Bacterial Physiology and Metabolism

Recent determination of the genome sequences for a wide range of bacteria has made an in-depth knowledge of prokaryotic metabolic function even more essential in order to give biochemical, physiological and ecological meaning to the genomic information. Clearly describing the important metabolic processes that occur in prokaryotes under different conditions and in different environments, this advanced text provides an overview of the key cellular processes that determine bacterial roles in the environment, biotechnology and human health. Prokaryotic structure and composition are described as well as the means by which nutrients are transported into cells across membranes. Discussion of biosynthesis and growth is followed by detailed accounts of glucose metabolism through glycolysis, the TCA cycle, electron transport and oxidative phosphorylation, as well as other trophic variations found in prokaryotes including the use of organic compounds other than glucose, anaerobic fermentation, anaerobic respiration, chemolithotrophy and photosynthesis. The regulation of metabolism through control of gene expression and enzyme activity is also covered, as well as the survival mechanisms used under starvation conditions.

Professor Byung Hong Kim is an expert on anaerobic metabolism, organic degradation and bioelectrochemistry. He graduated from Kyungpook National University, Korea, and obtained a Ph.D. from University College Cardiff. He has carried out research at several universities around the world, with an established career in the Korea Institute of Science and Technology. He has been honoured by the Korean Government, which designated his research group a National Research Laboratory, the Bioelectricity Laboratory, and has served as President of the Korean Society for Microbiology and Biotechnology. Professor Kim wrote the classic Korean microbiology text on Microbial Physiology and has published over 100 refereed papers and reviews, and holds over 20 patents relating to applications of his research in environmental biotechnology.

Professor Geoffrey Michael Gadd is an authority on microbial interactions with metals, minerals and radionuclides and their applications in environmental biotechnology. He holds a personal Chair in Microbiology at the University of Dundee and is the Head of the Division of Molecular and Environmental Microbiology in the College of Life Sciences. He has published over 200 refereed scientific papers, books and reviews and has received invitations to speak at international conferences in over 20 countries. Professor Gadd has served as President of the British Mycological Society and is an elected Fellow of the Institute of Biology, the American Academy of Microbiology, the Linnean Society, and the Royal Society of Edinburgh. He has received the Berkeley Award from the British Mycological Society and the Charles Thom award from the Society for Industrial Microbiology for his outstanding research contributions to the microbiological sciences.
Bacterial Physiology and Metabolism

Byung Hong Kim
Korea Institute of Science and Technology

Geoffrey Michael Gadd
University of Dundee
To our families

Hyungock Hong, Kyoungha Kim and Youngha Kim
and
Julia, Katie and Richard Gadd
Contents in brief

1. Introduction to bacterial physiology and metabolism
 page 1
2. Composition and structure of prokaryotic cells
 7
3. Membrane transport – nutrient uptake and protein excretion
 35
4. Glycolysis
 60
5. Tricarboxylic acid (TCA) cycle, electron transport and oxidative phosphorylation
 85
6. Biosynthesis and microbial growth
 126
7. Heterotrophic metabolism on substrates other than glucose
 202
8. Anaerobic fermentation
 252
9. Anaerobic respiration
 298
10. Chemolithotrophy
 354
11. Photosynthesis
 386
12. Metabolic regulation
 408
13. Energy, environment and microbial survival
 482
Contents

Preface page xxi

1 Introduction to bacterial physiology and metabolism 1

 Further reading 4

2 Composition and structure of prokaryotic cells 7

 2.1 Elemental composition 7
 2.2 Importance of chemical form 8

 2.2.1 Five major elements 8
 2.2.2 Oxygen 9
 2.2.3 Growth factors 10
 2.3 Structure of microbial cells 10

 2.3.1 Flagella and pili 10
 2.3.2 Capsules and slime layers 12
 2.3.3 S-layer, outer membrane and cell wall 12

 2.3.3.1 S-layer 13
 2.3.3.2 Outer membrane 13
 2.3.3.3 Cell wall and periplasm 17
 2.3.4 Cytoplasmic membrane 21

 2.3.4.1 Properties and functions 21
 2.3.4.2 Membrane structure 22
 2.3.4.3 Phospholipids 23
 2.3.4.4 Proteins 26
 2.3.5 Cytoplasm 27
 2.3.6 Resting cells 29

