
1 Introduction to materials modeling
and simulation

With the development of inexpensive, yet very fast, computers and the availability of software
for many applications, computational modeling and simulation of materials has moved from
being entirely in the hands of specialists to being accessible to those who use modeling not
as their principal activity, but as an adjunct to their primary interests. With that change in
accessibility of materials modeling and simulation come exciting new opportunities for using
computational modeling to greatly advance the development and refinement of materials and
materials processing.

The goal of this text is not to make experts – there are entire books on subjects that are
treated in a few pages here. The text is, by design, introductory and we leave out many, if
not most, details about implementation. We will present the key features and possibilities of
computational materials science and engineering and discuss how to use them to advance the
discovery, development, and application of materials.

1.1 MODELING AND SIMULATION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Before we start discussing materials modeling and simulation, it is appropriate to consider those
words a bit more carefully. What do we mean by a “model” or a “simulation”? How are they
different? Not to be overly pedantic, but it may help our discussion if we are a bit more precise
in our definitions of these terms.

A model is an idealization of real behavior, i.e., an approximate description based on some
sort of empirical and/or physical reasoning. A model most often begins life as a set of concepts,
and then is usually transcribed into a mathematical form from which one can calculate some
quantity or behavior. The distinction between a theory and a model is that, in the creation of a
model, the attempt is to create an idealization of real behavior to within some accuracy, not a
fundamental description that is strictly true.

A simulation is a study of the response of a modeled system to external forces and constraints.
We perform simulations by subjecting models to inputs and constraints that simulate real events.
A key thing to remember about simulations is that they are based on models. Thus, a simulation
does not represent reality, rather it is a model of reality.

The accuracy of a simulation relative to the real system it is trying to emulate can depend
on many factors, some involving the simulation method itself, for example the accuracy in
numerically solving sets of equations. Often, however, the biggest errors in a simulation, at
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2 Introduction to materials modeling and simulation

least with respect to how well it describes a real system, are the inadequacies of the models
upon which the simulation is based. Thus, we cannot separate simulations from the underlying
models.

In this text, we deal with both models and simulations. We will discuss in some detail how
to model specific materials behavior and how to create and understand the models and their
limitations. We will also describe in detail many of the commonly used simulation methods,
indicating some of the critical issues that must be addressed when developing accurate numerical
methods.

1.2 WHAT IS MEANT BY COMPUTATIONAL MATERIALS
SCIENCE AND ENGINEERING?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the most general terms, Computational Materials Science and Engineering (CMSE) is the
computer-based employment of modeling and simulation to understand and predict materials
behavior. In practice, we generally make a distinction between computational materials science,
in which the goals are to better understand and predict materials behavior, and computational
materials engineering, which is focused on practical applications of materials, typically with an
emphasis on products. We note that this distinction is arbitrary and not well defined, given that
the basic methods are generally the same and it is the applications of those methods that have
different goals. For this text, our focus is on the methods and we will not be concerned with the
distinction between science and engineering.

We can use CMSE for many purposes. We could, for example, take a simple model that
incorporates in some way the essential physical behavior of a system and then interrogate that
model to describe the phenomenology of a process or property. The goal of such calculations
is generally to seek understanding and not to describe the behavior in an accurate way. For
example, a modeler could eliminate all the physical processes except one of interest, thus
performing a “clean experiment” that sheds light on the role of that process in behavior – sort
of an ultimate gedanken (thought) experiment. We could also, however, develop more detailed
models and methods with the goal of predicting some property or behavior of a specific material,
for example the prediction of the thermodynamic behavior of a new alloy or the mechanical
properties of a doped ceramic. The models upon which such calculations would be based could
be complicated or simple, depending on the actual goals of the study and the desired accuracy
of the calculations. Both types of materials modeling are common and will be represented in
this text.

CMSE is most powerful when it has a strong tie to experiment. At its simplest, experimental
data can serve a validation of the accuracy of the models and the calculations based on them.
However, when used together, CMSE can provide a deeper understanding of a materials system
than possible by experiment alone by probing phenomena that experiments cannot see. Modeling
can also predict behavior, whether under conditions for which we have no experimental data
or as a screen for systems with so many parameters that performing all possible experiments is
not feasible. Indeed, at its best, CMSE serves as an equal partner with experiment.
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1.3 Scales in materials structure and behavior 3

Unit
Length
scale

Time
scale

Mechanics

Complex
structure 103 m 106 s Structural

mechanics

Simple
structure 101 m 103 s

Fracture
mechanics

Component 10−1 m 100 s
Continuum
mechanics

Grain
microstructure 10−3 m 10−3 s

Crystal
plasticity

Dislocation
microstructure 10−5 m 10−6 s Micro-

mechanics

Single
dislocation 10−7 m 10−9 s

Dislocation
dynamics

Atomic 10−9 m 10−12 s Molecular
dynamics

Electron
orbitals 10−11 m 10−15 s

Quantum
mechanics

Figure 1.1 Length and
time scales in materials
science adapted from
[12]. On the left, we
indicate the important
unit structure at each
scale, in the middle, the
approximate length and
time scales, and at the
right, the approach used
to simulate the material’s
mechanical behavior.

