
INTRODUCTION

0.1 The chaos game

The following process, which I call the ‘chaos game’, provides a simple introduc-

tion to the idea of an iterated function system (IFS) and its attractor.

Mark four points on a sheet of paper. Label three of them A, B and C and

label the remaining point X0, as in Figure 0.1(i). Label two faces of a six-sided

die A, two other faces B and the remaining two faces C , or devise your own way

of producing a random sequence of the symbols A, B and C .

Roll the die, to choose randomly a symbol A, B or C . On the paper, mark

the midpoint between X0 and the point labelled by the selected symbol. Call this

midpoint X1. For example, if the result of rolling the die is B then X1 is the

midpoint between X0 and B.

Roll the die again. Plot the midpoint between X1 and the point whose label

shows on the die. Call this new point X2. You get the idea. Roll the die again, and

again, . . . , and plot a new midpoint on the paper each time. The result, on the sheet

of paper, is very likely to look something like Figure 0.1(ii). It is an approximate

picture of a Sierpinski triangle, with some extra ‘outlier’ points.

Suppose that you carry out a similar experiment using a computer. Then you

can compute accurately a sequence of millions of points

X0, X1, X2, . . . , X10 000 000, X10 000 001, . . .

and print them out as a high-resolution picture. If the points A, B and C are fixed

then each time you run the experiment you are likely to obtain a different picture

of the Sierpinski triangle, but only slightly different. In fact, if you work at a

resolution of 256 × 256, compute ten million points and discard the first sixteen

points, then it is probable that the resulting picture will look the same each time you

run the experiment. An illustration of such a result is shown in Figure 0.1(iii), (iv).

Almost always, regardless of the choice of starting point X0 and regardless of

the particular sequence of random choices, the sequence of points X0, X1, X2, . . .

seems to be drawn towards, or ‘attracted to’, the Sierpinski triangle; after suffi-

ciently many random iterations, the successive points appear, at viewing resolution,

to lie exactly on the Sierpinski triangle, and to dance around on it forever.
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2 Introduction

Table 0.1 Coefficients of the IFS that created Figures 0.2 and 0.3

n an bn cn dn en kn gn hn jn pn

1 19.05 0.72 1.86 −0.15 16.9 −0.28 5.63 2.01 20.0 60
100

2 0.2 4.4 7.5 −0.3 −4.4 −10.4 0.2 8.8 15.4 1
100

3 96.5 35.2 5.8 −131.4 −6.5 19.1 134.8 30.7 7.5 20
100

4 −32.5 5.81 −2.9 122.9 −0.1 −19.9 −128.1 −24.3 −5.8 19
100

0.2 Attractors of iterated function systems

In the above example the IFS consists of three simple rules, each of which moves

the current point to a new location.

Rule 1: Move to the point midway between the current location and A.

Rule 2: Move to the point midway between the current location and B.

Rule 3: Move to the point midway between the current location and C.

We can write these rules in terms of three functions f1, f2, f3 that map the

euclidean plane into itself. For example, using coordinate notation, suppose that

A = (2, 1), B = (3, 0) and C = (4, 0). Then we define

f1(x, y) =
(

x + 2

2
,

y + 1

2

)
, f2(x, y) =

(
x + 3

2
,

y

2

)
,

f3(x, y) =
(

x + 4

2
,

y

2

)
.

Using this notation the repeated step in the chaos game can be expressed as

(xi+1, yi+1) = fσi (xi , yi ) for i = 0, 1, 2, . . .

where σi is a number randomly chosen from the set {1, 2, 3} and Xi = (xi , yi ).

The collection of functions f1, f2 and f3 is called an iterated function system
(IFS). It is denoted by {R2; f1, f2, f3}, where R

2 is the euclidean plane, the space

on which the functions act. The Sierpinski triangle is an attractor of this IFS.

A different example of an IFS is {�; f1, f2, f3, f4}, where � is the unit square,

defined in Section 1.2, and the functions fn are given by

fn(x, y) =
(

anx + bn y + cn

gnx + hn y + jn
,

dnx + en y + kn

gnx + hn y + jn

)
for n = 1, 2, 3, 4.