 Further reading 30

3 Membrane transport – nutrient uptake and protein excretion 35

 3.1 Ionophores: models of carrier proteins 35
 3.2 Diffusion 37
 3.3 Active transport and role of electrochemical gradients 37
 3.4 ATP-dependent transport: ATP-binding cassette (ABC) pathway 38
 3.5 Group translocation 39
 3.6 Precursor/product antiport 40
 3.7 Ferric ion (Fe(III)) uptake 41
3.8 Export of cell surface structural components 43
 3.8.1 Protein transport 43
 3.8.1.1 General secretory pathway (GSP) 43
 3.8.1.2 Twin-arginine translocation (TAT) pathway 45
 3.8.1.3 ATP-binding cassette (ABC) pathway 46
 3.8.2 Protein translocation across the outer membrane in
 Gram-negative bacteria 46
 3.8.2.1 Chaperone/usher pathway 47
 3.8.2.2 Type I pathway: ATP-binding cassette (ABC) pathway 47
 3.8.2.3 Type II pathway 47
 3.8.2.4 Type III pathway 49
 3.8.2.5 Type IV pathway 50
 3.8.2.6 Type V pathway: autotransporter and proteins requiring
 single accessory factors 51

Further reading 52

4 Glycolysis 60
 4.1 EMP pathway 61
 4.1.1 Phosphofructokinase (PFK): key enzyme of the EMP
 pathway 61
 4.1.2 ATP synthesis and production of pyruvate 63
 4.1.3 Modified EMP pathways 64
 4.1.3.1 Methylglyoxal bypass 64
 4.1.3.2 Modified EMP pathways in archaea 65
 4.1.4 Regulation of the EMP pathway 66
 4.1.4.1 Regulation of phosphofructokinase 66
 4.1.4.2 Regulation of pyruvate kinase 67
 4.1.4.3 Global regulation 67
 4.2 Glucose-6-phosphate synthesis: gluconeogenesis 67
 4.2.1 PEP synthesis 67
 4.2.2 Fructose diphosphatase 68
 4.2.3 Gluconeogenesis in archaea 68
 4.2.4 Regulation of gluconeogenesis 69
 4.3 Hexose monophosphate (HMP) pathway 69
 4.3.1 HMP pathway in three steps 69
 4.3.2 Additional functions of the HMP pathway 70
 4.3.2.1 Utilization of pentoses 71
 4.3.2.2 Oxidative HMP cycle 71
 4.3.3 Regulation of the HMP pathway 71
 4.3.4 F420-dependent glucose-6-phosphate dehydrogenase 71
 4.4 Entner–Doudoroff (ED) pathway 72
 4.4.1 Glycolytic pathways in some Gram-negative bacteria 72
 4.4.2 Key enzymes of the ED pathway 72
 4.4.3 Modified ED pathways 72
4.4.3.1 Extracellular oxidation of glucose by Gram-negative bacteria

Page 72

4.4.3.2 Modified ED pathways in archaea

Page 74

5 Phosphoketolase pathways

- **5.1** Glucose fermentation by *Leuconostoc mesenteroides*
 Page 75
- **5.2** Bifidum pathway
 Page 77

4.6 Use of radiorespirometry to determine glycolytic pathways

Page 78

Further reading

Page 80

5 Tricarboxylic acid (TCA) cycle, electron transport and oxidative phosphorylation

Page 85

5.1 Oxidative decarboxylation of pyruvate

Page 85

5.2 Tricarboxylic acid (TCA) cycle

- **5.2.1** Citrate synthesis and the TCA cycle
 Page 87
- **5.2.2** Regulation of the TCA cycle
 Page 88

5.3 Replenishment of TCA cycle intermediates

- **5.3.1** Anaplerotic sequence
 Page 88
- **5.3.2** Glyoxylate cycle
 Page 89
 - **5.3.2.1** Regulation of the glyoxylate cycle
 Page 90

5.4 Incomplete TCA fork and reductive TCA cycle

- **5.4.1** Incomplete TCA fork
 Page 91
- **5.4.2** Reductive TCA cycle
 Page 92

