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Quark models of hadrons and issues
in quark dynamics

F E Close

1.1 Chromostatics

The discovery of quarks in inelastic electron scattering experiments, following
their hypothesized existence to explain the spectroscopy of hadrons, led rapidly to
the quantum chromodynamic (QCD) theory and the Standard Model, which has
underpinned particle physics for three decades. Today, all known hadrons contain
quarks and/or antiquarks.

The QCD Lagrangian implies that gluons also exist, and the data for inelastic
scattering at high energy and large momentum transfer confirm this. What is not
yet established is the role that gluons play at low energies in the strong interac-
tion regime characteristic of hadron spectroscopy. QCD implies that there exist
‘glueballs’, containing no quarks or antiquarks, and also quark–gluon hybrids. The
electromagnetic production of hybrids is one of the aims of JLab. Glueballs, on the
other hand, are not expected to have direct affinity for electromagnetic interactions;
hence hadroproduction of a meson that has suppressed electromagnetic coupling is
one of the ways that such states might be identified.

Quarks are fermions with spin 1
2 and baryon number 1

3 . A baryon, with half-integer
spin, thus consists of an odd number of quarks (q) and/or antiquarks (q̄), with a net
excess of three quarks. Mesons are bosons with baryon number zero, and so must
contain the same number of quarks and antiquarks.

The simplest configuration to make a baryon is thus three quarks, qqq; a meson
most simply is qq̄. Within this hypothesis well over two hundred hadrons listed
by the Particle Data Group (PDG) [1] can be described. The question of whether
there are hadrons whose basic constitution is more complicated than these, such
as mesons made of qqq̄q̄ or baryons made of qqqqq̄, is an active area of research,
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2 F E Close

which we shall summarize later. First we examine what property of the attractive
forces causes such combinations to occur and then discuss how the multitude of
hadrons are described.

The fundamental theory of the strong forces between quarks is QCD. The details of
this theory and rules of calculation may be found in dedicated texts such as [2]. A
quark carries any of three colours – which we label RBG. They are the charges that
are the source of the force between quarks. The rules of attraction and repulsion
are akin to those of electrostatics where like repel and unlike attract. Associate
positive charges with quarks and negative with antiquarks. The attraction of plus
and minus then naturally leads to the qq̄ configurations, the mesons, for which the
colour charges have counterbalanced.

In quantum electrodynamics, QED, the electromagnetic force is transmitted by
photons; analogously, in QCD the forces between quarks are transmitted by gluons.
This far is analogous to the formation of electrically neutral atoms. The novel
feature arises from the three different colour charges. Two identical colours repel
one another but two different, namely RG, RB or BG, can mutually attract. A third
quark can be mutually attracted to the initial pair so long as its colour differs from
that pair. This leads to attraction between three different colours: RBG. A fourth
quark must carry the same colour charge as one that is already there and will be
repelled by that, meanwhile being attracted to the dissimilar pair.

The above pedagogic illustration needs better specification. The rules of attrac-
tion and repulsion depend on the symmetry of the pair under interchange. Thus
symmetric combinations repel, antisymmetric attract. Two identical colours, being
indistinguishable, are trivially symmetric. Two differing colours can be either sym-
metric or antisymmetric:

[RB]S ≡
√

1
2 (RB + B R), (1.1)

[RB]A ≡
√

1
2 (RB − B R). (1.2)

Thus any pair of quarks in a baryon is in an antisymmetric symmetry state for
the saturation of the attractive forces. The full wave function for the colour of a
three-quark baryon is thus

√
1
6 ((RB − B R)G + (BG − G B)R + (G R − RG)B) . (1.3)

The three colours form the basic 3 representation of SU(3); the three ‘negative’
colours of antiquarks are then a 3̄. The rules of combining representations give

3 ⊗ 3̄ = 1 ⊕ 8; 3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10. (1.4)
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Quark models of hadrons 3

It is the colour-singlet representations that are the formally correct SU(3) expres-
sions of the above heuristic combinations. Hadrons are thus colour singlets of
colour SU(3). Building a relativistic quantum gauge field theory of colour SU(3)
leads to QCD. The baryons are thus in the antisymmetric representation of colour
SU(3). The above argument shows how this is a natural consequence of the attrac-
tive colour forces in chromostatics. The antisymmetry under interchange of colour
labels, combined with the Pauli principle that requires fermions, such as quarks,
to be antisymmetric under the exchange of all their quantum numbers, leads to
essential constraints on the pattern of hadrons and their properties.

