criterion</td>
<td>Critical mass</td>
</tr>
<tr>
<td>Hydrostatic equilibrium</td>
<td>Balanced forces</td>
</tr>
<tr>
<td>Virial theorem</td>
<td>Potential and kinetic energies</td>
</tr>
<tr>
<td>Time scales</td>
<td>Thermal time scale</td>
</tr>
<tr>
<td>Nuclear burning</td>
<td>Stable equilibrium</td>
</tr>
<tr>
<td>Eddington luminosity</td>
<td>Forces on charged particles</td>
</tr>
<tr>
<td>Pulsations</td>
<td>Heat engine</td>
</tr>
</tbody>
</table>

3 Equations of state

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>88</td>
</tr>
<tr>
<td>Maxwell–Boltzmann distribution</td>
<td>One-dimensional gas</td>
</tr>
<tr>
<td>Maxwell–Boltzmann in 6-D phase space</td>
<td>Measurable quantities</td>
</tr>
</tbody>
</table>
Contents

3.4 Ideal gas
- Particle pressure – Momentum transfer – Average kinetic energy
- **Equation of state**
 - Physical form – Macroscopic form (ideal gas law)

3.5 Photon gas

3.6 Degenerate electron gas
- **Fermions and bosons**
 - Spin – Pauli exclusion principle – Degeneracy
 - Statistics and distribution functions
 - **One-dimensional degeneracy**
 - Plots of 2-D phase space – Fermi momentum – Compression and cooling – Temperature
 - **Three-dimensional degeneracy**
 - Fermi momentum – Fermi function – Fermi energy – Pressures of electrons and protons
 - **Nonrelativistic EOS**
 - Average kinetic energy – Pressure
 - **Relativistic EOS**

4 Stellar structure and evolution

4.1 Introduction

4.2 Equations of stellar structure
- **Fundamental equations**
 - Hydrostatic equilibrium – Mass distribution – Luminosity distribution – Radiation transport
 - Convective transport
 - Condition for convection – Adiabatic temperature gradient
 - **Secondary equations**

4.3 Modeling and evolution
- **Approach to solutions**
 - Sun
 - **Main-sequence stars**
 - Spectral types – Convective regions
 - **Hertzsprung–Russell diagram**
 - Color-magnitude diagram – Effective temperature and radius
 - **Giants and supergiants**
 - **Evolution of single stars**
 - Solar evolution – Massive stars
 - Gamma-ray bursts – Globular clusters – Open clusters – Variable stars
 - **Scaling laws**
 - Matter density – Pressure – Temperature – Luminosity – Mass dependence
 - H-R diagram comparison – Homology transformations

4.4 Compact stars
- **White dwarfs**
 - Mass-radius relation – Stability – Sirius B – Chandrasekhar mass limit
 - **Neutron stars**
 - Radius of a neutron star – Equations of state and structure
 - Evidence for neutron stars – Maximum mass
 - **Black holes**
 - Event horizon (Schwarzschild radius)

4.5 Binary evolution
- **Time scales**
 - Gravitational radiation – Energy loss rate – Final chirp
 - **Tidal interaction**
 - **Magnetic breaking**
 - **Effective equipotentials**
 - Roche lobes – Lagrangian-point positions
 - **Accretion**
 - Star separation – Period change – Stellar winds – Pulsar wind and x-ray irradiation
 - **Sudden mass loss**
 - Semimajor axis and period – Eccentricity – Unbinding of the orbit
 - **Evolutionary scenarios**
 - High-mass x-ray binary and binary radio pulsar
 - Pulsar evolution – Low-mass x-ray binary
 - **Neutron-star spinup**
5 Thermal bremsstrahlung radiation 181

5.1 Introduction 182

5.2 Hot plasma 183

5.3 Single electron-ion collision 185

Radiation basics – Radiated electric vector – Poynting vector – Larmor’s frequency of the emitted radiation

5.4 Thermal electrons and a single ion 190

Single-speed electron beam – Power from the annulus – Power per unit frequency interval • Electrons of many speeds

5.5 Spectrum of emitted photons 193

Volume emissivity – Multiple ion targets – Exponential spectrum – Gaunt factor – H II regions, and clusters of galaxies • Integrated volume emissivity – Total power radiated – White dwarf accretion

5.6 Measurable quantities 199

Luminosity • Specific intensity (resolved sources) – Emission measure – Determination of T and EM • Spectral flux density S (point sources) – Uniform volume emissivity – Specific intensity and flux density compared

