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1 Stress and strain

The concept of stress and strain is key to the understanding of deformation.When a force is applied to

a continuum medium, stress is developed inside it. Stress is the force per unit area acting on a given

plane along a certain direction. For a given applied force, the stress developed in a material depends

on the orientation of the plane considered. Stress can be decomposed into hydrostatic stress (pressure)

and deviatoric stress. Plastic deformation (in non-porous materials) occurs due to deviatoric stress.

Deformation is characterized by the deformation gradient tensor, which can be decomposed into

rigid body rotation and strain. Deformation such as simple shear involves both strain and rigid body

rotation and hence is referred to as rotational deformationwhereas pure shear or tri-axial compression

involves only strain andhas no rigid body rotation and hence is referred to as irrotational deformation.

In rotational deformation, the principal axes of strain rotate with respect to those of stress whereas

they remain parallel in irrotational deformation. Strain can be decomposed into dilatational

(volumetric) strain and shear strain. Plastic deformation (in a non-porousmaterial) causes shear strain

and not dilatational strain. Both stress and strain are second-rank tensors, and can be characterized by

the orientation of the principal axes and themagnitude of the principal stress and strain and both have

three invariants that do not depend on the coordinate system chosen.

Key words stress, strain, deformation gradient, vorticity, principal strain, principal stress, invariants

of stress, invariants of strain, normal stress, shear stress, Mohr’s circle, the Flinn diagram, foliation,

lineation, coaxial deformation, non-coaxial deformation.

1.1. Stress

1.1.1. Definition of stress

This chapter provides a brief summary of the basic

concept of stress and strain that is relevant to under-

standing plastic deformation. For a more comprehen-

sive treatment of stress and strain, the reader may

consultMALVERN (1969),MASE (1970),MEANS (1976).

In any deformed or deforming continuum material

there must be a force inside it. Consider a small block

of a deformed material. Forces acting on the material

can be classified into two categories, i.e., a short-range

force due to atomic interactions and the long-range

force due to an external field such as the gravity

field. Therefore the forces that act on this small

block include (1) short-range forces due to the dis-

placement of atoms within this block, (2) long-range

forces such as gravity that act equally on each atom

and (3) the forces that act on this block through the

surface from the neighboring materials. The (small)

displacements of each atom inside this region cause

forces to act on surrounding atoms, but by assump-

tion these forces are short range. Therefore one

can consider them as forces between a pair of atoms

A and B. However, because of Newton’s law of action

and counter-action, the forces acting between two

atoms are anti-symmetric: fAB¼�fBA where fAB (BA) 3
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are the force exerted by atom A (B) to B (A).

Consequently these forces caused by atomic displace-

ment within a body must cancel. The long-range force

is called a body force, but if one takes this region as

small, then the magnitude of this body force will

become negligible compared to the surface force (i.e.,

the third class of force above). Therefore the net force

acting on the small region must be the forces across

the surface of that region from the neighboring mate-

rials. To characterize this force, let us consider a small

piece of block that contains a plane with the area of dS

and whose normal is n (n is the unit vector). Let T be

the force (per unit area) acting on the surface dS from

outside this block (positive when the force is compres-

sive) and consider the force balance (Fig. 1.1). The

force balance should be attained among the force T

as well as the forces T1,2,3 that act on the surface

dS1,2,3 respectively (dS1,2,3 are the projected area of

dS on the plane normal to the x1,2,3 axis). Then the

force balance relation for the block yields,

T dS ¼
X3
j¼1

T j dSj: (1:1)

Now using the relation dSj ¼ nj dS, one obtains,

Ti ¼
X3
j¼1

T j
i nj ¼

X3
j¼1

�ijnj (1:2)

where Ti is the ith component of the force T and �ij is

the ith component of the traction Tj, namely the ith

component of force acting on a plane whose normal is

the jth direction ðnij ¼ T j
i Þ. This is the definition of

stress. From the balance of torque, one can also show,

�ij ¼ �ji: (1:3)