5.5 Energy transduction in prokaryotes

Page 93

- **5.5.1** Free energy
 - **5.5.1.1** \(\Delta G^0 \) from the free energy of formation
 Page 94
 - **5.5.1.2** \(\Delta G^0 \) from the equilibrium constant
 Page 94
 - **5.5.1.3** \(\Delta G \) from \(\Delta G^0 \)
 Page 95
 - **5.5.1.4** \(\Delta G^0 \) from \(\Delta G \)
 Page 95
- **5.5.2** Free energy of an oxidation/reduction reaction
 - **5.5.2.1** Oxidation/reduction potential
 Page 95
 - **5.5.2.2** Free energy from \(\Delta S^0 \)
 Page 96
- **5.5.3** Free energy of osmotic pressure
 Page 97
- **5.5.4** Sum of free energy change in a series of reactions
 Page 97

5.6 Role of ATP in the biological energy transduction process

Page 98

- **5.6.1** High energy phosphate bonds
 Page 99
- **5.6.2** Adenylate energy charge
 Page 100
- **5.6.3** Phosphorylation potential (\(\Delta G_p \))
 Page 101
- **5.6.4** Interconversion of ATP and proton motive force (\(\Delta p \))
 Page 101
- **5.6.5** Substrate-level phosphorylation (SLP)
 Page 102

5.7 Proton motive force (\(\Delta p \))

Page 102

- **5.7.1** Proton gradient and membrane potential
 Page 102
- **5.7.2** Acidophilicity and alkalophilicity
 Page 103
- **5.7.3** Proton motive force in acidophiles
 Page 103
- **5.7.4** Proton motive force and sodium motive force in alkalophiles
 Page 104
5.8 Electron transport (oxidative) phosphorylation
 5.8.1 Chemiosmotic theory
 5.8.2 Electron carriers and the electron transport chain
 5.8.2.1 Mitochondrial electron transport chain
 5.8.2.2 Electron carriers
 5.8.2.3 Diversity of electron transport chains in prokaryotes
 5.8.2.4 Inhibitors of electron transport phosphorylation (ETP)
 5.8.2.5 Transhydrogenase
 5.8.3 Arrangement of electron carriers in the H⁺-translocating membrane
 5.8.3.1 Q-cycle and Q-loop
 5.8.3.2 Proton pump
 5.8.4 ATP synthesis
 5.8.4.1 ATP synthase
 5.8.4.2 H⁺/O ratio
 5.8.4.3 H⁺/ATP stoichiometry
 5.8.5 Uncouplers
 5.8.6 Primary H⁺ (Na⁺) pumps in fermentative metabolism
 5.8.6.1 Fumarate reductase
 5.8.6.2 Na⁺-dependent decarboxylase
 5.8.6.3 Δp formation through fermentation product/H⁺ symport

5.9 Other biological energy transduction processes
 5.9.1 Bacterial bioluminescence
 5.9.2 Electricity as an energy source in microbes

Further reading

6 | Biosynthesis and microbial growth

6.1 Molecular composition of bacterial cells
6.2 Assimilation of inorganic nitrogen
 6.2.1 Nitrogen fixation
 6.2.1.1 N₂-fixing organisms
 6.2.1.2 Biochemistry of N₂ fixation
 6.2.1.3 Bioenergetics of N₂ fixation
 6.2.1.4 Molecular oxygen and N₂ fixation
 6.2.1.5 Regulation of N₂ fixation
 6.2.2 Nitrate reduction
 6.2.3 Ammonia assimilation

6.3 Sulfate assimilation
6.4 Amino acid biosynthesis
 6.4.1 The pyruvate and oxaloacetate families
 6.4.2 The phosphoglycerate family
 6.4.3 The 2-ketoglutarate family
 6.4.4 Aromatic amino acids
 6.4.5 Histidine biosynthesis
 6.4.6 Regulation of amino acid biosynthesis
6.5 Nucleotide biosynthesis