6 Blackbody radiation 205

6.1 Introduction 205

6.2 Characteristics of the radiation 208

Specific intensity – Rayleigh-Jeans and Wien approximations – Peak frequency – Wavelength units • Luminosity of a spherical “blackbody” • Energy flux density through a fixed surface – Effective temperature • Radiation densities – Energy density – Spectral number density – Cells in phase space – Total number density – Average photon energy • Radiation pressure – Beam of photons – Momentum transfer – Photon pressure • Summary of characteristics • Limits of intensity – Particles added – Surface of last scatter – Temperature limit – Black and gray bodies

6.3 Cosmological expansion 222

Adiabatic expansion – Photons – Comparison with particles • Room of receding mirrors – Hubble expansion and fundamental observers – Reflections from mirrors – Wavelength and room size • Spectral evolution – Number spectral density – Temperature and intensity

6.4 Mathematical notes 230

Riemann zeta function • Roots of a transcendental equation

7 Special theory of relativity in astronomy 233

7.1 Introduction 234

7.2 Postulates of special relativity 234
Contents

7.3 Lorentz transformations

7.4 Doppler shift
Derivation – Classical Doppler shift – Relativistic Doppler shift – Earth-orbiting satellite – Second-order Doppler shift – Doppler from \(k, \omega \) transformations • Doppler shifts in astronomy – Astronomical sign convention – Redshift parameter

7.5 Aberration
Transformation of \(k \) direction • Stellar aberration – Earth as stationary frame – Stars as stationary frame

7.6 Astrophysical jets
Beaming (“headlight effect”) • Lorentz invariance of distribution function • Doppler boosting – Doppler factor \(d \) – Boosting and deboosting angles • Solid angle – Specific intensity – Photon conservation – Boosting factor meaning – Spectral flux density – Flux density – \(K \) correction • Superluminal motion – Apparent transverse velocity – Knot speed and direction – Measured quantities – Cosmological correction • Other jet models

7.7 Magnetic force and collisions
Relativistic cyclotron frequency – Equation of motion – Angular velocity • CMB opacity to high-energy photons and protons – Photon absorption through pair production – Energy threshold – MeV to TeV astronomy – Cosmic ray protons and the CMB

7.8 Addendum: Lorentz invariance of distribution function
Invariance of phase-space volume element – General formula for transforming a photon world line – Transformation of a rectangular volume element – Parallelogram in frame S – Area in two frames – Phase-space volume invariant • Invariance of radiating area

8 Synchrotron radiation

8.1 Introduction

8.2 Discovery of celestial synchrotron radiation
Puzzling radiation from the Crab the nebula – Bluish diffuse light – Spectral energy distribution (SED) • Electron accelerators (synchrotrons) • Polarized light from Crab the nebula

8.3 Frequency of the emitted radiation
Instantaneous radiation patterns – Classical radiation pattern \((v \ll c) \) – Relativistic radiation pattern \((v \approx c) \) – Field lines for relativistic circular motion • Electric field waveform, \(E(t) \) – Brief pulses of radiation – Charges chasing
Contents

8.4 Power radiated by the electron 309

8.5 Ensemble of radiating particles 311

8.6 Coherent curvature radiation 318
 Curved trajectory – Frequency emitted – Power emitted – Coherent radiation from bunched electrons – Spinning neutron stars

9 Compton scattering 329

9.1 Introduction 329

9.2 Classic Compton scattering 330
 Compton wavelength – Momentum and energy conservation – Scattered frequency

9.3 Inverse Compton scattering 332
 Photon energy increase – Rest frame of electron – Laboratory frame – Average over directions – Rate of electron energy loss – Cross section – Single electron and many photons – Volume emissivity (many electrons) – Comptonization – Black-hole binaries – Clusters of galaxies

9.4 Synchrotron self-Compton (SSC) emission 338
 Relative energy loss rates – Compton limit – Inverse Compton peaks in SEDs – Crab nebula – Blazars

9.5 Sunyaev–Zeldovich effect 342
 Cluster scattering of CMB – Average frequency increase – Shifted spectrum – Intensity decrement – Hubble constant – X-ray intensity – CMB decrement – Angular-diameter distance – Peculiar velocities of clusters – Nonthermal S-Z effect