The values of stress thus defined depend on the

coordinate system chosen. Let us denote quantities in

a new coordinate system by a tilda, then the new coor-

dinate and the old coordinate system are related to

each other by,

~xi ¼
X3
j¼1

aijxj (1:4)

where aij is the transformation matrix that satisfies the

orthonormality relation,

X3
j¼1

aijajm ¼ �im (1:5)

where �im is the Kronecker delta (�im¼ 1 for i¼m,

�im¼ 0 otherwise). Now in this new coordinate system,

we may write a relation similar to equation (1.2) as,

~Ti ¼
X3
j¼1

~�ij~nj: (1:6)

Noting that the traction (T) transforms as a vector in

the same way as the coordinate system, equation (1.4),

we have,

~Ti ¼
X3
j¼1

aijTj: (1:7)

Inserting equation (1.2), the relation (1.7) becomes,

~Ti ¼
X3
j;k¼1

�jkaijnk: (1:8)

Now using the orthonormality relation (1.5), one has,

ni ¼
X3
j¼1

aji~ni: (1:9)

Inserting this relation into equation (1.8) and compar-

ing the result with equation (1.6), one obtains,1

~�ij ¼
X3
k;l¼1

�klaikajl: (1:10)

The quantity that follows this transformation law is

referred to as a second rank tensor.

1.1.2. Principal stress, stress invariants

In anymaterial, there must be a certain orientation of a

plane on which the direction of traction (T) is normal

to it. For that direction of n, one can write,

Ti ¼ �ni (1:11)

x3

x1

x2

T

T2

T3

T1

FIGURE 1.1 Forces acting on a small pyramid.

1 In the matrix notation, ~� ¼ A � � � AT where A¼ aij
� �

and AT ¼ aji
� �

.
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where � is a scalar quantity to be determined. From

equations (1.11) and (1.2),

X3
j¼1

ð�ij � ��ijÞnj ¼ 0: (1:12)

For this equation to have a non-trivial solution other

than n¼ 0, one must have,

�ij � ��ij
�� �� ¼ 0 (1:13)

where Xij

�� �� is the determinant of a matrix Xij. Writing

equation (1.13) explicitly, one obtains,

�11 � � �12 �13
�21 �22 � � �23
�31 �32 �33 � �

������
������ ¼ ��3 þ I��

2 þ II��þ III� ¼ 0

(1:14)

with

I� ¼ �11 þ �22 þ �33 (1:15a)

II� ¼ ��11�22 � �11�33 � �33�22 þ �2
12 þ �2

13 þ �2
23

(1:15b)

III� ¼�11�22�33 þ 2�12�23�31 � �11�
2
23

� �22�
2
13 � �33�

2
12:

(1:15c)

Therefore, there are three solutions to equation (1.14),

�1; �2; �3ð�14�24�3Þ.These are referred to as the

principal stresses. The corresponding n is the orienta-

tion of principal stress. If the stress tensor is written

using the coordinate whose orientation coincides with

the orientation of principal stress, then,

½�ij� ¼
�1 0 0
0 �2 0
0 0 �3

2
4

3
5: (1:16)

It is also seen that because equation (1.14) is a scalar

equation, the values of I�, II� and III� are independ-

ent of the coordinate. These quantities are called the

invariants of stress tensor. These quantities play

important roles in the formal theory of plasticity (see

Section 3.3). Equations (1.15a–c) can also be written

in terms of the principal stress as,

I� ¼ �1 þ �2 þ �3 (1:17a)

II� ¼ ��1�2 � �2�3 � �3�1 (1:17b)

and

III� ¼ �1�2�3: (1:17c)

1.1.3. Normal stress, shear stress,
Mohr’s circle

Now let us consider the normal and shear stress on a

given plane subjected to an external force (Fig. 1.2).