1.2 Mesons as bound states from bb̄ to light flavours

For heavy-flavour mesons, such as cc̄ and bb̄, a non-relativistic potential model
description of meson spectroscopy is realized phenomenologically and may be jus-
tified theoretically. The ground state 1S, the first excited state with orbital excitation
L = 1, denoted by 1P , and the radial excitation of the S-state, 2S with the 1D level
being slightly higher than this, are qualitatively in accord with the pattern of a linear
potential V (r ) = Kr . Here r is the radial separation of the q and q̄, and K (known
as the string tension) has dimensions of (Energy)2. Empirically K ∼ 1 GeV/fm
∼ 0.18 GeV2.

The qualitative features of the spectrum of states survive for all flavours (with some
exceptions, such as 0++, which we discuss later). This has enabled a successful
phenomenology to be built in applying the non-relativistic constituent-quark model
to light flavours even though the a priori theoretical justification for this remains
unproven. A widely-used approach has been to approximate the dynamics to that
of the harmonic oscillator, with Gaussian wave functions of form exp(−r2β2

M/2)
multiplied by the appropriate polynomials and β treated as a variational parameter
in the Hamiltonian H for each of the 1S, 1P, 2S, 1D, . . . states.

There are also spin-dependent energy shifts among states with the same overall
L, the forms of which phenomenologically share features with those generated by
the Fermi–Breit Hamiltonian in QED. This is widely interpreted as evidence for
analogous chromomagnetic effects in QCD.

The qq̄ picture is only literally true for states that are stable. If the number of
colours Nc → ∞, the amplitudes for qq̄ → qq̄ + qq̄ ∼ 1/Nc → 0. In the real
world Nc = 3 and the coupling to meson channels must distort the simple qq̄
picture. A particular example occurs for cc̄ where the DD̄ thresholds cause non-
trivial admixtures of cc̄uū and cc̄dd̄ in the ‘primitive’ cc̄ wave functions of the
J PC = (0, 1, 2)++ χ states [3–5] and the 1−− ψ(3685) which are all below the
DD̄ threshold. In the simple cc̄ non-relativistic-potential picture, electromagnetic
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4 F E Close

transitions among these states, such as

ψ(3685) → γχJ ; χJ → γψ, (1.5)

are electric dipole, E1, transitions. In this case if ψ(3685) ≡ 3S1, then apart
from phase-space effects the relative widths ψ(3685) → γχJ would be in the
ratio 2+ : 1+ : 0+ = 5 : 3 : 1, whereas for a 3 D1 initial state these ratios become
2+ : 1+ : 0+ = 20 : 15 : 1 [6,7]. While data are qualitatively in accord with the
predictions of such a model for the 3S1 case, future precision data can reveal the
presence of relativistic effects, 3 D1 components and of DD̄ mixing in the cc̄ states.
This is a particular example where electromagnetic transitions can give precision
information on hadron wave functions and dynamics. More discussion of this can
be found in chapter 4.

An example of this is the conundrum of the state X (3872) [8]. This charmonium
state is degenerate with the neutral DD̄∗ threshold and as such is suspected of
having uū admixture in its cc̄ wave function. The uū and absence of dd̄ will lead
to significant isospin violation in its decays. If this state is 1++, then one may
anticipate such a light flavour asymmetry at a small level in the wave function of
the χ1(3500). High-statistics data on the hadronic decays of the χ1(3500) could
reveal if this is the case.

