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IDENTIFICATION AND EFFICIENT
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CHAPTER 1

Incredible Structural Inference
Thomas J. Rothenberg

1. INTRODUCTION

In the course of their everyday work, economists routinely employ statistical
techniques to analyze data. Typically, these techniques are based on probability
models for the observations and justified by an appeal to the theory of statis-
tical inference. An important example is the estimation of structural equations
relating economic variables. Such equations are interpreted as representing
causal mechanisms and are widely used for forecasting and policy analysis.
This econometric approach is arguably the dominant research methodology
today among applied economists both in and out of academia.

The econometric approach is not without its critics. Scholars from other
disciplines often seem puzzled by the emphasis that economists place on re-
gression analysis. Statisticians express surprise that their techniques should be
applicable to so many situations. Recently, a number of leading econometricians
have added to the critique. In his paper “Let’s Take the Con Out of Economet-
rics,” Ed Leamer (1983) chides economists for ignoring the fragility of their
estimates. The title of this paper comes from Christopher Sims’s (1980) paper
“Macroeconomics and Reality,” which argues that the economic and statistical
assumptions underlying most macromodels are not believable. They are, he
asserts, literally “incredible.”

Although my purpose is similar to that of Leamer and Sims, my approach will
be rather different. In any area of application there will always be differences of
opinion on what constitutes a reasonable set of assumptions on which to base
the statistical analysis. Particularly in macroeconomics, where one is trying to
summarize in a manageable aggregate model the behavior of millions of deci-
sion makers with regard to thousands of products, the disagreements are bound
to be enormous. Therefore, instead of discussing typical economic examples

Presented at the International Symposium on Foundations of Statistical Inference, December
1985, Tel Aviv, Israel. This paper evolved from a series of lectures given in June 1985 at
the University of Canterbury, Christchurch, New Zealand. I am grateful to Yoel Haitovsky and
Richard Manning for providing me with the opportunity to discuss these ideas in such marvelous
settings.
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4 Rothenberg

where assumptions are always controversial, I shall go to the other extreme and
discuss two very simple, almost trivial, examples of statistical inference where
the assumptions are quite conventional yet the inferences could naturally be
called incredible. Although the examples have nothing to do with economics, I
hope to persuade the reader that the key problems with econometric inference
are illuminated by their analysis.

2. EXAMPLE ONE: A MEASUREMENT PROBLEM

In order to learn the dimensions of arectangular table,  ask my research assistant
to measure its length and width a number of times. The measuring device
is imperfect, so the measurements do not yield the exact length and width. I
believe, however, that the measurement errors behave like unpredictable random
noise, with any particular error having equal probability of being positive or
negative. Therefore, I decide to treat the measurement errors as independent,
identically distributed random variables, each with median zero. In addition, I
assume that the common error distribution is symmetric and possesses finite
fourth moment. For example, the normal probability curve (truncated to insure
the measurements are positive) might serve as an approximate model for the
error distribution.

These assumptions would not usually be called incredible. They might
not be valid for every measurement situation, but they could be reason-
able for many such situations. (One might worry about my ruling out thick-
tailed distributions that could capture the effects of gross measurement
errors. I do that to simplify my story; the analysis could be conducted using me-
dians rather than means, but only with harder distribution theory.) Now I shall
make one further assumption. My research assistant mistakenly thinks I care
only about the area of the table and hence multiplies the length and width
measurements. Instead of receiving n length measurements Ly, L, ..., L,
and n width measurements Wy, Wy, ..., W,, I get only n area measurements
Ay =LiW, Ay = LyW,, ..., A, = L,W,. Worse yet, my research assistant
throws away the original data so they are lost forever.

Can I get reasonable estimates of the true length and width of the table
using only these area measurements? Can I salvage anything from this badly
reported experiment? If there were no measurement error, the answer is clearly
no; I will learn the true area of the table, but there are an infinity of length and
width pairs that are consistent with any given area. Length and width are simply
not identifiable in this experiment. In the presence of measurement error, the
answer is quite different. Both length and width are identifiable and can be well
estimated from a moderately large sample. In this case credible assumptions
seem to lead us to incredible inference!

To demonstrate that inference about length and width is possible, some
notation will prove useful. Suppose « is the true length of the table and f is the
true width. Let u; be the error in the ith length measurement, let v; be the error
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Incredible Structural Inference 5

in the ith width measurement, and let o2 be the common error variance. Then
we can write

A,-:aﬂ—i—av,-—i—ﬁui—l—u,-v,-. (1.1)

Given the assumption that u; and v; are independent random variables dis-
tributed symmetrically about zero and possessing third moments, we find:

E[A;]l = aB, Var[A;]l=o%?+ p>+0?)
E(A; — apf)® = 6apo’.