10 Hydrogen spin-flip radiation 355

10.1 Introduction 355

10.2 The Galaxy 356
 Stellar content – Interstellar medium (ISM) – Gases – Neutral hydrogen – Ionized hydrogen – Four components of the gaseous ISM – Molecules – Dust, radiation, cosmic rays, and magnetic fields
Contents

10.3 Hyperfine transition at 1420 MHz 362
Sky at 1420 MHz • Quantization fundamentals – Angular momenta – Magnetic moments • Line splitting – Magnetic dipole in a magnetic field – Three interaction terms – Overlap of electron wave function with a proton – Magnetic field inside the proton – Spin-spin coupling – Energy difference

10.4 Rotation of the Galaxy 374
Galactic models – Pointlike central mass – Galactic mass – Spherical and spheroidal distributions – Spherical distribution with \(\rho \propto r^{-2} \) • Tangent-point method – Hydrogen profiles – Working model of galactic rotation – Geometry – Rotation curve – Construction of a hydrogen-cloud map – Summary • Flat rotation curves and dark matter • Differential rotation in the solar neighborhood – Relative velocities – Oort constants – Shear and vorticity • Centers of galaxies

10.5 Zeeman absorption at 1420 MHz 389
Zeeman effect – Energetics – Angular momentum and polarization – Frequency difference • Detection of Zeeman splitting • Cloud magnetic fields

11 Dispersion and Faraday rotation 400

11.1 Introduction 401

11.2 Maxwell’s equations 401
The equations • Vacuum solution – Wave equations – Phase velocity • EM waves in dilute plasma – Wave solution – Phase velocity – Index of refraction – Dispersion relation – Polarization of medium

11.3 Dispersion 409
Polarization from equation of motion • Index of refraction and plasma frequency – Ionospheric cutoff – Interstellar cutoff • Group velocity – Phase and group velocities distinguished – General expression – Pulse speed in a plasma • Celestial source – Time delay – Crab nebula • Dispersion measure • Galactic model of electron density

11.4 Faraday rotation 419
Rotation of linear polarization – Rotation with position – Oscillating electrons • Circular polarization – Rotating vector – Left–right naming convention – Components of \(E \) field – Superposition of RCP and LCP – Rotated linear polarization • Index of refraction – Circular motion postulated – Polarization vector – Dielectric constant and the index – Cyclotron frequencies • Rotation angle – Uniform conditions – Nonuniform conditions – Rotation measure – Crab nebula – Depolarization – Ionosphere

11.5 Galactic magnetic field 432
Ratio of RM to DM • Galactic map

12 Gravitational lensing 437

12.1 Introduction 438

12.2 Discovery 438
Quasars • Twin quasar Q 0957+561 – Optical discovery – Radio imaging
12.3 Point-mass lens

12.4 Extended-mass lens

Galaxy as a lens – Constant-density spheroidal lens – Bending angle – Singular isothermal sphere (SIS) – Image locations • Thin-screen approximation – Lens plane – Bending angle

12.5 Fermat approach

Fermat’s principle • Time delays – Effective index of refraction – Geometric delay – Gravitational delay • Fermat potential – Four examples – Odd-number theorem • Curvature as magnification • Modeling • Hubble constant – Distance–redshift relations – System scale – Time difference–two paths – Mass of lens – Example: point-mass lens – Q 0957+561

12.6 Strong and weak lensing

Credits, further reading, and references

Glossary

Appendix – Units, symbols, and values

Index
Figures

1.1 Three images of visual binary Kruger 60
1.2 Alpha Centauri orbit
1.3 Inclination of orbit
1.4 Binary eclipses, schematics
1.5 Algol (β Persei) eclipses
1.6 Radial velocities of binary
1.7 Phi Cygni radial velocities
1.8 Ellipse geometry
1.9 Total energy of elliptical orbits
1.10 Elliptical orbits of binary
1.11 Orbital elements
1.12 Radial velocity of Cygnus X-1
1.13 Pulse timing of orbit
1.14 Neutron star masses
1.15 Star wobbles due to exoplanets
1.16 Stellar tracks about galactic center
2.1 Jeans length
2.2 Hydrostatic equilibrium
2.3 Diffusion
2.4 Nuclear potential barrier
2.5 Proton-proton fusion, dominant chain
2.6 Proton-proton fusion chains
2.7 Eddington luminosity
2.8 Carnot cycle
2.9 Pulsations of star
3.1 Maxwell–Boltzmann distribution
3.2 Spatial and momentum-space volume elements
3.3 Gas pressure on wall
3.4 Single phase-space element in 1-D gas
3.5 Occupancy of phase space in 1-D gas
3.6 Degeneracy in 3-D gas of fermions
3.7 Equation-of-state zones in temperature-density space

