INDEX

E_v, 54
activated process, 12
activation energy, 370
Allen-Cahn equation, 230–232
derivation, 245–247
in one dimension, 231
in three dimensions, 232
Arrhenius equation, 371
atomic units, 46
band gap
issues with LDA and GGA, 60
basis functions, 54
basis set, 55
comparison of Slater and Gaussian functions, 56
Gaussian function, 56
plane waves, 56
real space grid, 57
Slater function, 56
superposition error, 57
binning methods, 386
averages in molecular dynamics, 111–112
dependence on bin size, 387
Bloch’s theorem, 55, 349
bond-order potential
REBO, 87
bond-order potentials, 86–88
reactive empirical bond-order (REBO) potential, 87
Tersoff potential, 86
Born-Mayer potential, 74
Box-Muller method, 386
bulk modulus, 380
Cahn-Hilliard equation, 232–233
derivation, 247–248
in one dimension, 232
in three dimensions, 233
canonical (NVT) ensemble, 357–359
average kinetic energy, 359
average quantities, 357
comparison with microcanonical ensemble, 360–361
configurational integral, 358
distribution of the total energy, 363
partition function, 357
partition function for continuous systems, 358
relation to Helmholtz free energy, 358
relative probability between two states, 357
weighting function, 357
Cauchy relations, 75, 380
cellular automata
von Neumann original formulation, 211
basic description, 212
Game of Life, 216
glider, 216
rules, 216
lattice Boltzmann method, 219
lattice-gas model, 218–219
rules, 218
Moore environment, 215
one-dimensional rules, 212–215
recrystallization, 220–222
relation to Monte Carlo, 227
Rule 62, 214
Rule 90, 213
simple “solidification” model, 216
spinodal decomposition, 222–225
rules, 223–224
two-dimensional, 215–218
two-dimensional environments, 215
von Neuman environment, 215
central-force potential, 75, 328–329
Cauchy relations, 75
equation of motion, 97
force, 97
chemical reaction rates, 370–371
Arrhenius equation, 371
classical mechanics
conservation of total energy, 326
harmonic oscillator, 327–328
kinetic energy, 325
potential energy, 325
cohesive energy, 62–63
definition, 62
expansion in hierarchy of interactions, 63
metals
Universal Binding Curve (UBC), 80
types of bonding, 63
complementary error function, 319
complex number, 315, 316
cosine, 317
Euler’s formula, 316
magnitude, 316
sine, 317
compressibility, 380
computer code
verification, 6
correlation function, 364
time, 365
Coulomb energy, 331
charged particles, 331
continuous charge distribution, 331
Thomas-Fermi model, 48
Coulomb force, 330
Coulomb potential, 46, 330
continuous charge distribution, 331
multipole expansion, 333
spherically truncated, 42
cross product, 312
crystal structures, 284–291
basis, 284
body-centered cubic, 286
direct lattice, 288–289
face-centered cubic, 286
hexagonal closest packed, 286
lattice directions, 287
lattice planes, 287
lattice vector, 284
non-cubic lattices, 290–291
packing sequence, 286, 287
primitive unit cell, 288
reciprocal lattice, 289
Index

crystal structures (cont.)