By convention, @ > f > 0. Simple algebra demonstrates that the three pop-
ulation moments uniquely determine the three parameters o, 8, and o2, Fur-
thermore, under our assumptions, the sample moments converge in probability
to the population moments as n tends to infinity. Denoting the sample mean
of the area measurements by M, the sample variance by M, and the sample
third central moment by M3, a natural method of moments estimator of ot is
M;/6M,. Assuming this is positive and denoting its square root by S, we can
estimate (o + B)* by the equation

(a+,3)2=%—5+2M1. (1.2)

If 02 > 0, the probability that both estimates are positive goes to 1 as n tends
to infinity. Define A to be the square root of expression (1.2) if real, and zero
otherwise. Then A is a consistent estimate of o + 8. A natural estimate of

(@ — B)is

2 _ M
(x—p) :?—S—2M1. (1.3)
If this expression is positive, its square root is a consistent estimate of o — 8.
However, if the table is almost square, a negative value for (1.3) is quite likely.
Define B to be the square root of expression (1.3) if real, and zero otherwise.
Then (A + B)/2 and (A — B)/2 should be reasonable estimates of « and B.
These method of moments estimates will converge in probability to the
true values as long as there is some measurement error. Central limit theory
can be employed to develop large sample approximations of their sampling
distributions. These approximate distributions are typically normal, although
things get slightly more complicated when the table is square (because then the
length and width estimates are confounded). To avoid this technical problem in
the asymptotic distribution theory, I shall continue the discussion using o +
as the parameter of interest and A as my estimate. The essential feature of my
example — that the parameter is estimable in the presence of measurement error
but not otherwise — is unchanged.
If 0 > 0 and the errors possess finite sixth moments, then the standardized
estimator +/n(A — a — ) converges in distribution to a zero-mean normal
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Table 1.1. Asymptotic relative standard errors for estimates

ofa+pB
Relative standard error®

o/a B/a o unknown o known Original data
0.01 1.0 14.44 0.35 0.01
0.05 1.0 291 0.36 0.04
0.10 1.0 1.50 0.37 0.07
0.20 1.0 0.84 0.41 0.14
0.30 1.0 0.69 0.47 0.21
0.40 1.0 0.68 0.54 0.28
0.50 1.0 0.73 0.62 0.35
0.60 1.0 0.82 0.71 0.42
1.00 1.0 1.53 1.15 0.71
2.00 1.0 7.87 2.67 1.41
0.01 0.5 15.86 0.39 0.01
0.05 0.5 3.23 0.40 0.05
0.10 0.5 1.70 0.42 0.09
0.20 0.5 1.05 0.48 0.19
0.30 0.5 0.96 0.67 0.28
0.40 0.5 1.03 0.68 0.38
0.50 0.5 1.20 0.81 0.47
0.60 0.5 1.44 0.94 0.57
1.00 0.5 3.39 1.60 0.94
2.00 0.5 2291 4.12 1.89
0.01 0.2 39.13 0.51 0.01
0.05 0.2 8.04 0.52 0.05
0.10 0.2 4.35 0.54 0.12
0.20 0.2 2.86 0.62 0.24
0.30 0.2 2.74 0.74 0.35
0.40 0.2 3.05 0.89 0.47
0.50 0.2 3.65 1.05 0.59
0.60 0.2 4.53 1.25 0.71
1.00 0.2 11.67 2.19 1.18
2.00 0.2 84.67 5.98 2.34

@ Standard deviation of the limiting distribution of /n(A —a — B)/
(o + B) for alternative estimates A. Approximate relative standard errors
for any given sample size n are obtained by dividing by /7.

random variable as the sample size n tends to infinity. The asymptotic vari-
ance is a complicated function of «, 3, o2, and the higher moments of the
error distribution. Table 1.1 gives the asymptotic relative standard error for the
estimate of o + S [i.e., the standard deviation of the limiting distribution of
/(A —a — B)/(a + B)] for the special case where the fourth and sixth mo-
ments are equal to those of a normal random variable. Also given in the table are
the asymptotic relative standard errors for the estimate using the true variance
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Incredible Structural Inference 7

o2 in place of the estimate S in (1.2) and for the estimate using the sample
means of the original length and width data. (Note that the tabulated values
must be divided by /n to get approximate standard errors for sample size n.)

The table suggests the following conclusions. Depending on the values of
o, B, and o, the efficiency loss from having only the area data ranges from
very large to quite modest. If one knows o2, the best results are obtained by
measuring the table as carefully as possible (but not perfectly!). If one does not
know o2, the best results are obtained by measuring the table rather badly; for
a table that is nearly square, o /o should be approximately 0.5. In this latter
case, there is a simple moral to the story: if one cannot have a smart research
assistant, at least have a sloppy one. Truly, an incredible result! Needless to
say, I do not seriously propose estimating the length and width of a table from
area measurements. My point is quite different. No sensible person would ever
use the estimation method derived here. Yet many sensible people would use
the sample means of the original observations — if they were available. The
assumptions made are not incredible. But they are also not credible enough
to justify the inference procedure described. I shall return to this point in a
moment, but let me first develop another example.