Such subtle effects could occur more widely in the charmonium states. The basic
idea is as follows. The mass difference between dd̄ and uū, although small and
widely neglected in analysis, can have measurable effects when the dynamics
involves the differences among various energies. For example, the mixing of dd̄
and uū in the χ states may be driven by M(DD̄) − M(χ ). For uū mixing into the
χ0 for example, it will be the neutral threshold D0 D̄0 that is relevant, while for the
dd̄ mixing it is D+ D−. The difference in the energy gaps in the two cases is ∼5%;
for states that are nearer the threshold such flavour-dependent effects can become
highly significant. In the case of the cc̄ state X (3872) [8] one has almost perfect
degeneracy with the D0 D̄∗0 threshold such that admixture of uū is expected to
dominate dd̄ utterly [9,10].

High-statistics data on χ hadronic decays should be studied to see if there is an
asymmetry between the neutral and charged particles in the final states, which
would show a failure of simple isoscalar decay. These data can be taken in the e+e−

facilities CLEO-c at Cornell University and BES in Beijing.

These mixing effects may be studied in precision data for heavy flavours and the
resulting insights applied to light flavours. In the latter we already have qualitative
understanding of where the limits of the qq̄ model occur. The strategy is to quantify
these en route to a more mature dynamical picture of the light flavoured hadrons.
This has interest in its own right but also is needed when building Monte Carlo mod-
els for the decays of B and D heavy flavours into channels involving light hadrons.
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Quark models of hadrons 5

1.2.1 Linear plus Coulomb potential

The phenomenological picture of the linear potential deduced from the pattern
of the energy levels gives insight into the nature of the force fields acting on the
constituents. As the force field ∼ dV (r )/dr , then V (r ) ∼ Kr implies the field is
constant as a function of the distance r between the colour sources. This immediately
contrasts with the behaviour in QED where V (r ) ∼ 1/r implies that E(r ) ∼ 1/r2,
whereby the fields spread freely into all directions of three-dimensional space. The
message for QCD is that the field lines concentrate along the line connecting the
colour source q and sink q̄. Thus the ‘linear’ potential is aptly named!

This is in accord with the picture that emerges from lattice QCD [11,12]. The
potential is predicted to be linear and by implication the field lines collectively form
a tube-like configuration. This has led to ‘flux-tube models’ [13,14] of qq̄. These
models underpin the potential, which is all that is needed for many calculations.
However, they and the lattice computations also imply that the flux-tube provides
an independent degree of freedom, which can be excited. The resulting states that
form when the flux-tube is excited in the presence of qq̄ are known as ‘hybrids’
[13–18]. We consider their dynamics later.

For the conventional qq̄ states one views the flux-tube as the source of the linear
potential, at least at distances comparable to the confinement scale (r ∼ 1 fm). At
short range, say r ∼ 0.1 fm, QCD theory implies that the colour force is transmitted
by gluons, which act independently of one another analogously to the way that
photons behave in QED. This gives a Coulombic contribution to the potential
as r → 0. The exchange of a single gluon gives perturbative corrections to the
simple potential, generating analogues of the spin-dependent hyperfine shifts that
are familiar in QED.

The effective potential arising from QCD is thus taken as [3,7]

V (r ) = Kr − 4

3

αs

r
+ C (1.6)

(the factor 4
3 is a normalization factor arising from the SU(3) colour matrices at the

quark vertices). In calculations it is often useful to make a Gaussian approximation
to the wave functions, which may be found variationally from the Hamiltonian

H = p2

µ
+ Kr − 4

3

αs

r
+ C, (1.7)

where µ = mqmq̄/(mq + mq̄) is the reduced mass, with standard quark-model
parameters mq = 0.33 GeV for u and d quarks and 0.45 GeV for s quarks, K = 0.18
GeV2 and αs ∼ 0.5.

Not only are the patterns of the energy levels preserved as one goes from heavy
to lighter flavours, but many of the energy gaps are quantitatively approximately
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6 F E Close

independent of flavour mass. Thus the gap between the 1−− qq̄ in the 1S to 2S
levels is 563 MeV for bb̄ (ϒ(10023)−ϒ(9460)) and 589 MeV for cc̄ (ψ(3686)−
ψ(3097)). For the light flavours the analogous gap between ρ(1460) and ρ(770)
is only some 10% larger while the absolute mass scales have changed by over an
order of magnitude.