The coefficients are given in Table 0.1. In this case, to implement the chaos game

we apply one of the functions f1, f2, f3, f4 to the current point Xi , to obtain the

the next point Xi+1 for i = 1, 2, 3, . . . We apply f1 with probability p1, f2 with

probability p2, f3 with probability p3 and f4 with probability p4 . For each step,
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0.2 Attractors of iterated function systems 3

Figure 0.2 Pictures of attractors of an IFS: (i) the set attractor, (ii) the measure attractor and (iii) the

fractal top.

Figure 0.3 Zoom in on the fractal top in Figure 0.2.

the choice of function is made independently of the choices made at all other

steps. The probabilities pn are given in Table 0.1. This time, almost certainly, the

sequence of points X0, X1, X2, . . . will be attracted to a set that looks like the left-

hand picture in Figure 0.2. This is a picture of an attractor of the IFS represented

by Table 0.1.

Amazingly, this picture is unlikely to change significantly if the probabilities

are adjusted, provided sufficiently many points are plotted. The colours in Fig-

ures 0.2(iii) and 0.3 were ‘stolen’ from Figure 0.4. In Chapter 4 you will discover

what this means.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-84493-2 - Superfractals
Michael Fielding Barnsley
Excerpt
More information

http://www.cambridge.org/9780521844932
http://www.cambridge.org
http://www.cambridge.org


4 Introduction

Figure 0.4 Colours were ‘stolen’ from this picture to produce Figure 0.3 and the image in Figure 0.2(iii).

In this book you will discover different kinds of attractor associated with an

IFS. For example, Figure 0.2 illustrates the set attractor, the measure attractor and

the fractal top for the IFS in Table 0.1. These beautiful objects may be computed by

variants of the chaos game and by other means too. Quite generally, although the

IFSs themselves are simple to write down, their attractors are geometrically and

topologically complicated. Typically, computer pictures of them can be magnified

up endlessly to reveal more and more intricate detail. For example, Figure 0.3

illustrates a tiny hole in the fractal top in Figure 0.2, greatly magnified. Often,

simultaneously, such pictures are reminiscent of biological structures and convey

the feeling of real-world images, with repetition and disorder combined and the

property that one may look ever closer, revealing more and more mysteries. They

are suggestive of diverse applications in biology and imaging.

The mathematics in this book is separate from the pictures that illustrate it and

the biology that inspired it. Indeed, we will treat all pictures as though they actually

are mathematical objects. The attractor of an IFS may be topologically conjugate

to a fractal fern without ever leaving the abstract world in which it lives, trapped in

mathematical amber, so to speak. All the theorems are independent of the pictures.

The mathematics describes something much more general, something bigger, than

the pictures.

In this book I try to capture in a precise way a fascinating combination of

geometry, topology, probability and pictures. I think that just over the horizon, in

the direction in which this book points, there is an unambiguous, new, branch of

geometry that combines colour and space. In trying to move towards this goal,

I present much new material including the theory of fractal tops, fractal home-

omorphisms, orbital pictures and superfractals. At the time of writing only one
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0.3 Another chaos game 5

major paper about superfractals has appeared in print, although a number are in

the pipeline.

It is important to read the book from the beginning. Read enough on each page

to be sure that you do not miss the themes that build steadily towards two ‘peaks’

and then the superfractal ‘summit’. In Chapter 1 we introduce and explore code

space and topology and develop familiarity with metric spaces whose elements are

collections of objects. Code space is a major theme of the book. The second major

theme, developed in Chapter 2, is elementary transformations and how, specifically

and precisely, they act on sets, pictures and measures. Then in Chapter 3 we bring

code spaces and transformations together in the framework of IFS semigroups of

transformations acting on sets, pictures and measures. It is in the combination of

code space and transformations that beautiful new mathematical structures such

as orbital pictures, the first ‘peak’, are discovered.

In Chapter 4 we reach the second ‘peak’: fractal tops, colour-stealing and fractal

homeomorphisms. We discover that we can handle algebraically the topology of

some IFS attractors with the same ease that Descartes handled geometrical objects

in his Cartesian plane. One application is to computer graphics, via the production

of diverse families of beautiful homeomorphisms between images. This chapter

combines the chaos game, transformations, identification topologies on code space

and basic IFS theory. In effect we study certain limit sets belonging to the objects

introduced earlier.