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>8</td>
</tr>
<tr>
<td>1.7</td>
<td>10</td>
</tr>
<tr>
<td>1.8</td>
<td>11</td>
</tr>
<tr>
<td>1.9</td>
<td>19</td>
</tr>
<tr>
<td>1.10</td>
<td>23</td>
</tr>
<tr>
<td>1.11</td>
<td>33</td>
</tr>
<tr>
<td>1.12</td>
<td>37</td>
</tr>
<tr>
<td>1.13</td>
<td>38</td>
</tr>
<tr>
<td>1.14</td>
<td>39</td>
</tr>
<tr>
<td>1.15</td>
<td>40</td>
</tr>
<tr>
<td>1.16</td>
<td>42</td>
</tr>
<tr>
<td>2.1</td>
<td>51</td>
</tr>
<tr>
<td>2.2</td>
<td>53</td>
</tr>
<tr>
<td>2.3</td>
<td>63</td>
</tr>
<tr>
<td>2.4</td>
<td>66</td>
</tr>
<tr>
<td>2.5</td>
<td>67</td>
</tr>
<tr>
<td>2.6</td>
<td>70</td>
</tr>
<tr>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>2.8</td>
<td>79</td>
</tr>
<tr>
<td>2.9</td>
<td>81</td>
</tr>
<tr>
<td>3.1</td>
<td>90</td>
</tr>
<tr>
<td>3.2</td>
<td>94</td>
</tr>
<tr>
<td>3.3</td>
<td>98</td>
</tr>
<tr>
<td>3.4</td>
<td>103</td>
</tr>
<tr>
<td>3.5</td>
<td>105</td>
</tr>
<tr>
<td>3.6</td>
<td>107</td>
</tr>
<tr>
<td>3.7</td>
<td>114</td>
</tr>
</tbody>
</table>
xvi Figures

4.1 Radiation transport 120
4.2 Convective loops 121
4.3 Solar granules and sunspots 122
4.4 Convective bubble displacement 122
4.5 Solar distributions of mass, energy generation, temperature, and density 126
4.6 Zones of convection and radiation in stars 129
4.7 CMD diagrams for stars in solar neighborhood and in M3 130
4.8 Evolution on H-R diagram and color magnitude diagram of open clusters 133
4.9 Pulsating stars on H-R diagram 137
4.10 Density profiles of homologous stars 142
4.11 Stability curve of white dwarfs and neutron stars 146
4.12 Structure of neutron star 147
4.13 Accreting x-ray pulsar 148
4.14 Event horizon and innermost stable radii 152
4.15 Iron line distorted by gravity and rapid motions near compact object 153
4.16 Effective equipotentials in binary with Roche lobes 162
4.17 Overflowing Roche lobe 164
4.18 Sudden mass loss in binary 167
4.19 Evolution scenario, HMXB 171
4.20 Evolution scenario, LMXB 173
4.21 Pulse arrival timing for SAX J1808–3658 174

5.1 Radiating plasma cloud 184
5.2 Poynting vector for accelerating charge 185
5.3 Track of accelerated electron and radiated pulse of electric vectors 188
5.4 Flux of electrons and annular target area 191
5.5 Continuum thermal bremsstrahlung spectrum 195
5.6 Thermal bremsstrahlung spectra for two temperatures 195
5.7 Continuum spectra of two H II regions in W3 197
5.8 Theoretical spectrum of hot plasma, including spectral lines 198
5.9 Isotropically emitting source and telescope 201

6.1 COBE spectrum of cosmic microwave background (CMB) 206
6.2 Blackbody spectra on linear-linear and log-log plots 208
6.3 Blackbody spectra for six temperatures 210
6.4 Emission from a surface element 211
6.5 Volume of radiative energy approaching a surface 214
6.6 Phase-space cells in energy space for a photon gas 216
6.7 Momentum transfer, photons and wall 217
6.8 Thermal bremsstrahlung spectrum with low-frequency cutoffs 221
6.9 Adiabatic expansion of photon gas with mirror analog 224
6.10 Photons reflecting from receding mirrors 226