For a constituent of mass m in a potential that behaves as V (r ) ∼ r N , this gap would
vary as m−N/(N+2), hence ∼m for the Coulomb potential and ∼m−1/3 for linear.
Mass independence would ensue for a potential V (r ) ∼ ln r , which is approximately
how the linear + Coulomb appears in the region of r most sensitive to the bound
states.

However, there are also clear mass-dependent effects, notably in the splittings
between the 3S1−1S0 levels (1−−−0−+). These vary from over 600 MeV for
ρ(770) − π (140), through 400 MeV for K ∗(890)−K (490) to significantly less for
ψ(3095)−ηc(2980) (we adopt the naming conventions for particles of the PDG [1]).

1.2.2 Hyperfine shifts

Although the mass gaps between successive orbital excitation levels of the effective
potential are empirically approximately flavour-independent, there is a marked
flavour dependence of the splitting between the S-wave states of differing total
spin. Specifically this concerns the 1− and 0− states of qq̄ and the J P = 3

2
+

and
1
2
+

baryons.

Early evidence that mesons and baryons are made of the same quarks was pro-
vided by the remarkable successes of the Sakharov–Zeldovich constituent quark
model [19], in which static properties and low-lying excitations of both mesons and
baryons are described as simple composites of asymptotically free quasiparticles
with a flavour-dependent linear mass term and hyperfine interaction,

M =
∑

i

mi +
∑
i > j

σi · σ j

mi · m j
· vhyp, (1.8)

where mi is the effective mass of quark i, σi is a quark spin operator and v
hyp
i j is a

hyperfine interaction. This form has analogy with the source of hyperfine splitting
in atomic hydrogen and suggests for hadrons that there is a QCD source in single-
gluon exchange. As in the QED case, this (chromo)magnetic interaction is inversely
proportional to the constituent masses.

In QCD the colour couplings are proportional to λi · λ j , with λ the SU(3) matrices
[20]. The spin-dependent σi · σ j term then causes the lowest-spin combinations to
be further attracted, their high-spin analogues suffering a relative repulsion. This
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Quark models of hadrons 7

leads to a strong chromomagnetic attraction between a u and a d flavour when the
ud diquark is in the 3̄ of the colour SU(3) and in the 3̄ of the flavour SU(3) and has
I = 0, S = 0.

The relative magnitudes of the spin-dependent shifts for a common set of flavours
depend on the net colour of the interacting constituent pair. Since the colour expec-
tation values are

〈λ1 · λ2〉qq(3̄) = 1
2〈λ1 · λ2〉qq̄(1), (1.9)

the relative shifts for colour-singlet mesons and baryons are

J = 0 → −3; J = 1 → +1; J = 3
2 → + 3

2 ; J = 1
2 → − 3

2 , (1.10)

whence m() > m(N ) and m(ρ) > m(π ). These need to be rescaled by the appro-
priate masses following (1.8) when comparing the flavour dependence of the energy
shifts [20,21], such as for m(�∗) > m(�) and m(K ∗) > m(K ).

These spin- and flavour-dependent energy shifts are manifested not only in the
different masses of hadrons with different spins, but also cause the splitting of �−�

baryons. This is because the ud in �Q(Qud) have, by the Pauli correlation, S = 1
and are hence pushed up in energy relative to their counterparts in the �Q(Qud),
which are in S = 0. Details are in [21].

These attractive forces can generate correlations among pairs of quarks and/or
antiquarks, which are manifested as spin-dependent effects in inelastic scattering
and in the appearance of colour-singlet hadrons with content qqq̄q̄ or qqqqq̄. These
attractive correlations arise when a qq or q̄q̄ are antisymmetric in each quantum
number, thus qq in colour 3̄ (q̄q̄ in 3), spin-zero and flavour singlet. This has
significant implications for the structure of mesons with J PC = 0++ below 1 GeV
[22,23]. It also can lead to the possibility of ‘pentaquark’ states (ud)(ud)Q̄, where the
(ud) denotes a correlated pair and the antiquark has a distinct flavour Q = s, c, b. A
particular example of the latter would be ududs̄, which would form a baryon with
positive strangeness, which is thus manifestly exotic in that it cannot be formed
from any combination of qqq.