1.3 SCALES IN MATERIALS STRUCTURE AND BEHAVIOR
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The modeling and simulation of materials is challenging, largely because of the extreme range of
length and time scales that govern materials response. Length scales that govern a phenomenon
may span from the nanometers of atoms to the meters of engineered structures. Similarly,
important time scales can range from the femtoseconds of atomic vibrations to the decades of
use of materials in products. Given the range of physical processes at each of these scales, it
should not be surprising that no single technique will work for all scales. Thus, many methods
have been developed, each focused on a specific set of physical phenomena and appropriate for
a given range of lengths and times. In this text we will provide a background into some of the
most important of these methods.

In Figure 1.1, we show a schematic view of the important length and time scales for just one
type of materials behavior – the mechanical behavior of crystalline materials [12]. This figure
is just an example – similar tables could be developed for other properties as well.

In the left column of Figure 1.1, we list the fundamental structural “unit” whose behavior
dominates the materials response at the given length and time scales.1 At the smallest scale, that
“unit” represents the electrons in the solid, while at the largest scale it is some sort of complex
structure (e.g., the wing of an airplane). In between are the other structures that matter for the
scales listed: atoms, dislocations, grains, etc.

Consider as an example the general range of 100 microns to 10 millimeters, in which the
dominant structural features in a material are the grains (in this schematic view). It is the behavior

1 If these terms are unfamiliar, please see Appendix B for a brief introduction to materials.
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4 Introduction to materials modeling and simulation

of the ensemble of those grains that dominates the mechanical response of the material at that
scale. Of course, the deformation behavior of a grain depends on the dislocations, which depend
on the atoms, which depend on the bonding. Thus, the behavior at each scale is dependent on
what happens at smaller scales. In a model of the deformation of a set of grains, while we
may explicitly include the dislocations (and atoms and electrons), more likely we will develop
a model that reflects, in some averaged way, the behavior of the dislocations (and atoms and
electrons). That model will describe the mechanical behavior at the grain level (and is usually
referred to as “crystal plasticity”).

Each scale in Figure 1.1 reflects behavior that is dominated by its structural “unit”, which
is described by its own set of models. For example, consider the range of length scales
from 1 Å to 100 microns (10−10 to 10−4 m). At the smallest of these scales, the bonding
between atoms dominates the behavior. This bonding arises, of course, from the underly-
ing electronic structure and to describe it requires the use of methods that can calculate
the distribution of electrons. Such methods require quantum mechanics and are described
(briefly) in Chapter 4. At a somewhat larger scale, we need to consider the behavior of many
atoms. While we can use electronic structure methods to describe the bonding, in general
those methods are so complicated that we must approximate the bonding with some sort of
empirical or approximate function. Such functions are called interatomic potentials and are
discussed in Chapter 5. The interatomic potentials are thus models of the interactions between
atoms. To understand the behavior of the atoms, we must simulate their behavior, which we
can do with various atomistic simulation methods, such as molecular dynamics (Chapter 6)
or the Monte Carlo method (Chapter 7). As discussed above, if we use a model for the
interatomic interactions then we are not simulating the material, but rather a model of the
material, and our results will be good only to the extent that the model represents the true
interactions.

At still larger scales, there are too many atoms for us to consider, so we must find new
approaches that focus on the dominant “units”. These units may be dislocations, grain bound-
aries, or some other defect, and the simulations are based on these defects being the fundamental
units. The length scale that is dominated by defects is often called the mesoscale.2 We describe
a number of mesoscale modeling methods in Part III of the text.

As we will see, while great strides have been made in extending the length scales of many of
the simulation methods we will cover here, often the methods are still very restrictive in their
ability to describe time scales of the order of what we measure in the laboratory. For example,
we will see that molecular dynamics methods, used to describe dynamic motions of atoms,
have a fundamental time scale in the 10−14 seconds range and atomistic simulations of more
than a few nanoseconds are challenging.3 Thus, even for problems for which an approach can
describe the length scale, often we must find new approaches to also cover the time scales of
interest.

