The Lévy Laplacian is an infinite-dimensional generalization of the well-known classical Laplacian. Its theory has been increasingly well-developed in recent years and this book is the first systematic treatment of it.

The book describes the infinite-dimensional analogues of finite-dimensional results, and more especially those features that appear only in the generalized context. It develops a theory of operators generated by the Lévy Laplacian and the symmetrized Lévy Laplacian, as well as a theory of linear and nonlinear equations involving it. There are many problems leading to equations with Lévy Laplacians and to Lévy–Laplace operators, for example superconductivity theory, the theory of control systems, the Gauss random field theory, and the Yang–Mills equation.

The book is complemented by exhaustive bibliographic notes and references. The result is a work that will be valued by those working in functional analysis, partial differential equations and probability theory.
Cambridge Tracts in Mathematics
All the titles listed below can be obtained from good booksellers or from
Cambridge University Press. For a complete series listing visit
http://publishing.cambridge.org/stm/mathematics/ctm/

142. Harmonic Maps between Riemannian Polyhedra. By J. Eells and
B. Fuglede

143. Analysis on Fractals. By J. Kigami

144. Torsors and Rational Points. By A. Skorobogatov

145. Isoperimetric Inequalities. By I. Chavel

146. Restricted Orbit Equivalence for Actions of Discrete Amenable Groups.
By J. W. Kammeyer and D. J. Rudolph

148. Graph Directed Markov Systems. By D. Mauldin and M. Urbanski

149. Cohomology of Vector Bundles and Syzygies. By J. Weyman

150. Harmonic Maps, Conservation Laws and Moving Frames. By F. Hélein

151. Frobenius Manifolds and Moduli Spaces for Singularities.
By C. Hertling

152. Permutation Group Algorithms. By A. Seress

153. Abelian Varieties, Theta Functions and the Fourier Transform. By
ALEXANDER POLISHCHUK

156. Harmonic Mappings in the Plane. By Peter Duren

By I. G. Macdonald

159. The Geometry of Total Curvature on Complete Open Surfaces.
By Katsuhio Shiohama, Takashi Shioya and Minoru Tanaka

160. Approximation by Algebraic Numbers. By Yann Bugeaud

161. Equivalence and Duality for Module Categories with Tilting and
Cotilting for Rings. By R. R. Colby and K. R. Fuller

162. Lévy Processes in Lie Groups. By Ming Liao

163. Linear and Projective Representations of Symmetric Groups.
By A. Kleshchev
The Lévy Laplacian

M. N. FELLER
Contents

<table>
<thead>
<tr>
<th>Introduction</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 The Lévy Laplacian</td>
<td>05</td>
</tr>
<tr>
<td>1.1 Definition of the infinite-dimensional Laplacian</td>
<td>05</td>
</tr>
<tr>
<td>1.2 Examples of Laplacians for functions on infinite-dimensional spaces</td>
<td>09</td>
</tr>
<tr>
<td>1.3 Gaussian measures</td>
<td>13</td>
</tr>
<tr>
<td>2 Lévy–Laplace operators</td>
<td>22</td>
</tr>
<tr>
<td>2.1 Infinite-dimensional orthogonal polynomials</td>
<td>23</td>
</tr>
<tr>
<td>2.2 The second-order differential operators generated by the Lévy Laplacian</td>
<td>30</td>
</tr>
<tr>
<td>2.3 Differential operators of arbitrary order generated by the Lévy Laplacian</td>
<td>33</td>
</tr>
<tr>
<td>3 Symmetric Lévy–Laplace operator</td>
<td>40</td>
</tr>
<tr>
<td>3.1 The symmetrized Lévy Laplacian on functions from the domain of definition of the Lévy–Laplace operator</td>
<td>40</td>
</tr>
<tr>
<td>3.2 The Lévy Laplacian on functions from the domain of definition of the symmetrized Lévy–Laplace operator</td>
<td>44</td>
</tr>
<tr>
<td>3.3 Self-adjointness of the non-symmetrized Lévy–Laplace operator</td>
<td>48</td>
</tr>
<tr>
<td>4 Harmonic functions of infinitely many variables</td>
<td>53</td>
</tr>
<tr>
<td>4.1 Arbitrary second-order derivatives</td>
<td>54</td>
</tr>
<tr>
<td>4.2 Orthogonal and stochastically independent second-order derivatives</td>
<td>59</td>
</tr>
<tr>
<td>4.3 Translationally non-positive case</td>
<td>64</td>
</tr>
</tbody>
</table>
Linear elliptic and parabolic equations with Lévy Laplacians

5.1 The Dirichlet problem for the Lévy–Laplace and Lévy–Poisson equations

5.2 The Dirichlet problem for the Lévy–Schrödinger stationary equation

5.3 The Riquier problem for the equation with iterated Lévy Laplacians

5.4 The Cauchy problem for the heat equation

Quasilinear and nonlinear elliptic equations with Lévy Laplacians

6.1 The Dirichlet problem for the equation

$$
\Delta_1 U(x) = f(U(x))
$$

6.2 The Dirichlet problem for the equation

$$
f(U(x), \Delta_1 U(x)) = F(x)
$$

6.3 The Riquier problem for the equation

$$
\Delta_1^2 U(x) = f(U(x))
$$

6.4 The Riquier problem for the equation

$$
f(U(x), \Delta_1^2 U(x)) = \Delta_1 U(x)
$$

6.5 The Riquier problem for the equation

$$
f(U(x), \Delta_2 U(x), \Delta_1^2 U(x)) = 0
$$

Nonlinear parabolic equations with Lévy Laplacians

7.1 The Cauchy problem for the equations

$$
\frac{\partial U(t,x)}{\partial t} = f(\Delta_1 U(t,x))
$$

7.2 The Cauchy problem for the equation

$$
\frac{\partial U(t,x)}{\partial t} = f(t, \Delta_1 U(t,x))
$$

7.3 The Cauchy problem for the equation

$$
\varphi(t, \frac{\partial U(t,x)}{\partial t}) = f(F(x), \Delta_1 U(t,x))
$$

7.4 The Cauchy problem for the equation

$$
\frac{\partial U(t,x)}{\partial t}, \Delta_1 U(t,x)) = 0
$$

Appendix. Lévy–Dirichlet forms and associated Markov processes

A.1 The Dirichlet forms associated with the Lévy–Laplace operator

A.2 The stochastic processes associated with the Lévy–Dirichlet forms

© Cambridge University Press www.cambridge.org