1.3 Flavour mixings

Any flavour of quark Q and its antiquark Q̄ when attracted together form a state
with no net flavour, in particular having zero electric charge and strangeness. How
then are we to tell what combination of flavours occurs in any given physical state?
We begin with some theoretical expectations.

Consider two heavy flavours, say bb̄ and cc̄. The mass matrix will have on its
diagonal 2mb and 2mc, and if this was the whole story these would be the physical
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8 F E Close

eigenstates. But there is also the possibility that these neutral states can annihilate
through some common channel, for example gluons. Let the strength of this anni-
hilation be A. It may connect bb̄ to cc̄ and it can also connect either of these to
itself. The matrix thus becomes

(
2mb + A A

A 2mc + A

)
. (1.11)

The eigenstates depend on the relative size of (mb − mc)/A. If this is large the
eigenstates are bb̄ and cc̄; this is indeed the case if we identify the c, b with the
physical charm and bottom quarks where the vector mesons, for example, are
the ψ(cc̄) and ϒ(bb̄). If it is small, which would be the case if we chose u,d
instead of c,b, they tend to the equally mixed states (uū ± dd̄)/

√
2, which are the

familiar isospin eigenstates. The I = 1 state (uū − dd̄)/
√

2 decouples from the
annihilation A channel, while the I = 0 (uū + dd̄)/

√
2 couples with an enhanced

amplitude
√

2 times that of an individual flavour and the mass gap is proportional
to A.

Thus we have a qualitative understanding of why the cc̄ and bb̄ spectroscopies are
distinct (or ‘ideal’) while their u,d counterparts are mixed into the ‘isospin’ basis.
Now consider the latter systems but in the presence of the strange quark, which can
form ss̄ states.

Consider the limit where mu ∼ md but ms − md >> A. The eigenstates will then
be the same uū ± dd̄ as above with the third state being ss̄. This is realised in the
vector mesons where the isoscalar mesons are ω = (uū + dd̄)/

√
2 and φ = ss̄. The

evidence for this will be described shortly; the implication of it is that A is small
for the vector meson channel [20].

Now consider the limit where ms > md and A > ms − md . The eigenstates are
now orthogonal mixtures of uū + dd̄ and ss̄. This is what is observed for the 0−+

mesons where η(550) and η′(960) are mixtures of these flavours. Specifically, it
was found in [20] that A(0−+) is in the range 80−600 MeV while A(1−−) is 5–7
MeV, in both cases there being a slight hint that the magnitude falls with increasing
energy. The annihilation contribution thus seems to be much smaller for the vector
mesons than for the pseudoscalar and a question for dynamics is why?

Determining which J PC states are ‘ideal’ (that is like the 1−−) and which are
strongly mixed is one of the unresolved issues in the spectroscopy of light flavours.
Answering it may help to identify the dynamics that controls this mixing. Electro-
magnetic interactions can play a significant role in addressing these issues as we
now illustrate by showing how they have already been seminal in the case of the
1−− and 2++ multiplets, at least.
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Quark models of hadrons 9

1.3.1 The 1−− and 2++ nonets

That the vector and tensor multiplets are near ideal can be seen from the pattern
of their masses. One I = 0 state has mass similar to that of the isovector, while
the other I = 0(ss̄) is heavier with the strange K (us̄) midway between them. As
the I = 1 state contains only u and d flavours, this pattern suggests that the lighter
isoscalar is nn̄ ≡ (uū + dd̄)/

√
2, while the heavier is ss̄. Examples of such nonets are

1−− : ρ(770) ∼ ω(780); K ∗(890); φ(1020), (1.12)

2++ : a2(1320) ∼ f2(1270); K ∗(1430); f2(1525). (1.13)

This pattern of flavours is also confirmed by the strong decays, in the approximation
that the dominant hadronic decay is driven by the creation of qkq̄k in the field lines
between the original qi q̄ j (where i,j,k denote the flavour labels) such that

qi q̄ j → qi q̄kqkq̄ j → (qi q̄k) + (qkq̄ j ). (1.14)

Thus ss̄ can decay to sū + us̄, which is ≡ K K̄ , but it does not decay to ππ . This
rule underpins the suppressed decays of the φ and f2(1525) to ππ . The relative
strengths of the electromagnetic couplings of these states also fit with this ideal
picture.