2 There is no definitive definition of what the “mesoscale” is. For our purposes, it represents the length and time
scales between phenomena that can be described by atoms and those that can be described by continuum theories.

3 Advances have been made in accelerated dynamics methods, which will be discussed in Chapter 6.
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1.4 How to develop models 5

Figure 1.2 The stages in model development, adapted from [12].

1.4 HOW TO DEVELOP MODELS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The first, and most important, step in any computational materials project is the creation of a
model that describes the properties of a material at the length and time scales of interest. Here
we want to introduce the logical steps one takes to create a model. Our discussion is based on
a very useful article by Ashby, in which he describes a process for the systematic development
and validation of materials models [12]. He gives a flow chart for the modeling process, which
we reproduce in a somewhat streamlined fashion in Figure 1.2.

It may seem obvious, but the first step in model development is to identify the problem (given
at the top of Figure 1.2). Often models go astray because the developer does not start with a
clear idea of what he or she is actually trying to model. This type of misstep may arise from not
understanding the problem well enough or from just not thinking through what the model has
to accomplish.

Given the problem, the next step in any model development must be to specify what infor-
mation the model is going to yield and what information one has at hand to use in that model –
in other words, the outputs and inputs. This step is critical, and one that is often not well con-
sidered. Ignoring information that may be important can lead to either poor-quality or overly
complex models (or both), creating problems for any subsequent simulations.
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6 Introduction to materials modeling and simulation

The next step is the identification of the physical mechanisms, which is often the most
challenging part of any modeling effort. We may not have a complete picture of the fundamental
phenomenology of a problem. It is in this step that modeling at a smaller scale often comes
into play, serving to help identify the underlying physical processes at the larger scale. Close
examination of experimental data and trends also can lead to the development of a clearer
understanding of the physical mechanisms.

While identifying the problem, the inputs and outputs, and the mechanisms that define the
framework for the real work of model development, it is also essential to specify the necessary
quality of the model. Models should be no more complicated than needed for a specific problem.
Anything more is a waste of effort. Seeking perfection in a model generally leads to high
complexity, which may present difficulty when one has to “interrogate” the model, i.e., when
one actually calculates something based on the model.

After creating the model, the simple act of doing a dimensional analysis often shows where
the model might be incorrect. Dimensional analysis is a way to check relations among physical
quantities based on their dimensions. A simple consequence of physics is that any equation must
have the same dimensions on the left and right sides. Checking that the dimensions are equal
is the basic step of dimensional analysis. We cannot stress enough the value of dimensional
analysis as a check of the model as well as a tool to help group variables. Why group variables?
As we shall see below, often two models that look very different can be shown to be quite similar
when put in the same form. Recognizing such similarities can help avoid much unneeded effort.

Models are useless unless one can do something with them, which generally requires imple-
mentation into a computer code of some sort. Often this step has a major influence on the form
of the model – if a model cannot be implemented or would require too much computer time to
use, then it is not useful. There is thus often a balance between the desired accuracy of a model
and the ability to actually use it in a calculation.

After implementation, the next step is the real point of CMSE, namely to calculate something
with the model, i.e., to interrogate how the model works. This may be a validation step, in which
predictions of the model are compared to available experimental data, theory, etc. to assess the
quality of the model, the range of its validity, sensitivity to parameters, etc. One often uses this
comparison to tune the model to make it more accurate and robust. It is not uncommon to go
back to the construction of the model at this point to adjust its form so that it better meets the
needs of the calculations. Of course, the reason for model development is to use the model to
calculate some material property or function. What that “something” is depends on the problem.
We note that a critical component of this step is to display the results in such a way so as to
show its important features.

In this text, we shall use the process in Figure 1.2 often as we create models. While we shall
rarely show the explicit links to these steps, they underlie all of what we do.

Before closing the discussion of model building, we would like to emphasize the importance
of the Verification and Validation process (V&V). While validation is an attempt to assess the
quality of the model to describe some behavior, verification is the process of ensuring that the
computer code actually calculates what was planned. The goal is to model materials response. To
ensure that we are doing so accurately requires both a good model and a proper implementation
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1.5 Summary 7

of that model into code. Too often, one or both of these processes are shortchanged, leading to
poor simulations. If one is basing an engineering decision on simulations based on a model, the
V&V process may be, quite literally, life-saving.

1.5 SUMMARY
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Computational materials science and engineering is a field that is growing in capabilities and
importance. The goal of this text is to introduce students to the basics of the most important
methods used to simulate materials behavior. We are not intending to create experts, but rather
to serve as the first introduction to what is a very exciting field.
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Part One

Some basics
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