Let x1 be the axis parallel to the maximum compres-

sional stress �1 and x2 and x3 be the axes perpendicular

to x1. Consider a plane whose normal is at the angle �

from x3 (positive counterclockwise). Now, we define a

new coordinate system whose x01 axis is normal to the

plane, but the x02 axis is the same as the x2 axis. Then

the transformation matrix is,

½aij� ¼
cos � 0 �sin �
0 1 0

sin � 0 cos �

2
4

3
5 (1:18)

and hence,

½~�ij� ¼

�1 þ �3
2

þ �1 � �3

2
cos 2� 0

�1 � �3
2

sin 2�

0 �2 0

�1 � �3
2

sin 2� 0
�1 þ �3

2
� �1 � �3

2
cos 2�

2
666664

3
777775:

(1:19)

Problem 1.1

Derive equation (1.19).

Solution

The stress tensor (1.16) can be rotated through the

operation of the transformation matrix (1.18) using

equation (1.10),

θ x1

x2

x3

σ1

σ1

σ2

σ2

σ3 σ3

σn

τ

FIGURE 1.2 Geometry of normal and shear stress on a plane.
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½~�ij� ¼

cos � 0 �sin �

0 1 0

sin � 0 cos �

2
6664

3
7775

�1 0 0

0 �2 0

0 0 �3

2
6664

3
7775

cos � 0 sin �

0 1 0

�sin � 0 cos �

2
6664

3
7775

¼

�1 þ �3
2

þ �1 � �3
2

cos 2� 0
�1 � �3

2
sin 2�

0 �2 0

�1 � �3
2

sin 2� 0
�1 þ �3

2
� �1 � �3

2
cos 2�

2
666664

3
777775:

Therefore the shear stress � and normal stress �n on this

plane are

~�13 � � ¼ �1 � �3

2
sin 2� (1:20)

and

~�33 � �n ¼ �1 þ �3

2
� �1 � �3

2
cos 2� (1:21)

respectively. It follows that the maximum shear stress

is on the two conjugate planes that are inclined by

�p=4 with respect to the x1 axis and its absolute mag-

nitude is ð�1 � �3Þ=2. Similarly, the maximum com-

pressional stress is on a plane that is normal to the x1
axis and its value is �1. It is customary to use �1��3 as

(differential (or deviatoric)) stress in rock deformation

literature, but the shear stress, � � ð�1 � �3Þ=2, is also
often used. Eliminating � from equations (1.20) and

(1.21), one has,

�2 þ �n � �1 þ �3
2

� �2
¼ 1

4
ð�1 � �3Þ2: (1:22)

Thus, the normal and shear stress on planes with var-

ious orientations can be visualized on a two-dimensional

plane (�–�n space) as a circle whose center is located

at ð0; ð�1 þ �3Þ=2Þ and the radius ð�1 � �3Þ=2
(Fig. 1.3). This is called a Mohr’s circle and plays an

important role in studying the brittle fracture that is

controlled by the stress state (shear–normal stress ratio;

see Section 7.3).

When �1 ¼ �2 ¼ �3 ¼ Pð Þ, then the stress is isotro-

pic (hydrostatic). The hydrostatic component of stress

does not cause plastic flow (this is not true for porous

materials, but we do not discuss porous materials

here), so it is useful to define deviatoric stress

�0
ij � �ij � �ijP: (1:23)

When we discuss plastic deformation in this book, we

use �ij (without prime) to mean deviatoric stress for

simplicity.

Problem 1.2

Show that the second invariant of deviatoric stress

can be written as II�0 ¼ 1

6

h
ð�1 � �2Þ2 þ ð�2 � �3Þ2þ

ð�3 � �1Þ2
i
:

Solution

If one uses a coordinate system parallel to the

principal axes of stress, from equation (1.15), one

has II�0 ¼ ��0
1�

0
2 � �01�

0
3 � �0

3�
0
2. Using I�0 ¼ �0

1 þ �0
2þ

�0
3 ¼ 0; one finds I2� ¼ �02

1 þ �02
2 þ �02

3 þ 2ð�0
1�

0
2þ

�0
2�

0
3 þ �0

3�
0
1Þ ¼ 0. Therefore II�0 ¼ 1

2 ð�02
1 þ �02

2 þ�02
3 Þ:

Now, inserting �0
1 ¼ �1 � 1

3 ð�1 þ �2 þ �3Þ etc., one

obtains II�0 ¼ 1
6 ð�1 � �2Þ2 þ ð�2 � �3Þ2
h

þð�3 � �1Þ2
i
:

Problem 1.3

Show that when the stress has axial symmetry with

respect to the x1 axis (i.e., �2 ¼ �3), then �n ¼ Pþ
ð�1 � �3Þðcos2 �� 1

3Þ.