3. EXAMPLE TWO: A REGRESSION PROBLEM

In order to estimate the gravitational constant I ask another of my research
assistants to drop a coin from various heights and to report how long it takes
before the coin hits the ground. On the basis of my study of physics, I believe
that the true time ought to be proportional to the square root of the distance
the coin travels and that the constant of proportionality is related in a simple
way to the gravitational constant. This particular research assistant is very good
at measuring lengths, but not so good at stopping the stopwatch at the right
moment. I therefore propose the regression model

yi =0+ Bx; +u; i=1,...,n), (1.4)

where y; is interpreted as the measured time on the ith trial, x; is the (correctly
measured) square root of distance, and u; is the error in measuring the time.
(Of course, here I know « is zero, but I shall not use that fact). I am tempted to
estimate B by the least-squares slope coefficienth = > (x; — %)y;/ > (x; — %)*
and to form a confidence interval using the statistic

ROV
T = p) [Z (XS—ZX)} , (1.5)

where s? is the sum of squared residuals divided by n — 2.

If the errors are independent, identically distributed random variables with
mean zero and finite variance, the least-squares estimates are unbiased and have
small variance as long as the sample is reasonably large and there is sufficient
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8 Rothenberg

variation in x;. Furthermore, if the errors are normal, these estimates are best
unbiased and the statistic 7 is distributed exactly as Student’s ¢ with n — 2
degrees of freedom.

It would be nice to assume that the measurement errors behave like zero-
mean random noise. But what if my research assistant is not so regular in
making errors? Maybe he sometimes forgets to stop the stopwatch when he
goes out for coffee. Maybe he forgets to reset the watch at zero when he starts
a new trial. Given my previous experience with research assistants, anything is
possible! I would not like to assume any more than that his errors are a sequence
of unobserved numbers. It would be more attractive if the analysis could be
conducted on the basis of assumptions on observables, like the regressors, rather
than on these mysterious unobserved errors. In fact, as R. A. Fisher (1939)
showed many years ago, this can easily be done. Least-squares regression can
be justified with almost no assumptions on the errors if we are willing to make
some assumptions about the process generating the regressors. The following
is a special case of a general result on linear models with multivariate normal
regressors: !

Theorem 1.1. In the regression model (1.4), suppose the x; are i.i.d. normal
random variables with variance o® and are distributed independently of the
errors. Then the least-squares slope estimate b is distributed symmetrically
about B and the statistic T is distributed exactly as Student’s t with n — 2
degrees of freedom, no matter how the errors are generated. If the errors have
second moments, the mean and variance of b are given by

(u; — it)?

When the Eul2 are uniformly bounded, the variance is O(n~") as n tends to
infinity and b is a consistent estimate of B.

Thus, I have a simple solution to my problem of coping with a research as-
sistant whose errors cannot be easily modeled. Before the experiment begins, I
randomly draw » numbers from a normal distribution with large mean and unit
variance. (I truncate to avoid negative outcomes, but with a large mean the results
will look almost normal.) I then instruct my research assistant to use the square
of these numbers as the heights (in meters) in the coin-dropping experiment. If
the sample is large enough, I can rely on Theorem 1.1 to convince myself that I
will get good estimates of the gravitational constant no matter how badly my as-
sistant botches the time measurements. Statistical theory triumphs over a flawed
experiment. Once again, credible assumptions lead to incredible inference.

! Although this result is not new, I have not found a good reference. A multivariate version is
derived in the mimeographed paper by C. Cavanagh and T. Rothenberg (1984). See also Box and
Watson (1962). For asymptotic results, the normality assumption can be dropped; symmetry of
the x distribution is all that really matters.
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Incredible Structural Inference 9

Of course, I do not really believe that I can get good estimates of the grav-
itational constant without making any assumptions about the errors. Indeed,
the point of the example is to emphasize that the key assumption in the linear
model is that the errors are independent of the regressors. The other assumptions
about the errors are easily dispensed with. Moreover, if I am really unhappy
about modeling the error process, I should be just as unhappy about trying to
model the relation between the errors and the regressors. Independence be-
tween regressors and errors is a powerful assumption and cannot be taken
lightly.

4. IMPLICATIONS FOR ECONOMETRICS

What has any of this to do with econometrics? Measuring the length of a table
and the time it takes a coin to drop seem totally unrelated to the activities that
occupy economists. Nevertheless, these examples are, I believe, relevant. Actual
econometric models are much more complicated than the ones I have presented
and concern more important phenomena. But, deep down, they possess the
same key features that drive the examples.