6.5.1 Salvage pathway 145

6.5.2 Pyrimidine nucleotide biosynthesis through a de novo pathway 148

6.5.3 De novo synthesis of purine nucleotides 149

6.5.4 Synthesis of deoxynucleotides 149

6.6 Lipid biosynthesis 152

6.6.1 Fatty acid biosynthesis 152

6.6.1.1 Saturated acyl-ACP 153

6.6.1.2 Branched acyl-ACP 154

6.6.1.3 Unsaturated acyl-ACP 154

6.6.1.4 Cyclopropane fatty acids 156

6.6.1.5 Regulation of fatty acid biosynthesis 156

6.6.2 Phospholipid biosynthesis 156

6.6.3 Isoprenoid biosynthesis 159

6.7 Heme biosynthesis 159

6.8 Synthesis of saccharides and their derivatives 161

6.8.1 Hexose phosphate and UDP-sugar 161

6.8.2 Monomers of murein 163

6.8.3 Monomers of teichoic acid 164

6.8.4 Precursor of lipopolysaccharide, O-antigen 164

6.9 Polysaccharide biosynthesis and the assembly of cell surface structures 165

6.9.1 Glycogen synthesis 165

6.9.2 Murein synthesis and cell wall assembly 167

6.9.2.1 Transport of cell wall precursor components through the membrane 167

6.9.2.2 Murein synthesis 167

6.9.2.3 Teichoic acid synthesis 167

6.9.2.4 Cell wall proteins in Gram-positive bacteria 169

6.9.3 Outer membrane assembly 169

6.9.3.1 Protein translocation 169

6.9.3.2 Lipopolysaccharide (LPS) translocation 169

6.9.3.3 Phospholipid translocation 170

6.9.4 Cytoplasmic membrane (CM) assembly 170

6.10 Deoxyribonucleic acid (DNA) replication 170

6.10.1 DNA replication 170

6.10.1.1 RNA primer 171

6.10.1.2 Okazaki fragment 172

6.10.1.3 DNA polymerase 172

6.10.2 Spontaneous mutation 173

6.10.3 Post-replication modification 173

6.10.4 Chromosome segregation 173

6.11 Transcription 174

6.11.1 RNA synthesis 174

6.11.2 Post-transcriptional processing 174
CONTENTS

6.12 Translation 175
 6.12.1 Amino acid activation 176
 6.12.2 Synthesis of peptide: initiation, elongation and termination 176
 6.12.2.1 Ribosomes 177
 6.12.2.2 Initiation and elongation 177
 6.12.2.3 Termination 178
 6.12.3 Post-translational modification and protein folding 178

6.13 Assembly of cellular structure 181
 6.13.1 Flagella 181
 6.13.2 Capsules and slime 182
 6.13.3 Nucleoid assembly 182
 6.13.4 Ribosome assembly 182

6.14 Growth 182
 6.14.1 Cell division 183
 6.14.1.1 Binary fission 183
 6.14.1.2 Multiple intracellular offspring 184
 6.14.1.3 Multiple offspring by multiple fission 185
 6.14.1.4 Budding 187
 6.14.2 Growth yield 187
 6.14.3 Theoretical maximum Y_{ATP} 189
 6.14.4 Growth yield using different electron acceptors and maintenance energy 189
 6.14.5 Maintenance energy 192

Further reading 193

7 Heterotrophic metabolism on substrates other than glucose 202

7.1 Hydrolysis of polymers 202
 7.1.1 Starch hydrolysis 202
 7.1.2 Cellulose hydrolysis 203
 7.1.3 Other polysaccharide hydrolases 204
 7.1.4 Disaccharide phosphorylases 205
 7.1.5 Hydrolysis of proteins, nucleic acids and lipids 206

7.2 Utilization of sugars 206
 7.2.1 Hexose utilization 206
 7.2.2 Pentose utilization 207

7.3 Organic acid utilization 208
 7.3.1 Fatty acid utilization 208
 7.3.2 Organic acids more oxidized than acetate 210

7.4 Utilization of alcohols and ketones 213

7.5 Amino acid utilization 214
 7.5.1 Oxidative deamination 215
 7.5.2 Transamination 215
 7.5.3 Amino acid dehydratase 215
 7.5.4 Deamination of cysteine and methionine 216
7.5.5 Deamination products of amino acids 217
7.5.6 Other amino acids 220
7.6 Degradation of nucleic acid bases 220
7.7 Oxidation of aliphatic hydrocarbons 223
7.8 Oxidation of aromatic compounds 225
7.8.1 Oxidation of aromatic amino acids 225
7.8.2 Ortho and meta cleavage, and the gentisate pathway 227
7.8.3 Oxygenase and aromatic compound oxidation 229
7.9 Utilization of methane and methanol 229
7.9.1 Methanotrophy and methylotrophy 229
7.9.2 Methanotrophy 230
7.9.2.1 Characteristics of methanotrophs 230
7.9.2.2 Dissimilation of methane by methanotrophs 233
7.9.3 Carbon assimilation by methylotrophs 235
7.9.3.1 Ribulose monophosphate (RMP) pathway 235
7.9.3.2 Serine–isocitrate lyase (SIL) pathway 236
7.9.3.3 Xylulose monophosphate (XMP) pathway 240
7.9.4 Energy efficiency in C1 metabolism 241
7.10 Incomplete oxidation 241
7.10.1 Acetic acid bacteria 241
7.10.2 Acetoin and butanediol 242
7.10.3 Other products of aerobic metabolism 243
Further reading 244