Solution

From (1.21), one obtains, �n ¼ ð�1 þ �3Þ=2þ
ðð�1 � �3Þ=2Þ cos 2�. Now cos 2� ¼ 2 cos2 �� 1 and

P ¼ 1
3 ð�1 þ �2 þ �3Þ ¼ 1

3 ð�1 þ 2�3Þ ¼ �1 � 2
3 ð�1 � �3Þ.

Therefore �n ¼ Pþ ð�1 � �3Þðcos2 �� 1
3Þ.

Equations similar to (1.15)–(1.17) apply to the

deviatoric stress.

τ

σn

C = ( 0 , (σ1 + σ3) / 2 )
R = (σ1 − σ3) / 2

R

CA B

B = ( 0 , σ3) 
A = ( 0 , σ1)

FIGURE 1.3 A Mohr circle corresponding to two-dimensional stress

showing the variation of normal, �n , and shear stress, � , on a plane.
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1.2. Deformation, strain

1.2.1. Definition of strain

Deformation refers to a change in the shape of a mate-

rial. Since homogeneous displacement of material points

does not cause deformation, deformation must be

related to spatial variation or gradient of displacement.

Therefore, deformation is characterized by a displace-

ment gradient tensor,

dij � @ui
@xj

: (1:24)

where ui is the displacement and xj is the spatial coor-

dinate (after deformation). However, this displacement

gradient includes the rigid-body rotation that has noth-

ing to do with deformation. In order to focus on defor-

mation, let us consider two adjacent material points

P0(X) and Q0(Xþ dX), which will be moved to P(x)

and Q(xþ dx) after deformation (Fig. 1.4). A small

vector connecting P0 and Q0, dX, changes to dx after

deformation. Let us consider how the length of these

two segments changes. The difference in the squares of

the length of these small elements is given by,

ðdxÞ2 � ðdXÞ2 ¼
X3
i¼1

ðdxiÞ2 �
X3
i¼1

ðdXiÞ2

¼
X3
i;j;k¼1

�ij � @Xk

@xi

@Xk

@xj

� �
dxi dxj: (1:25)

Therefore deformation is characterized by a quantity,

"ij � 1

2
�ij �

X3
k¼1

@Xk

@xi

@Xk

@xj

 !
(1:26)

which is the definition of strain, "ij. With this defini-

tion, the equation (1.25) can be written as,

ðdxÞ2 � ðdXÞ2 � 2
X
i;j

"ij dxi dxj: (1:27)

From the definition of strain, it immediately follows

that the strain is a symmetric tensor, namely,

"ij ¼ "ji: (1:28)

Now, from Fig. 1.4, one obtains,

dui ¼ dxi � dXi (1:29)

hence

@ ui
@xj

¼ �ij � @Xi

@xj
: (1:30)

Inserting equation (1.30) into (1.26) one finds,

"ij ¼ 1

2

@ui
@xj

þ @uj
@xi

�
X3
k¼1

@uk
@xi

@uk
@xj

 !
: (1:31)

This definition of strain uses the deformed state as a

reference frame and is called the Eulerian strain. One

can also define strain using the initial, undeformed

reference state. This is referred to as the Lagrangian

strain. For small strain, there is no difference between

the Eulerian and Lagrangian strain and both are

reduced to2

"ij ¼ 1

2

@ui
@xj

þ @uj
@xi

� �
: (1:32)

1.2.2. Meaning of strain tensor

The interpretation of strain is easier in this linearized

form. The displacement gradient can be decomposed

into two components,

@ui
@xj

¼ 1

2

@ui
@xj

þ @uj
@xi

� �
þ 1

2

@ui
@xj

� @uj
@xi

� �
: (1:33)

The first component is a symmetric part,

"ij ¼ 1

2

@ui
@xj

þ @uj
@xi

� �
¼ "ji (1:34)

which represents the strain (as will be shown later in

this chapter).