 simple hexagonal, 286
 table of basic crystal systems, 285
cutoff
 see potential cutoff, 31
damped dynamics, 249–251
de Broglie wavelength, 358
defects
 dislocations, 292–302
 vacancy concentration, 292
density-functional theory, 47
determinant
 of a matrix, 313
diffusion, 306–308
 activated process, 12
 random walk, 18
 diffusion coefficient, 13
 Fick’s first law, 307
 Fick’s second law, 307
 mean square displacement, 308
 random walk, 11, 12
diffusion coefficient, 366
 random walk, 15, 16
 relation to velocity autocorrelation function, 366
dimensional analysis, 6
dipole-dipole energy, 333
 Dirac delta function, 320
 graphical representation, 320
direct lattice, 288–289
dislocation dynamics simulations, 256–265
 limitations, 263–264
 three-dimensional, 260–263
 annihilation, 262
 boundary conditions, 262
 challenges, 260
 climb, 261
 junctions, 262
 representation of dislocations, 260
 two-dimensional, 256–260
 boundary conditions, 258
 equation of motion, 258
 force, 257
 dislocations, 292–302
 annihilation, 299
 climb, 295
 cross slip, 295
 damped equation of motion, 301
 drag, 301
 edge, 293
 edge dislocation, 293
 Frank-Read source, 300
 intersection, 300
 intersections, 300
 junctions, 300
 line tension, 299
 mixed dislocation, 293
 movement and plastic strain, 297
 movement of edge, 294
 movement of screw, 295
 overdamped dynamics, 301
 partials in fcc crystals, 302
 Peach-Koehler force, 297
 Peierls-Nabarro stress, 295
 plastic deformation, 292–293
 screw, 293
 screw dislocation, 293
 self energy, 299
 stress arising from, 298
 stress from linear, 298
 dispersion energy
 see van der Waals energy, 65
dot product, 311
 Drude model, 65–67
dynamics
 damped, 249–251
 Langevin, 251–252
 overdamped, 250
elastic constants, 378
 elasticity
 displacement function, 376
 elastic constants, 378
 engineering stress and strain, 378–379
 isotropic solids, 379–381
 strain
 plastic, 381
 total, 381
 strain energy, 378, 379
 strain energy density, 378
 strain tensor, 378
 stress tensor, 376
 electron density, 46
 Thomas-Fermi model, 48
 electron spin, 342
 electrostatic energy, 331
 continuous charge distribution, 331
 units, 282
 electrostatic force, 330
 units, 282
 electrostatic potential, 330
 continuous charge distribution, 331
 multipole expansion, 333
 embedded-atom model, 81–84
 end-to-end probability distribution for a random walk, 17
 energy
 conversion between units, 282
 exchange-correlation, 54
 Kohn-Sham exchange correlation, 53
 per atom, 30
 per cell, 29
 Thomas-Fermi model
 closed-shell atoms, 50
 comparison with Hartree-Fock energies, 50
 Coulomb, 48
 total, 48
 Thomas-Fermi-Dirac model
 exchange, 49
 total, 49
 units, 281
 engineering stress/strain, 378
 ensemble, 355–362
 average quantities, 355, 356
 canonical (NVT), 357–359
 average kinetic energy, 359
 average quantities, 357
 configurational integral, 358
 partition function, 357
 relation to Helmholtz free energy, 358
 weighting function, 357
 classical systems with continuous potentials, 356
 comparison of canonical and microcanonical, 360–361
 grand canonical (μVT)
 partition function, 362
 relation to pressure, 362
 isobaric-isothermal (NPT)
 partition function, 361
 relation to Gibbs free energy, 362
 J. W. Gibbs, 355
 microcanonical (NVE), 360
 relation to entropy, 360
 partition function, 356
 probability density, 355
 weighting function, 356
 ensembles
 equivalence of, 364
 entropy
 relation to microcanonical (NVE) ensemble, 360

© in this web service Cambridge University Press

www.cambridge.org
Index

- equation of motion
 - central-force potential, 97
- equipartition theorem, 359
- ergodicity, 356
- error function, 319
- Euler angles, 314
- Ewald method, 37–39
- exchange energy, 343–346
 - Thomas-Fermi-Dirac model, 49
- exchange-correlation energy, 54–55
 - comparison of LDA and GGA results for Cu, 59
 - comparison of LDA and GGA results for Si, 59
- GGA, 55
- hybrid methods, 55
- LDA, 54
- exp-6 potential, 74
- extensive quantities, 351
- fast multipole method, 39–41
- fluctuations in E
 - size dependence, 363
- force
 - central-force potential, 97
 - Coulomb (electrostatic), 330
 - gradient of potential, 96, 325
 - units, 281