7.1 Frames of reference for Lorentz transformations 235
7.2 Time dilation events 238
7.3 Electric field lines and vectors transformed 248
Figures

7.4 Doppler shift and aberration of emitted pulses 250
7.5 Aberration from two perspectives 257
7.6 M87 jet in the radio, optical, and x-ray bands 259
7.7 AGN sketch with black hole, accretion disk, and jet 260
7.8 Separating radio lobes (jet ejections) in GRS 1915+105 261
7.9 Beaming geometry in two frames of reference 262
7.10 Angles of Doppler boosting and deboosting 265
7.11 Doppler-boosted spectrum and the K correction 270
7.12 Observers for superluminal motion 271
7.13 Superluminal motion: plot of apparent transverse velocity versus view angle 273
7.14 Momentum change for circular motion 277
7.15 Electron pair production 278
7.16 Galactic plane map from HESS TeV telescopes 280
7.17 Transformation of photon volume in physical space 282

8.1 Electron spiraling around magnetic field line and antenna view 292
8.2 Spectral energy distribution (SED) of Crab nebula 293
8.3 Crab nebula in four directions of polarized light 295
8.4 Radiation lobes of relativistic orbiting electron 296
8.5 Electric field lines of relativistic orbiting charge 298
8.6 Radiation lobes for relativistic orbiting charge at two times 300
8.7 Power distribution of radiation from single orbiting charge 303
8.8 Frames of reference for calculating synchrotron power 304
8.9 Electric and magnetic fields in two frames 305
8.10 Power-law spectra 316
8.11 Radio sky at 150 MHz 318
8.12 Spinning neutron star and curvature radiation 319
8.13 Discovery pulses from radio pulsar CP 1919 323

9.1 Classic Compton effect 330
9.2 Inverse Compton scattering with head-on collision 333
9.3 Spectral energy distribution of Cygnus X-1 in two states 338
9.4 Synchrotron self-Compton scattering 339
9.5 Schematic spectral energy distributions for blazars 342
9.6 Spectral energy distribution for blazar 3C454.3 343
9.7 Sunyaev–Zeldovich (S-Z) effect 344
9.8 Rayleigh–Jeans decrement for S-Z effect 347
9.9 Interferometric maps of six galaxy clusters showing S-Z effect 349

10.1 Sketch of the Galaxy 356
10.2 Two spiral galaxies: M81 and M101 357
10.3 Energy levels of hydrogen atom 363
10.4 All-sky map at 1420 MHz 364
10.5 Parallel-plane galaxy model 365
10.6 Quantum states of angular momentum 367
10.7 Magnetic moment from loop of current 368
xviii Figures

10.8 Magnetic dipole orientations and hydrogen probability function 369
10.9 Interaction energies in hydrogen ground state 370
10.10 Differential rotation and rotation curve of Galaxy 375
10.11 Mass models of a galaxy 377
10.12 Hypothetical hydrogen line profiles 379
10.13 Hydrogen profiles of Galaxy at several longitudes 380
10.14 Geometry of tangent-point method 382
10.15 Hydrogen distribution in galactic plane 385
10.16 Energy levels for Zeeman splitting 389
10.17 Zeeman absorption in cloud with angular momenta and energy levels 392
10.18 Absorption line profiles for Zeeman splitting 393
10.19 Magnetic fields in star-forming region W49A 395

11.1 Linearly polarized wave at fixed time 403
11.2 Electric dipole moment and polarization of a medium 407
11.3 Propagating wave packet 412
11.4 Group velocity from two waves of slightly different frequencies 413
11.5 Dispersion of pulses from Crab nebula 417
11.6 Dispersion distribution in the plane of the Galaxy 418
11.7 Faraday rotation in a cloud of plasma 419
11.8 Mechanism of Faraday rotation for one electron 421
11.9 Electric vectors of circularly polarized wave 422
11.10 Summed right and left circular polarizations 424
11.11 Circular motion of electron driven by circularly polarized wave 426
11.12 Polarization angle of radiation from Crab nebula 431
11.13 Distribution of rotation measure in plane of Galaxy 433