Economists are usually interested in parameters that have a structural or
causal interpretation. If, other things equal, the price of coffee doubles, by how
much would price-taking consumers decrease their purchases? Such numbers
are treated by economists in much the same way as the length of the table
and the gravitational constant in my examples. They are parameters of interest
that could in principle be determined by very carefully conducted experiments.
Unfortunately, these experiments are much too difficult, so we have to rely on
different ones. Usually, the actual data we have available were generated by
someone else using methods very far from the ones we would have used in our
ideal experiment. Instead of actually changing the price of coffee, we simply
observe the historical variation that has taken place over time. Just as in the
artificial examples given earlier, structural inference in economics involves the
analysis of data from flawed experiments.

The error terms in econometric equations represent misspecifications of
functional form, omitted variables, and pure measurement error. It is not hard
to make assumptions about these errors that are moderately plausible. Unfortu-
nately, their converses are often also moderately plausible. Most econometric
models are reasonable, but they are not compelling. There always exist alter-
native models that are just as reasonable. Yet, as in the examples, the results
are often very sensitive to the assumptions. If we are suspicious of estimating
the length of a table from area measurements and if we are suspicious of esti-
mating the gravitational constant from an experiment where the measurement
errors may take on arbitrary values, then we should be even more suspicious
of structural econometric inference in models where the number of unknown
parameters and the number of unverified assumptions are much larger. The
estimation of separate supply and demand curves from equilibrium market
data is considerably more difficult than the estimation of the length of a table.
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Using cross-sectional variation in the crime rate to determine the effect of longer
jail sentences on the level of crime is certainly just as difficult as using flawed
experimental data to determine the gravitational constant. Relevant research is
not easier than trivial research.

Not all econometrics involves structural inference. Sometimes we collect
economic data just to describe the current state of affairs or to indicate trends.
Sometimes we run regressions simply to summarize the pattern of correlations
in a data set or to take advantage of stable relations for use in forecasting. Many
of the most successful applications of statistics in economics have nothing to do
with the estimation of structural relations. Nevertheless, the temptation to inter-
pret empirical regularities as representing causal mechanisms is overwhelming.
For better or worse, econometrics is generally viewed as a method for learning
about the underlying structure of the economy.

Structural inference in econometrics, like the structural inference in my sim-
ple examples, is indeed incredible. Surprisingly strong conclusions about causal
mechanisms can be drawn from seemingly weak assumptions. Unfortunately,
the conclusions are often not very robust to changes in these assumptions. In
those cases, it is difficult to put much credence in the results. More empha-
sis by applied econometricians on presenting alternative estimates based on
alternative models might help make econometrics less incredible.
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CHAPTER 2

Structural Equation Models in Human
Behavior Genetics
Arthur S. Goldberger

1. INTRODUCTION

That IQ is a highly heritable trait has been widely reported. Rather less well
known are recent reports in major scientific journals such as those announcing
that the heritability of controllable life events is 53 percent among women and
14 percent among men (Saudino et al. 1997), while the heritabilities of inhibi-
tion of aggression, openness to experience, and right-wing authoritarianism are
respectively 12, 40, and 50 percent (Pedersen et al. 1989; Bergeman et al. 1993;
McCourt et al. 1999). It seems that milk and soda intake are in part heritable,
but not the intake of fruit juice or diet soda (de Castro 1993).

These reported heritabilities are parameter estimates obtained in structural
modeling of measures taken on pairs of siblings — prototypically, identical
(monozygotic) twins and fraternal (dizygotic) twins, some reared together and
others reared apart. The models are of the linear random effects type, in which
an observed trait — a phenotype — is expressed in terms of latent factors —
genetic and environmental — whose prespecified cross-twin correlations differ
by zygosity and rearing status. Estimation is by maximum likelihood applied
to the phenotypic variances and covariances. Heritability, the key parameter
of interest, refers to the proportion of the variance of the phenotype that is
attributable to the variance of the genetic factors.

Regarding these studies, various issues arise. Those that I will touch on
here include identification, nonnegativity constraints, alternative estimators,
pretest estimation, conditioning of the design matrix, multivariate analyses,
and the objectives of structural modeling. Some of these issues were featured
in Thomas Rothenberg’s dissertation (1972), a remarkable book that led me to
appreciate the generality of the minimum chi-square principle in estimation, and
the contrast between equality and inequality constraints in efficient estimation.

In the present chapter, I will focus on the SATSA project — the Swedish
Adoption/Twin Study of Aging — which, from the early 1980s on, has assembled
a sample of adult twin pairs: approximately 200 MZT (identical twins reared
together), 200 DZT (fraternal twins reared together), 100 MZA (identical twins
reared apart), and 150 DZA (fraternal twins reared apart). The fraternal twins
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