- function
 - complementary error function, 319
 - Dirac delta function, 320
 - Dirac delta function representation, 320
 - error function, 319
 - Gaussian distribution, 318
 - Kronecker delta, 319
- functionals, 321–322
- derivatives, 321–322
- fundamental constants
 - definition of symbols, 281
 - values, 281
- Game of Life, 216
- glider, 216
- rules, 216
- Gaussian distribution, 318
- Gay-Berne model, 173
- generalized gradient approximations (GGA), 55
- Gibbs free energy
 - relation to isobaric-isothermal (NPT) ensemble, 362
- Gibbs, J. W., 355
- gradient, 312
- grain boundary, 303
- energy, 304
- tilt boundary, 303
- twist boundary, 303
- grain growth, 305–306
 - boundary model, 253–254
 - curvature driven, 306
 - effects of anisotropy in mobility, 208
 - studies with Potts model, 208
 - Potts model, 196–198
- vertex model, 254–256
- von Neumann relation, 306
- grand canonical (μVT) ensemble
 - Monte Carlo simulations, 153
- partition function, 362
- relation to pressure, 362
- Hamiltonian
 - classical mechanics, 326
 - conservation of in classical mechanics, 326
 - quantum mechanics, 46
 - harmonic oscillator
 - classical mechanics, 327–328
 - harmonic transition state theory, 373–374
 - rate constant, 373
 - Hartree method, 47
 - Hartree-Fock method, 47
 - heat capacity, 362
 - relation to fluctuations in E, 362–363
 - relation to canonical (NVT) ensemble, 358
 - Hohenberg-Kohn theorem, 51
 - hydrogen atom
 - quantum mechanics, 341
 - intensive quantities, 351
 - interaction potential
 - cutoff, 31
 - cutoff for molecular dynamics, 107
 - interaction sum
 - pair potential, 28–29
 - interatomic potential, 63–91
 - bond-order potentials, 86
 - Born-Mayer potential, 74
 - central-force, 75
 - comparison of potentials, 73
- covalent solids, 84–88
- angular-dependent potentials, 85
- bond-order potentials, 86–88
- determining the parameters, 91
- exp-6 potential, 74
- ionic interaction, 76
 - shell model, 77–78
- Lennard-Jones potential
 - see Lennard-Jones potential, 67
 - metals, 78–84
 - embedded-atom model, 81–84
 - pair potential, 78
 - volume-dependent potential, 79
 - Mie (m, n) potential, 72
- Morse potential, 74
- origins, 64
- pair potential, 67
- reactive force potential, 88
- COMB potential, 88
- short-range interaction, 65
- Stillinger-Weber potential for silicon, 85
- Tersoff potential, 87
- units, 67
- van der Waals energy, 65–67
- intermolecular potential, 163–168
- atom-atom, 164
- bond angle bending potential, 166
- bond stretching potential, 166
- dihedral angle torsion potential, 167
- electrostatic interactions, 165
- water-water interaction, 178–180
- Ising model, 139–145
- energy, 139
- energy change with spin flip, 142
- magnetization, 140
- Monte Carlo calculations of, 141–144
- reduced units, 140
- spin-spin correlation function, 140
- isobaric-isothermal (NPT) ensemble
 - partition function, 361
 - relation to Gibbs free energy, 362
 - isotropic elasticity, 380
- Johnson-Mehl-Avrami-Kolmogrov (JMAK) growth equation, 221
- kinetic energy, 324
- average, 359
- classical mechanics, 325
- Thomas-Fermi model, 48
- uniform electron gas, 340
Index

kinetic Monte Carlo method
activity, 185
chemical vapor deposition example, 191–194
choosing an event, 185–186
events, 184
probability of an event, 185
relation of probability and rate, 187
steps, 186
surface diffusion example, 189–191
time, 187–189
time per event, 189

kinetics
activation energy, 370
harmonic transition state theory, 373–374
reaction coordinate, 369
saddle point, 369
transition state theory, 372–373

Kohn-Sham method, 51–54
Kratky-Porod model, 161
Kronecker delta, 319
Lamé constant, 379
Langevin
dynamics, 251–252
equation, 252
Laplacian, 312
spherical polar coordinates, 313
lattice-gas model, 218–219
rules, 218
lattice sums
direct lattice, 30
Ewald method, 37–39
fast multipole method, 39–41
implementation, 34
long-ranged potentials, 35–42
minimum image convention, 35
neighbor lists, 34
neighbor shells, 30
pair potential, 29
spherically truncated Coulomb potential, 42
lattice vector, 284
Lennard-Jones potential, 67–72
energetics of simple solids, 70–72, 92–95
equivalence of simulations in reduced units, 112