8 Anaerobic fermentation 252
8.1 Electron acceptors used in anaerobic metabolism 252
8.1.1 Fermentation and anaerobic respiration 252
8.1.2 Hydrogen in fermentation 252
8.2 Molecular oxygen and anaerobes 253
8.3 Ethanol fermentation 255
8.4 Lactate fermentation 257
8.4.1 Homolactate fermentation 257
8.4.2 Heterolactate fermentation 257
8.4.3 Biosynthesis in lactic acid bacteria (LAB) 259
8.4.4 Oxygen metabolism in LAB 260
8.4.5 Lactate/H+ symport 260
8.4.6 LAB in fermented food 260
8.5 Butyrate and acetone–butanol–ethanol fermentations 263
8.5.1 Butyrate fermentation 263
8.5.1.1 Phosphoroclastic reaction 263
8.5.1.2 Butyrate formation 264
8.5.1.3 Lactate fermentation by Clostridium butyricum 265
8.5.1.4 Clostridium butyricum as a probiotic 268
8.5.1.5 Non-butyrate clostridial fermentation 268
8.5.2 Acetone–butanol–ethanol fermentation 269
8.5.3 Fermentation balance 271
8.6 Mixed acid and butanediol fermentation

8.6.1 Mixed acid fermentation

8.6.2 Butanediol fermentation

8.6.3 Citrate fermentation by facultative anaerobes

8.6.4 Anaerobic enzymes

8.7 Propionate fermentation

8.7.1 Succinate–propionate pathway

8.7.2 Acrylate pathway

8.8 Fermentation of amino acids and nucleic acid bases

8.8.1 Fermentation of individual amino acids

8.8.2 Stickland reaction

8.8.3 Fermentation of purine and pyrimidine bases

8.9 Fermentation of dicarboxylic acids

8.10 Hyperthermophilic archaeal fermentation

8.11 Degradation of xenobiotics under fermentative conditions

Further reading

9 Anaerobic respiration

9.1 Denitrification

9.1.1 Biochemistry of denitrification

9.1.1.1 Nitrate reductase

9.1.1.2 Nitrite reductase

9.1.1.3 Nitric oxide reductase and nitrous oxide reductase

9.1.2 ATP synthesis in denitrification

9.1.3 Regulation of denitrification

9.1.4 Denitrifiers other than facultatively anaerobic chemoorganotrophs

9.1.5 Oxidation of xenobiotics under denitrifying conditions

9.2 Metal reduction

9.2.1 Fe(III) and Mn(IV) reduction

9.2.2 Microbial reduction of other metals

9.2.3 Metal reduction and the environment

9.3 Sulfidogenesis

9.3.1 Biochemistry of sulfidogenesis

9.3.1.1 Reduction of sulfate and sulfur

9.3.1.2 Carbon metabolism

9.3.2 Electron transport and ATP yield in sulfidogens

9.3.2.1 Incomplete oxidizers

9.3.2.2 Complete oxidizers

9.3.3 Carbon skeleton supply in sulfidogens

9.3.4 Oxidation of xenobiotics under sulfidogenic conditions

9.4 Methanogenesis

9.4.1 Methanogens

9.4.1.1 Hydrogenotrophic methanogens

9.4.1.2 Methylotrophic methanogens

9.4.1.3 Aceticlastic methanogens
9.4.2 Coenzymes in methanogens
9.4.3 Methanogenic pathways
 9.4.3.1 Hydrogenotrophic methanogenesis
 9.4.3.2 Methylotrophic methanogenesis
 9.4.3.3 Aceticlastic methanogenesis
9.4.4 Energy conservation in methanogenesis
9.4.5 Biosynthesis in methanogens

9.5 Homoacetogenesis
 9.5.1 Homoacetogens
 9.5.2 Carbon metabolism in homoacetogens
 9.5.2.1 Sugar metabolism
 9.5.2.2 Synthesis of carbon skeletons for biosynthesis in homoacetogens
 9.5.3 Energy conservation in homoacetogens