12.1 Optical image and spectra of twin quasar, Q 0957+561 440
12.2 Radio images of twin quasar, Q 0957+561 442
12.3 Gravitational lens and four observers 443
12.4 Ray trajectory for a point gravitational source 443
12.5 Ideal lens and gravitational lens 445
12.6 Ray geometry for point-mass lens 447
12.7 Graphical solution for point-mass lens 448
12.8 Image positions for four source locations 450
12.9 Magnification geometry 454
12.10 Image of disk for six disk positions 455
12.11 Einstein ring, MG 1131+0456 456
12.12 Theoretical microlensing light curves 458
12.13 Microlensing event light curve in two colors 459
12.14 MACHO project lines of sight 460
12.15 Bending of rays for extended lens 461
12.16 Bending geometry for a spherical lens 462
12.17 Lens plane with rays 465
12.18 Fermat time delay functions for four cases 469
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.19</td>
<td>Four images of quasar HE 0435–1223</td>
<td>471</td>
</tr>
<tr>
<td>12.20</td>
<td>Scaling of gravitational lensing system</td>
<td>474</td>
</tr>
<tr>
<td>12.21</td>
<td>Light curves of twin quasar</td>
<td>476</td>
</tr>
<tr>
<td>12.22</td>
<td>Strong and weak lensing by cluster of galaxies, Abell 2218</td>
<td>477</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Conversion for two-body solutions</td>
<td>26</td>
</tr>
<tr>
<td>1.2</td>
<td>Orbital elements</td>
<td>32</td>
</tr>
<tr>
<td>2.1</td>
<td>CNO cycle</td>
<td>71</td>
</tr>
<tr>
<td>2.2</td>
<td>Hydrogen-burning reactions</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Solar quantities</td>
<td>127</td>
</tr>
<tr>
<td>4.2</td>
<td>Stellar spectral types and characteristics</td>
<td>128</td>
</tr>
<tr>
<td>4.3</td>
<td>Scaling laws for stars</td>
<td>141</td>
</tr>
<tr>
<td>4.4</td>
<td>Radii of event horizon R_h and innermost stable orbit R_{iso}</td>
<td>152</td>
</tr>
<tr>
<td>6.1</td>
<td>Riemann zeta function</td>
<td>230</td>
</tr>
<tr>
<td>6.2</td>
<td>Roots of transcendental equation (75)</td>
<td>231</td>
</tr>
<tr>
<td>7.1</td>
<td>Lorentz transformations: x,t</td>
<td>237</td>
</tr>
<tr>
<td>7.2</td>
<td>Lorentz transformations: p,U</td>
<td>244</td>
</tr>
<tr>
<td>7.3</td>
<td>Lorentz transformations: k,ω</td>
<td>245</td>
</tr>
<tr>
<td>7.4</td>
<td>Lorentz transformations: B,E</td>
<td>246</td>
</tr>
<tr>
<td>8.1</td>
<td>Synchrotron radiation (Crab nebula)</td>
<td>310</td>
</tr>
<tr>
<td>10.1</td>
<td>Characteristics of (Milky Way) Galaxy</td>
<td>358</td>
</tr>
<tr>
<td>10.2</td>
<td>Components of the diffuse ISM</td>
<td>361</td>
</tr>
<tr>
<td>10.3</td>
<td>Energy densities in the ISM</td>
<td>362</td>
</tr>
<tr>
<td>10.4</td>
<td>Hyperfine splitting (ground-state hydrogen)</td>
<td>371</td>
</tr>
<tr>
<td>11.1</td>
<td>Maxwell’s equations</td>
<td>402</td>
</tr>
<tr>
<td>11.2</td>
<td>Maxwell’s equations for dilute nonferromagnetic plasma</td>
<td>405</td>
</tr>
</tbody>
</table>
Preface

This volume is based on notes that evolved during my teaching of astrophysics classes for junior and senior physics students at MIT beginning in 1973, and thereafter on and off, until 1997. The course focused on a physical, analytical approach to underlying processes in astronomy and astrophysics. In each class, I would escort the students through a mathematical and physical derivation of some process relevant to astrophysics in the hope of giving them a firm comprehension of the underlying principles.

The approach in the text is meant to be accessible to undergraduates who have completed the fundamental calculus-based physics courses in mechanics and electromagnetic theory. Additional physics courses such as quantum mechanics, thermodynamics, and statistics would be helpful but are not necessary for large parts of this text. Derivations are developed step by step – frequently with brief reviews or reminders of the basic physics being used – because students often feel they do not remember the material from an earlier course. The derivations are sufficiently complete to demonstrate the key features but do not attempt to include all the special cases and finer details that might be needed for professional research.