molecular dynamics simulation of, 107–116
rare gas atoms, 69
reduced units, 69
table, 107
scaled to remove discontinuities, 108
Levi-Civita tensor, 319
macrostate, 352
matrices
determinant, 313
transpose, 313
Maxwell-Boltzmann distribution, 106, 359
Metropolis algorithm, 134–139
averages, 136
connection to canonical (NVT) ensemble, 156–157
energy updating, 139
implementation, 135
sampling, 137–139
microcanonical (NVE) ensemble, 360
comparison with canonical ensemble, 360–361
partition function, 360
relation to entropy, 360
molecular dynamics
accelerated dynamics, 120–122
binmed averages, 111–112
conservation of energy, 101
conservation of total linear momentum, 101
constant stress, 119–120
guideline for energy conservation, 102
initial conditions, 104–106
positions, 125–127
velocities, 127
limitations, 122–123
molecular systems, 168–171
constrained dynamics, 169–171
SHAKE algorithm, 171
Nosé-Hoover thermostat, 117–119
pair distribution function, 113–115
calculation of, 127–128
Parrinello-Rahman method, 119–120
potential cutoffs, 107
simulation with a Lennard-Jones potential, 107–116
steps in a calculation, 106–107
time step, 100
velocity autocorrelation function, 115–116
calculation of, 129–130
velocity rescaling, 116–117
velocity Verlet algorithm, 100
Verlet algorithm, 99
Monte Carlo
assessment, 155
atomic systems, 145–149
analysis, 149
canonical (NVT) ensemble, 146–149
grand canonical (μVT) ensemble, 152–154
Ising model, 141–145
isobaric-isothermal (NPT) ensemble, 150–152
Metropolis algorithm, 134–139
averages, 136
energy updating, 139
implementation, 135
sampling, 137–139
molecular systems, 171–172
macromolecules, 172
small molecules, 171–172
numerical integration, 131
time, 154
Moore environment
cellular automata, 215
Morse potential, 74
multipole expansion, 331–333
moments, 332
multipole moments, 332
N-fold way, 202–204
time, 204
neighbor lists, 34
Newton’s equation, 96, 324
integration, 97–101
time step, 100
velocity Verlet algorithm, 100
Verlet algorithm, 99
momentum, 324
Newton’s second law, 96, 324
non-cubic lattices, 290–291
normal distribution
random distribution, 386
Nosé-Hoover thermostat, 117–119
numerical derivatives, 388
central difference formula, 388
first derivative, 388
fourth derivative, 389
Laplacian in two dimensions, 390
one-dimensional, 388
second derivative, compact, 388
second derivative, non-compact, 388
two-dimensional, 390
order parameters, 229
conserved, 230
non-conserved, 230
pair distribution function, 113–115, 367–368
calculation of, 127–128
pair potential, 27, 67
cutoff, 31
Parrinello-Rahman method, 119–120
partition function
canonical (NVT) ensemble, 357
canonical (NVT) ensemble for continuous systems, 358
grand canonical (μVT) ensemble, 362
microcanonical (NVE) ensemble, 360
Pauli exclusion principle, 342
Peach-Koehler force, 297
perfect crystal, 29
periodic boundary conditions, 32–34
incommensurate structures, 34
persistence length, 161
relation to stiffness parameter, 161
phase field
Allen-Cahn equation, 230–232
derivation, 245–247
Cahn-Hilliard equation, 232–233
derivation, 247–248
diffuse interface approximation, 233
plot, 233
free energy
with conserved and non-conserved order parameters, 233
with conserved order parameters, 247
with non-conserved order parameters, 231, 232, 246
gain growth, 241–242
interfacial free energy, 238
local free energy function
multi-phase systems, 240
one order parameter, 234
temperature, 239
solidification of binary alloy, 239
numerical derivatives in one dimension, 235
one-dimensional example, 233–237
solidification, 242–243
phase space, 353–354
small examples, 353
time average, 354
plastic deformation, 292–293, 381
plastic strain, 381
relation to dislocation motion, 297
Poisson’s ratio, 380
polymers
coarse-grained methods, 172–175
head-spring model, 174
Gay-Berne model, 173
parameter determination, 174–175
pearl-necklace model, 174
atom model, 173
introduction to properties, 160–161
Krauth-Porod model, 161
lattice models, 175–176
interactions, 176
moves, 175
mean monomer position, 160
persistence length, 161
radius of gyration, 160
random-chain model, 176
self-avoiding walk model, 162–163
scaling exponent, 163
stiffness parameter