9.6 Dehalorespiration
 9.6.1 Dehalorespiratory organisms
 9.6.2 Energy conservation in dehalorespiration

9.7 Miscellaneous electron acceptors

9.9 Element cycling under anaerobic conditions
 9.9.1 Oxidation of aromatic hydrocarbons under anaerobic conditions
 9.9.2 Transformation of xenobiotics under anaerobic conditions

10 Chemolithotrophy
 10.1 Reverse electron transport
 10.2 Nitrification
 10.2.1 Ammonia oxidation
 10.2.2 Nitrite oxidation
 10.2.3 Anaerobic nitrification
 10.3 Sulfur bacteria and the oxidation of sulfur compounds
 10.3.1 Sulfur bacteria
 10.3.2 Biochemistry of sulfur compound oxidation
 10.3.3 Carbon metabolism in colourless sulfur bacteria
 10.4 Iron bacteria: ferrous iron oxidation
 10.5 Hydrogen oxidation
 10.5.1 Hydrogen-oxidizing bacteria
 10.5.2 Hydrogenase
 10.5.3 Anaerobic H₂-oxidizers
 10.5.4 CO₂ fixation in H₂-oxidizers
 10.6 Carbon monoxide oxidation: carboxydobacteria
 10.7 Chemolithotrophs using other electron donors
12 Metabolic regulation

12.1 Mechanisms regulating enzyme synthesis

12.1.1 Regulation of transcription by promoter structure and sigma (σ) factor activity

12.1.2 Induction of enzymes

12.1.2.1 Inducible and constitutive enzymes

12.1.2.2 Enzyme induction

12.1.2.3 Positive and negative control

12.1.3 Catabolite repression

12.1.3.1 Carbon catabolite repression by the cAMP-CRP complex

12.1.3.2 Catabolite repressor/activator

12.1.3.3 Carbon catabolite repression in Gram-positive bacteria with a low G + C content

12.1.4 Repression and attenuation by final metabolic products

12.1.4.1 Repression

12.1.4.2 Attenuation

12.1.5 Regulation of gene expression by multiple end products

12.1.6 Termination and antitermination

12.1.6.1 Termination and antitermination aided by protein

12.1.6.2 Termination and antitermination aided by tRNA

12.1.6.3 Termination and antitermination aided by metabolites

12.1.7 Two-component systems with sensor-regulator proteins

12.1.8 Autogenous regulation

12.1.9 Post-transcriptional regulation of gene expression

12.1.9.1 RNA stability

12.1.9.2 mRNA structure and translational efficiency

12.1.9.3 Modulation of translation and stability of mRNA by protein

12.1.9.4 Modulation of translation and stability of mRNA by small RNA and small RNA-protein complex: riboregulation

12.2 Global regulation: responses to environmental stress

12.2.1 Stringent response

12.2.2 Response to ammonia limitation

12.2.3 Response to phosphate limitation: the pho system

12.2.4 Regulation by molecular oxygen in facultative anaerobes

12.2.4.1 arc system

12.2.4.2 fur system

12.2.4.3 RegB/RegA system in purple non-sulfur photosynthetic bacteria

12.2.5 Oxidative stress

12.2.6 Heat shock response

12.2.7 Cold shock response
12.2.8 Quorum sensing
12.2.9 Response to changes in osmotic pressure
12.2.10 Other two-component systems
12.2.11 Chemotaxis
12.2.12 Adaptive mutation

12.3 Regulation through modulation of enzyme activity: fine regulation
12.3.1 Feedback inhibition and feedforward activation
12.3.2 Enzyme activity modulation through structural changes
 12.3.2.1 Phosphorylation
 12.3.2.2 Adenylylation
 12.3.2.3 Acetylation
 12.3.2.4 Other chemical modifications
 12.3.2.5 Regulation through physical modification and dissociation/association

12.4 Metabolic regulation and growth
 12.4.1 Regulation in central metabolism
 12.4.2 Regulatory network
 12.4.3 Growth rate and regulation

12.5 Secondary metabolites

12.6 Metabolic regulation and the fermentation industry
 12.6.1 Fermentative production of antibiotics
 12.6.2 Fermentative amino acid production

Further reading

13 Energy, environment and microbial survival

13.1 Survival and energy

13.2 Reserve materials in bacteria
 13.2.1 Carbohydrate reserve materials: glycogen and trehalose
 13.2.2 Lipid reserve materials
 13.2.2.1 Poly-/β-hydroxyalkanoate (PHA)
 13.2.2.2 Triacylglyceride (TAG)
 13.2.2.3 Wax ester and hydrocarbons
 13.2.3 Polypeptides as reserve materials
 13.2.4 Polyphosphate