For 1−− one has the direct coupling qq̄(1−−) → γ → e+e−. Thus the leptonic
widths, after phase-space corrections, give a measure of the flavour contents. This
is discussed further in chapter 5. The amplitude is proportional to the sums of
electric charges of the qq̄ contents weighed by their amplitude and phases. Thus
for the relative squared amplitudes

ρ(dd̄ − uū)/
√

2 : ω(uū + dd̄)/
√

2 : φ(ss̄) = 9 : 1 : 2, (1.15)

which may be compared with their e+e− widths in keV

�e+e−
[ρ : ω : φ] = 6.8 ± 0.11 : 0.60 ± 0.02 : 1.28 ± 0.02. (1.16)

The differences in phase space are only small and so do not affect the arguments
here. However, it is noticeable that the ratios seem to apply to the widths in that
they hold also for the �e+e−

(ψ(cc̄); ϒ(bb̄))

�e+e−
[ψ(cc̄) : ϒ(bb̄)] = 5.26 ± 0.37 : 1.32 ± 0.05, (1.17)

which are experimentally in accord with 4�e+e−
(φ(ss̄)) and �e+e−

(φ(ss̄)) respec-
tively.
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10 F E Close

For future reference, it is useful to show these states in the 1–8 basis of SU(3)F :

ω1 ≡ (uū + dd̄ + ss̄)/
√

3; ω8 ≡ (uū + dd̄ − 2ss̄)/
√

6 (1.18)

whereby (denoting the light quark component by nn̄ ≡ (uū + dd̄)/
√

2)

φ(ss̄) =
√

1
3ω1 −

√
2
3ω8,

ω(nn̄) =
√

2
3ω1 +

√
1
3ω8. (1.19)

The electromagnetic couplings of the 2++ states also confirm their tendency towards
ideal flavour states. Here the decays to γ γ have amplitudes proportional to the sum
of the squares of the electric charges of the quarks weighted by their relative phases.
Thus for the relative squared amplitudes

a2(dd̄ − uū)/
√

2 : f2(uū + dd̄)/
√

2 : f2(ss̄) = 9 : 25 : 2, (1.20)

which may be compared with their γ γ widths in keV

�(a2(1320) → γ γ ) : �( f2(1270) → γ γ ) : �( f2(1525) → γ γ )

= 100 ± 8 : 261 ± 30 : 9.3 ± 1.5. (1.21)

The a2(1320) : f2(1270) ratio is in excellent agreement with this; the f2(1525) is
about a factor 2 smaller. The agreement between the mass-degenerate a2 : f2 states
is in accord with ideal flavour states and then, if the heavier f2 is ss̄, its strange
quark masses will suppress its magnetic contribution to the γ γ amplitude and thus
be consistent with the reduced strength.

To the extent that the vector mesons are ideal states, the radiative transitions of
C = + states (C = +) → γ V (= ρ : ω : φ) may be used to determine the flavour
contents of the initial C = + states (see chapter 4). As flavour is conserved in
electromagnetic transitions to leading order, decays to γρ weigh the nn̄ component
of the initial C = + state, and those to γφ weigh its ss̄ component. This can be used
as a further measure of the flavours of tensor mesons, where the reduced widths
(phase space removed) would be expected to satisfy

�R( f2 → ργ )

�R( f ′
2 → φγ )

= 9

4
. (1.22)

Empirically there is only an upper limit on these transitions. Obtaining their mag-
nitudes is thus important, both as a check of this flavour filter and also for compar-
ison with the analogous transition magnitudes for f0,1 → γ V as these can test the
single-quark transition hypothesis for radiative transitions [24].

Complementary to this is the question of to what extent these ideal flavour states
are realized for excited vector mesons such as ρ(1460), ρ(1700), ω(1420), ω(1650)
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