Po(X)

Qo(X + dX)

u+ du

P(x)

Q(x + dx)dx

dX
u~

~ ~

FIGURE 1.4 Deformation causes the change in relative positions

of material points.

2 Note that in some literature, another definition of shear strain is used in

which "ij ¼ @ui=@xj þ @uj=@xi for i 6¼ j and "ii ¼ @ui=@xi ; e.g., Hobbs

et al. (1976). In such a case, the symbol �ij is often used for the non-

diagonal (i 6¼ j) strain component instead of "ij.
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Let us first consider the physical meaning of the

second part, 1
2ð@ ui

@ xj
� @ uj

@ xi
Þ. The second part is an anti-

symmetric tensor, namely,

oij ¼ 1

2

@ ui
@xj

� @ uj
@xi

� �
¼ �oji ðoii ¼ 0Þ: (1:35)

The displacement of a small vector duj due to the

operation of this matrix is given by,

d~uoi ¼
X3
j¼1

oij duj: (1:36)

Since oii ¼ 0, the displacement occurs only to the direc-

tions that are normal to the initial orientation. Therefore

the operation of this matrix causes the rotation of mate-

rial points with the axis that is normal to both ith and jth

directions with the magnitude (positive clockwise),

tan �ij ¼ � d~uoi
dui

¼ �oji ¼ oij: (1:37)

(Again this rotation tensor is defined using the defor-

med state. So it is referred to as the Eulerian rotation

tensor.) To represent this, a rotation vector is often

used that is defined as,

wð¼ ðo1;o2;o3ÞÞ � ðo23;o31;o12Þ: (1:38)

Thus oi represents a rotation with respect to the ith

axis. The anti-symmetric tensor,oij, is often referred to

as a vorticity tensor.

Now we turn to the symmetric part of displacement

gradient tensor, "ij. The displacement due to the oper-

ation of "ij is,

d~u"i ¼
X3
j¼1

"ij duj: (1:39)

From equation (1.39), it follows that the length of a

component of vector u0i changes to,

~ui ¼ ð1þ "iiÞu0i : (1:40)

Therefore the diagonal component of strain tensor

represents the change in length, so that this component

of strain, "ii, is called normal strain. Consequently,

V

V0
¼ ð1þ "11Þð1þ "22Þð1þ "33Þ � 1þ "11 þ "22 þ "33

(1:41)

whereV0 is initial volume andV is the final volume and

the strain is assumed to be small (this assumption can

be relaxed and the same argument can be applied to a

finite strain, see e.g., MASE (1970)). Thus,

X3
k¼1

"kk ¼ 4V

V
: (1:42)

Obviously, normal strain can be present in defor-

mation without a volume change. For example,

"ij ¼
" 0 0
0 � 1

2 " 0
0 0 � 1

2 "

0
@

1
A represents an elongation

along the 1-axis and contraction along the 2 and

3 axes without volume change.

Now let us consider the off-diagonal components

of strain tensor. From equation (1.39), it is clear that

when all the diagonal components are zero, then all the

displacement vectors must be normal to the direction

of the initial vector. Therefore, there is no change in

length due to the off-diagonal component of strain.

Note, also, that since strain is a symmetric tensor,

"ij ¼ "ji, the directions of rotation of two orthogonal

axes are toward the opposite direction with the same

magnitude (Fig. 1.5). Consequently, the angle of two

orthogonal axes change from p=2 to (see Problem 1.4),

p
2
� tan�1 2"ij: (1:43)

Therefore, the off-diagonal components of strain ten-

sor (i.e., "ij with i 6¼ j) represent the shape change with-

out volume change, namely shear strain.

Problem 1.4*

Derive equation (1.43). (Assume a small strain for

simplicity. The result also works for a finite strain, see

MASE (1970).)