This text presents twelve “processes” with derivations and focused, limited examples. It does not try to acquaint the student with all the associated astronomical lore. It is quite impossible in a reasonable-sized text to give both the physical derivations of fundamental processes and to include all the known applications and lore relating to them across the field of astronomy. The assumption here is that many students will have had an elementary astronomy course emphasizing the lore. Nevertheless, selected germane examples of the twelve processes are presented together with background information about them. These examples cover a wide and rich range of astrophysical phenomena.

The twelve processes, with the principal applications presented, are the Kepler–Newton problem (mass functions, exoplanets, galactic center orbits); stellar equilibrium (nuclear burning, Eddington luminosity); stellar equations of state (normal and compact stars); stellar structure (normal and compact stars); thermal bremsstrahlung (clusters of galaxies); blackbody radiation (cosmological cooling); synchrotron (Crab nebula) and curvature radiation (pulsars); 21-cm radiation (galaxy rotation, dark matter, Zeeman absorption); Compton scattering (Sunyaev–Zeldovich effect); relativity in astronomy (jets, photon absorption in the cosmic microwave background or CMB); dispersion (interstellar medium) and Faraday rotation (Galactic magnetic field); and gravitational lensing (Hubble constant, weak lensing). Cosmology as such is not systematically covered to limit the size of the text. Several related topics, however, are addressed: (i) the dark matter in galaxies and in clusters of galaxies,
The cooling of the background blackbody radiation of the CMB, and determinations of the Hubble constant through both the S-Z effect and gravitational lensing.

Knowledge of the material in my previous textbook, *Astronomy Methods – A Physical Approach to Astronomical Observations* (AM), is not required for this text. The topics are largely complementary to those therein. I do, though, occasionally refer to it as an optional background reference. (The chapter numbers refer to the original edition.) The AM text does discuss the transport of radiation in stellar atmospheres, one of the most basic processes in astronomy; hence, regretfully, this topic is not included in this book.

Again, SI units are used throughout to be consistent with most standard undergraduate science texts. Professional astronomers use cgs units – probably because everyone else in the field does. Unfortunately, this precludes progress in bringing the various science communities together to one system of units. It is also a significant hindrance to the student exploring astronomy or astrophysics. In this work I vote for ease of student access. One inconsistency does remain. Rather than use the customary and highly specialized astronomical unit of distance, the “parsec” but instead employ the better understood, but non-SI, unit, the “light year” (LY), which is the distance light travels in one year. This is a well-defined quantity if one specifies the Julian year of exactly 365.25 days each of exactly 86 400 SI seconds for a total for 31 557 600 s.

Other features of the book as follows: to note are

(i) Problems are provided for each chapter and approximate answers indicated by the ∼ symbol are given when appropriate.
(ii) The problems are generally constructed to help carry the student through them and hence are mostly multipart.
(iii) Units are often given gratuitously (in parentheses) for algebraic variables to remind the reader of the meaning of the symbol.
(iv) Equation, table, figure, and section numbers in the text do not carry the chapter prefix if they refer to the current chapter to improve readability.
(v) Tables of useful units, symbols, and constants are given in the appendix.
(vi) Quantitative information is meant to be up to date and correct but should not be relied upon for professional research. The goal here is to teach underlying principles.

In teaching this course from my notes, I adopted a seminar, or Socratic, style of teaching that turned out to be extremely successful and personally rewarding. I recommend this approach to teachers using this text. I sat with the students (up to about 20) around a table, or we would rearrange classroom desks and chairs in a circular or rectangular pattern so that we were all more or less facing each other. I would then have the students explain the material to their fellow students (“Don’t look at me,” I often said). One student would do a bit, and I would move on to another. I tried very hard to make my prompts easy and straightforward, to avoid disparaging incorrect or confusing answers, and to encourage discussion among the students. I would synthesize arguments and describe the broader implications of the material interspersed by stories of real-life astronomy, personalities, discoveries, and so on.

These sessions would often become quite active. The course was also great fun for the teacher. In good weather, we would move outdoors and have our class on the lawn of MIT’s Killian Court.
Preface

During such discussions, the text should be available to all and be freely referenced. To ease such referencing, all equations are numbered, labels are provided for many of them, and important equations are marked with a boldface arrow in the left margin. The students must work hard to prepare for class, and thus they gain much from class discussion.