13.3 Resting cells
 13.3.1 Sporulation in Bacillus subtilis
 13.3.2 Cysts
 13.3.3 Viable but non-culturable (VBNC) cells
 13.3.4 Nanobacteria
 13.3.5 Programmed cell death (PCD) in bacteria

Further reading

Index
Knowledge of the physiology and metabolism of prokaryotes underpins our understanding of the roles and activities of these organisms in the environment, including pathogenic and symbiotic relationships, as well as their exploitation in biotechnology. Prokaryotic organisms include bacteria and archaea and, although remaining relatively small and simple in structure throughout their evolutionary history, exhibit incredible diversity regarding their metabolism and physiology. Such metabolic diversity is reflective of the wide range of habitats where prokaryotes can thrive and in many cases dominate the biota, and is a distinguishing contrast with eukaryotes that exhibit a more restricted metabolic versatility. Thus, prokaryotes can be found almost everywhere under a wide range of physical and chemical conditions, including aerobic to anaerobic, light and dark, low to high pressure, low to high salt concentrations, extremes of acidity and alkalinity, and extremes of nutrient availability. Some physiologies, e.g. lithotrophy and nitrogen fixation, are only found in certain groups of prokaryotes, while the use of inorganic compounds, such as nitrate and sulfate, as electron acceptors in respiration is another prokaryotic ability. The explosion of knowledge resulting from the development and application of molecular biology to microbial systems has perhaps led to a reduced emphasis on their physiology and biochemistry, yet paradoxically has enabled further detailed analysis and understanding of metabolic processes. Almost in a reflection of the bacterial growth pattern, the number of scientific papers has grown at an exponential rate, while the number of prokaryotic genome sequences determined is also increasing rapidly. This production of genome sequences for a wide range of organisms has made an in-depth knowledge of prokaryotic metabolic function even more essential in order to give biochemical, physiological and ecological meaning to the genomic information. Our objective in writing this new textbook was to provide a thorough survey of the prokaryotic metabolic diversity that occurs under different conditions and in different environments, emphasizing the key biochemical mechanisms involved. We believe that this approach provides a useful overview of the key cellular processes that determine bacterial and archaeal roles in the environment, biotechnology and human health. We concentrate on bacteria and archaea but, where appropriate, also provide comparisons with eukaryotic organisms. It should be noted that many important metabolic pathways found in prokaryotes also occur in eukaryotes further emphasizing prokaryotic importance as research models in providing knowledge of relevance to eukaryotic processes.

This book can be considered in three main parts. In the first part, prokaryotic structure and composition is described as well as the means by which nutrients are transported into cells across
membranes. Discussion of biosynthesis and growth is followed by
detailed accounts of glucose metabolism through glycolysis, the TCA
cycle, electron transport and oxidative phosphorylation, largely
based on the model bacterium *Escherichia coli*. In the second part,
the trophic variations found in prokaryotes are described, including
the use of organic compounds other than glucose, anaerobic ferme-
tation, anaerobic respiration, chemolithotrophy and photosynthesis.
In the third part, the regulation of metabolism through control of
gene expression and enzyme activity is covered, as well as the survi-
val mechanisms used by prokaryotes under starvation conditions.
This text is relevant to advanced undergraduate and postgraduate
courses, as well as being of use to teachers and researchers in micro-
biology, molecular biology, biotechnology, biochemistry and related
disciplines.

We would like to express our thanks to all those who helped and
made this book possible. We appreciate the staff of Academy
Publisher (Seoul, Korea) who re-drew the figures for the book, and
those at Cambridge University Press involved at various stages of the
publication process, including Katrina Halliday, Clare Georgy, Dawn
Preston, Alison Evans and Janice Robertson. Special thanks also go to
Diane Purves in Dundee, who greatly assisted correction, collation,
editing and formatting of chapters, and production of the index, and
Dr Nicola Stanley-Wall, also in Dundee, for the cover illustration
images. Thanks also to all those teachers and researchers in micro-
biology around the world who have helped and stimulated us
throughout our careers. Our families deserve special thanks for
their support and patience.

Byung Hong Kim
Geoffrey Michael Gadd