Solution

Let the small angle of rotation of the i axis to the j axis

due to the operation of strain tensor be ��ij (positive

clockwise), then (Fig. 1.5),

tan ��ij ¼ � d~uj
dui

� ��ij ¼ �ð"ji þ ojiÞ ¼ �"ij þ oij:

Similarly, if the rotation of the j axis relative to the i

axis is ��ji, one obtains,

tan ��ji ¼ � d~ui
duj

� ��ji ¼ �ð"ij þ oijÞ ¼ �"ij � oij:

(Note that the rigid-body rotations of the two axes are

opposite with the same magnitude.) Therefore, the net

change in the angle between i and j axes is given by

4�ij ¼ ��ij þ ��ji ¼ �2"ij � tan4�ij:

Hence 4�ij ¼ � tan�1 2"ij.
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1.2.3. Principal strain, strain ellipsoid

Wehave seen two different cases for strain, one in which

the displacement caused by the strain tensor is normal to

the original direction of the material line and another

where the displacement is normal to the original mate-

rial line. In this section, wewill learn that in anymaterial

and in any geometry of strain, there are three directions

along which the displacement is normal to the direction

of original line segment. These are referred to as the

orientation of principal strain, and the magnitude of

strain along these orientations are called principal strain.

One can define the principal strains ð"1; "2; "3;
"14"24"3Þ in the following way. Recall that the nor-

mal displacement along the direction i, � ~ui, along the

vector u is given by,

�~ui ¼
X3
j¼1

"ijuj: (1:44)

Now, let u be the direction in space along which the

displacement is parallel to the direction u. Then,

�~ui ¼ "ui (1:45)

where " is a scalar quantity to be determined. From

equations (1.44) and (1.45),

X3
j¼1

ð"ij � "�ijÞuj ¼ 0: (1:46)

For this equation to have a non-trivial solution other

than u¼ 0, one must have,

j"ij � "�ijj ¼ 0 (1:47)

where Xij

�� �� is the determinant of a matrix Xij. Writing

equation (1.47) explicitly, one gets,

"11 � " "12 "13
"21 "22 � " "32
"31 "32 "33 � "

������
������ ¼ �"3 þ I""

2 þ II""þ III"

¼ 0

(1:48)

with

I" ¼ "11 þ "22 þ "33 (1:49a)

II" ¼ �"11"22 � "11"33 � "33"22 þ "212 þ "213 þ "223
(1:49b)

III" ¼ "11"22"33 þ 2"12"23"31 � "11"
2
23 � "22"

2
13

� "33"
2
12: (1:49c)

Therefore, there are three solutions of equation (1.48),

"1; "2; "3ð"14"24"3Þ. These are referred to as the prin-

cipal strain. The corresponding u0 are the orientations

of principal strain. If the strain tensor is written using

the coordinate whose orientation coincides with the

orientation of principal strain, then,

½"ij� ¼
"1 0 0
0 "2 0
0 0 "3

2
4

3
5: (1:50)

A strain ellipsoid is a useful way to visualize the

geometry of strain. Let us consider a spherical body

in a space and deform it. The shape of a sphere is

described by,

ðu1Þ2 þ ðu2Þ2 þ ðu3Þ2 ¼ 1: (1:51)

The shape of the sphere will change due to deforma-

tion. Let us choose a coordinate system such that the

directions of 1, 2 and 3 axes coincide with the directions

of principal strain. Then the length of each axis of the

original sphere along each direction of the coordinate

system should change to ~ui ¼ ð1þ "iiÞui, and therefore

the sphere will change to an ellipsoid,

ð~u1Þ2
ð1þ "1Þ2

þ ð~u2Þ2
ð1þ "2Þ2

þ ð~u3Þ2
ð1þ "3Þ2

¼ 1: (1:52)

A three-dimensional ellipsoid defined by this equa-

tion is called a strain ellipsoid. For example, if the

shape of grains is initially spherical, then the shape of

grains after deformation represents the strain ellip-

soid. The strain of a rock specimen can be deter-

mined by the measurements of the shape of grains

or some objects whose initial shape is inferred to be

nearly spherical.

x1

x1

x2

x2′

′

FIGURE 1.5 Geometry of shear deformation.