In Chapter 5 we reach the ‘summit’, which is superfractals. We combine the

themes already developed with the concept of V -variability. This enables us to

describe and synthesize vast collections of related mathematical objects, be they

galleries full of random variations of seascapes or families of related ferns, as

illustrated in Figure 0.5. With the aid of our knowledge of transformations, IFS

semigroups, code space structure and V -variability we discover that we can pro-

duce vast families of homeomorphic objects with random, but not too random,

variations. Superfractals provide a bridge, made of IFSs, from deterministic frac-

tals to the world of random fractals. Previously I did not know how to get there.

0.3 Another chaos game

Here is a simple variant of the chaos game. Mark four points on a sheet of paper.

Label three of them A, B and C and label the remaining point X0. We add two

more rules to the three in Section 0.2 above:

Rule 4: Shift by 2(B − C).

Rule 5: Rotate by 180◦ degrees about the point
A + 5B − 4C

2
.

This time, when you play the game, remember what the dice showed the last
time you rolled it. Begin by rolling the dice once, to give you a starting value.
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6 Introduction

Figure 0.5 The chaos game produces a sequence of mathematical objects, successively closer and closer

to random fractal ferns lying on a ‘superfractal’.

2

Figure 0.6 The chaos game is played with slightly more complicated rules. The random point now dances

on both of two classical euclidean objects, a square and a triangle.
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0.3 Another chaos game 7

Now, each time you roll the dice, if last time it showed A or B and this time it

shows A then apply Rule 1. If it shows B then apply Rule 2 but if it shows C then

apply Rule 4. If last time it showed C , however, and this time it produces A or B
then apply Rule 5 but if it produces C then apply Rule 3.

In this new game, if you discard the initial few points then you will obtain a result

quite as astonishing as the Sierpinski triangle; you will obtain simultaneously two

classical geometrical objects, a filled parallelogram and a triangle. See Figure 0.6,

which shows the resulting picture when A = (2, 1), B = (3, 0) and C = (4, 0). By

following the rules above, the current point will continually dance on the square

and the triangle, sometimes moving from one to the other, sometimes moving back

again to the first – forever.

So you see, Diana, Rose and gentle reader, this book is about much more

than basic fractal geometry. It is about extraordinary transformations of pictures,

homeomorphisms between complicated objects and the magic of code space. It is

about superfractals.
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CHAPTER 1

Codes, metrics and topologies

1.1 Introduction

Any picture may be conceived as a mathematical object, lying on part of the
euclidean plane, each point having its own colour. Then it is a strange and wonderful
entity. It is mysterious, for you probably cannot see it. And worse, you cannot even
describe it in the type of language with which you normally talk about objects you
can see; at least, not without making a lot of assumptions. But we want to be able
to see, to describe and to make pictures on paper of fractals and other mathematical
objects that we feel ought to be capable of representation as pictures. We want
to make mathematical models for real-world images, biological entities such as
leaves and many other types of data. To be able to do this we need certain parts of
the language of mathematics, related to set theory, metric spaces and topology.

Code space There is a remarkable set, called a code space, which consists of
an uncountable infinity of points and which can be embedded in the tiniest real
interval. A code space can be reorganized in an endless variety of amazing geomet-
rical, topological, ways, to form sets that look like leaves, ferns, cells, flowers and
so on. For this reason we think of a code space as being somehow protoplasmic,
plastic, impressionable and capable of diverse re-expressions, like the meristem of
a plant; see Figure 1.1. This idea is a theme of this chapter and of the whole book.

Structure and contents of this chapter

In this chapter we introduce and discuss spaces, with the focus on those that we will
be using later. They include the euclidean plane, code spaces and spaces whose
points are certain subsets of other spaces. In particular, we discuss spaces that
consist of infinitely many points, such as the real interval [0, 1] and the euclidean
plane R

2. We also introduce notation that we shall use throughout the book.
A space may have one or more of the following three properties: (i) its points are

organized by means of a system of addresses or coordinates; (ii) the relationship
between the points of the space is described by means of a metric or distance
function; (iii) the relationship between the points of the space is described by
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1.1 Introduction 9

Figure 1.1 ‘Meristem, a specialized section of plant tissue characterized by cell division and growth . . .