relation to Young’s modulus, 161
Young’s modulus
relation to stiffness parameter, 161
potential cutoff, 31
error associated with, 31–32
potential energy, 324
average in terms of pair distribution function, 367
classical mechanics, 325
Coulomb (electrostatic), 331
potential energy surface, 369
activation energy, 370
basin, 369
reaction coordinate, 369
saddle point, 369
Potts model, 196–198
anisotropy in two-dimensional lattices, 199
average grain size, 201
effect of lattice topology, 199
general Hamiltonian, 198
Hamiltonian for isotropic growth, 198
limitations with normal Monte Carlo, 201–202
Monte Carlo, 198–202
N-fold way, 202–204
time, 204
pressure
average in terms of pair distribution function, 368
central force potential, 104, 359
definition, 104, 359
pair-functional potential, 104
relation to grand canonical (μVT) ensemble, 362
units, 281
probability, 317
average, 318
continuous, 318
Gaussian distribution, 318
intersection, 318
normalization, 317, 318
union, 318
pseudopotential, 57–58
quantum mechanics
antisymmetric wave function, 343
Bloch’s theorem, 349
electron spin, 342
exchange energy, 343–346
Fermi hole, 345
harmonic oscillator, 340–341
history, 334–335
hydrogen atom, 341–342
indistinguishability, 343
kinetic energy of uniform electron gas, 340
multi-electron systems, 342
multi-electron atoms, 342–349
observables, 336–337
particle in a box, 337–340
Pauli exclusion principle, 342
Schrödinger equation, 336
variational approaches, 346–347
zero-point motion, 341
radius of gyration, 160
random number, 383
Box-Muller method, 386
changing range, 385
generator, 383
random number (cont.)
normal distribution, 386
Park-Miller generator, 384
seeds, 385
random walk
application to materials, 25
bulk diffusion, 18
definition, 12
diffusion coefficient, 15
dependency, 17
dependent end-to-end probability distribution, 16–18
mean end-to-end distance, 18
mean square displacement, 14, 15, 18
relation to diffusion coefficient, 13–16
simulation, 19–25
analysis, 22–25
end-to-end probability distribution, 24–25
rare event, 369
rate constant, 371
harmonic transition-state theory, 373
transition-state theory, 372
reaction coordinate, 369
reciprocal lattice, 289
recrystallization, 206
cellular automata, 220–222
studies with Potts model, 206–208
rotation matrix, 314
saddle point, 369
scale
length, 3–4
time, 3–4
Schroedinger equation, 46, 336
self-avoiding walk model, 162–163
scaling exponent, 163
SHAKE algorithm, 171
shear modulus, 379
shell model, 77–78
simulation
definition, 1
spherically truncated Coulomb potential, 42
spinal decomposition
cellular automata, 222–225
rules, 223–224
standard deviation, 362
stiffness parameter, 161
relation to persistence length, 161
stochastic process, 11
strain
energy, 378
plastic, 381
tensor, 378
total, 381
stress tensor, 313, 376
Taylor series, 314
one dimension, 314
three dimensions, 315
temperature
definition in terms of average kinetic energy, 103
thermodynamics
Maxwell’s relations, 351
table of basic symbols, 352
Thomas-Fermi model, 47–51
Thomas-Fermi-Dirac model, 49
time correlation function, 365
total energy
conservation of in classical mechanics, 326
Kohn-Sham method, 54
width of distribution in canonical ensemble, 363
total strain, 297, 381
transition-state theory, 372–373
harmonic, 373–374
rate constant, 372
translational order parameter, 368
transpose of a matrix, 313
Ulam, Stanislaw
why Monte Carlo is called Monte Carlo, 131
united-atom model for polymers, 173
Universal Binding Curve (UBC), 80
V&V
see validation and verification, 7
vacancy concentration, 292
validation, 6
validation and verification, 7
van der Waals energy, 65–67
Drude model, 65–67
vectors, 310
cross product, 312
dot product, 311
gradient, 312
Laplacian, 312
unit vector, 310
velocity autocorrelation function,
115–116, 365–366
calculation of, 129–130
relation to diffusion coefficient, 366
velocity Verlet algorithm, 100
verification, 6
Verlet algorithm, 99
von Neuman environment
cellular automata, 215
von Neumann, John
cellular automata, 211
grain growth, 306
wave function, 46, 335
antisymmetric, 343
basis set, 55, 347
Young’s modulus, 380
Zener pinning, 205
studies with Potts model, 205
zero-point motion, 341