The author asks his readers’ forbearance with the inevitable errors in the current text and requests to be notified of them. He also welcomes other comments and suggestions.

Hale Bradt
Salem MA 02478–2412
USA
bradt@mit.edu.
Also by Hale Bradt

Astronomy Methods – A Physical Approach to Astronomical Observations
(Cambridge University Press, 2004)

Contents:

1. Astronomy through the centuries
2. Electromagnetic radiation
3. Coordinate systems and charts
4. Gravity, celestial motions, and time
5. Telescopes
6. Detectors and statistics
7. Multiple telescope interferometry
8. Pointlike and extended sources
9. Properties and distances of celestial objects
10. Absorption and scattering of photons
11. Spectra of electromagnetic radiation
12. Astronomy beyond photons

This text is an introduction to the basic practical tools, methods, and phenomena that underlie quantitative astronomy. The presentation covers a diversity of topics from a physicist point of view and is addressed to the upper-level undergraduate or beginning graduate student. The topics include the

- electromagnetic spectrum;
- atmospheric absorption;
- celestial coordinate systems;
- the motions of celestial objects;
- eclipses;
- calendar and time systems;
- telescopes in all wave bands;
- speckle interferometry and adaptive optics to overcome atmospheric jitter;
- astronomical detectors, including charge-coupled devices (CCDs);
- two space gamma-ray experiments;
- basic statistics;
Also by Hale Bradt

- interferometry to improve angular resolution;
- radiation from point and extended sources;
- the determination of masses, temperatures, and distances of celestial objects;
- the processes that absorb and scatter photons in the interstellar medium together with the concept of cross section;
- broadband and line spectra;
- the transport of radiation through matter to form spectral lines; and finally;
- techniques used to carry out neutrino, cosmic-ray, and gravity-wave astronomy.
Acknowledgments

I am indebted to many colleagues at MIT and elsewhere and to many students for their encouragement and assistance in hallway discussions, in class, and as readers of draft chapters over the course of the several decades that this work has been evolving. It is impossible to fairly list all those who helped in these ways, but I will mention those who particularly come to mind. I apologize for omissions. It goes without saying that those mentioned are not responsible for errors; I assume that role.

Graduate and undergraduate students (at the time): Stefan Ballmer, David Baran, James “Gerbs” Bauer, Jeffrey Blackburne, Adam Bolton, Nathaniel Butler, Eugene Chiang, Asantha Cooray, Yildiz Dalkir, Antonios Eleftheriou, James Gelb, Karen Ho, Juliana Hsu, Tanim Islam, Rick Jenet, Jeffrey Jewell, Jasmine Jijina, Justin Kasper, Vishnja Katalinic, Kenneth Kellermann, Edward Keyes, Janna Levin, Glen Monnelly, Stuart Mufson, Matthew Muterspaugh, Tito Pena, Jeremy Pitcock, Philipp Podsiadlowski, Dave Pooley, Robert Shirey, Alexander Shirokov, Donald A. Smith, Mark Snyder, Seth Trotz.

I am especially grateful to colleagues Saul Rappaport and Stu Teplitz for their reading of the entire set of notes some years ago, to Stan Olbert for his suggested approach for the review of special relativity in Chapter 7, and to Alan Levine for the derivation in Section 7.8. Saul and Alan have been especially generous with their time and counsel. I also thank XXXX for their very recent reading of this volume in its current form. In the days before personal word processors, secretaries Trish Dobson, Ann Scales, Patricia Shultz, and Diana Valderrama did yeoman’s duty in typing revisions of the notes for my classes.

Much appreciated allowances have been made for my writing efforts by the Department of Physics at MIT, by my colleagues at the MIT Center for Space Research and by my associates in the Rossi X-ray Timing Explorer (RXTE) satellite program at MIT, the University of
xxviii Acknowledgments

California at San Diego, and NASA’s Goddard Space Flight Center. The hospitality of the Institute of Space and Astronautical Science (ISAS) in Japan and the Observatory of Rome (OAR) in Italy provided extended periods of quiet writing for which I am grateful.

Finally, it has been a pleasure to work with the staff and associates of Cambridge University Press – in particular, Jacqueline Garget, Vincent Higgs, Jeanette Alfoldi, Eleanor Umali and her associates at Aptara Corp., and copyeditor John Jasmiet XXXX. They have been encouraging, creative, patient, and ever helpful.