In one type of lateral meristem, called cambium, or vascular cambium, the cells divide and differentiate to

form the conducting tissues of the plant, i.e. the wood or xylem, and the phloem.’ (Columbia Encyclopedia,

sixth edition, 2004)

means of a topology, with certain subsets labelled ‘open’. Typically properties (i),
(ii) and (iii) are not independent. Moreover different systems of addresses, diverse
metrics and various topologies may be possible on the same space.

We discuss addressing schemes and spaces of addresses, namely code spaces, in
Section 1.4. In particular, we explain how addresses for the points in a line segment
in R

2 may be defined geometrically via successive bisections. In Section 1.6 we
show how diverse metrics may be defined on a code space by embedding it in a
space such as R

2. We treat code spaces as very important because of their central
role in describing fractals, fractal tops and superfractals in later chapters.

We introduce metric spaces in Section 1.5 and topological spaces in Section 1.8.
In Section 1.9 we describe a number of basic, readily constructed, topologies,
including identification topologies. An identification topology on a space may be
obtained by treating some pairs of points as single points, that is, by ‘gluing them
together’. In this manner a code space may be given the topology of a line segment,
a Möbius strip or a fractal tree. Identification topologies play a very important role
in Chapter 4, where we discuss fractal homeomorphisms.

The possible organizational schemes (i), (ii) and (iii) are brought to life by
transformations, introduced in Section 1.3. Some of the fundamental properties
of a space are those that are preserved by rich collections of transformations such
as addressing functions, metric transformations, continuous transformations and
homeomorphisms. From this point of view we discuss properties of metric spaces
in Section 1.7 and those of topological spaces in Section 1.10. The properties of
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10 Codes, metrics and topologies

completeness, defined in Section 1.7, and compactness, defined in Section 1.11,
are needed to establish the existence of fractal objects. We describe the conditions
under which these properties occur.

Over and above the themes of code spaces, properties of spaces that are pre-
served under transformations and the nature of euclidean space, a central focus of
this chapter, which will carry on throughout the book, is the idea that the points
in a space may themselves be mathematical objects. For example, they may be
mathematical pictures, or measures, defined in Chapter 2. Or they may simply be
the nonempty compact subsets of another underlying space.

Thus, the points of a space HX may be constructed using sets of the points of
an underlying space X . Organizational principles such as addresses, metrics and
topologies may be inherited from X and provide structure to HX . Properties of the
underlying space X such as compactness and completeness may also be inherited
by the space HX . Moreover, transformations acting on X may be used to define
transformations on HX . These inheritances are important because they enable us
to establish the existence of diverse types of fractal in later chapters.

For example, in Section 1.13 we show that the property of being a compact
metric space may be inherited from X by a certain space H(X ). The inherited
metric, the Hausdorff metric, is discussed earlier, in Section 1.12, with a view to
developing our intuition about how it works. This remarkable inheritance continues
from generation to generation, from X to H(X ) to H(H(X )) and so on. It enables
us to establish the existence of superfractal sets in Chapter 5.

1.2 Points and spaces

In this section we introduce the notation and nomenclature for points, sets and
spaces that we shall use throughout the book.

A space is a set. The elements of the set are called the points of the space. We
use the notation X to denote a space. The expression x ∈ X means that x belongs
to the set X or equivalently that x is a point of the space X. Similarly the expression
x, y ∈ X means that both x and y are points of X. We say that two points x, y ∈ X

are distinct if x �= y, that is, x is not equal to y. When we consider several spaces
at once, we may denote them by X, Y, . . . A space may be empty, that is, it may
contain no points.

For illustration, some spaces are shown in Figure 1.2. An important example
of a space is R, the set of all finite real numbers. A point x ∈ R is simply any
number, positive or negative, that can be expressed by a decimal expansion, either
finite as in x = 1.5 or unending as in x = −7.93121059912791101 · · · . We can
write

R = {x : −∞ < x < +∞}.
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