Stress and strain 9

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-84404-8 - Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth
Shun-ichiro Karato
Excerpt
More information

http://www.cambridge.org/0521844045
http://www.cambridge.org
http://www.cambridge.org


Problem 1.5*

Consider a simple shear deformation in which the

displacement of material occurs only in one direction

(the displacement vector is given by u¼ (�y, 0, 0)).

Calculate the strain ellipsoid, and find how the

principal axes of the strain ellipsoid rotate with strain.

Also find the relation between the angle of tilt of the

initially vertical line and the angle of the maximum

elongation direction relative to the horizontal axis.

Solution

For simplicity, let us analyze thegeometry in thex–yplane

(normal to the shear plane) where shear occurs. Consider

a circle defined by x2 þ y2 ¼ 1: By deformation, this

circle changes to an ellipsoid, ðxþ �yÞ2 þ y2 ¼ 1, i.e.,

x2 þ 2�xyþ ð�2 þ 1Þy2 ¼ 1: (1)

Now let us find a new coordinate system that is tilted

from the original one by an angle � (positive counter-

clockwise). With this new coordinate system, x; yð Þ !
X;Yð Þ with

x
y

� �
¼ cos � sin �

�sin � cos �

� �
X
Y

� �
: (2)

By inserting this relation into (1), one finds,

AXXX
2 þ AXYXYþ AYYY

2 ¼ 1 (3)

with

AXX

AXY

AYY

0
@

1
A ¼

1þ 1
2 �

2 � 1
2 �

2 cos 2�� � sin 2�
2�ðcos 2�� 1

2 � sin 2�Þ
1þ 1

2 �
2 þ 1

2 �
2 cos 2�þ � sin 2�

0
@

1
A (4)

Now, in order to obtain the orientation in which

the X–Y directions coincide with the orientations of

principal strain, we set AXY¼ 0, and get tan 2� ¼
2=�: AXX5AYY and therefore X is the direction of

maximum elongation. Because the change in the angle

(’) of the initially vertical line from the vertical direction

is determined by the strain as tan’ ¼ �, we find,

tan � ¼ 1

2
ð�� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ �2

p
Þ

¼ 1

2
ð� tan’þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ tan2

p
’Þ

: (5)

At � ¼ 0, � ¼ p=4.As strain goes to infinity, � ! 1,

i.e., ’ ! p=2, and tan � ! 0 hence � ! 0: the direction

of maximum elongation approaches the direction

of shear. "1 ¼ A
�1=2
XX � 1 changes from 0 at � ¼ 0 to 1

as � ! 1 and "2 ¼ A�1=2
yy � 1 changes from 0 at � ¼ 0

to –1 at � ! 1.

1.2.4. The Flinn diagram

The three principal strains define the geometry of the

strain ellipsoid. Consequently, the shape of the strain

ellipsoid is completely characterized by two ratios,

a � ð"1 þ 1Þ=ð"2 þ 1Þ and b � ð"2 þ 1Þ=ð"3 þ 1Þ. A

diagram showing strain geometry on an a–b plane is

called the Flinn diagram (Fig. 1.6) (FLINN, 1962). In

this diagram, for points along the horizontal axis,

k � ða� 1Þ=ðb� 1Þ ¼ 0, and they correspond to the

flattening strain ð"1 ¼ "24"3ða ¼ 1; b41ÞÞ. For points
along the vertical axis, k ¼ 1, and they correspond to

the extensional strain ð"14"2 ¼ "3ðb ¼ 1; a41ÞÞ. For
points along the central line, k¼ 1 (a¼ b, i.e.,

ð"1 þ 1Þ=ð"2 þ 1Þ ¼ ð"2 þ 1Þ=ð"3 þ 1ÞÞ and deforma-

tion is plane strain (two-dimensional strain where

"2 ¼ 0), when there is no volume change during defor-

mation (see Problem 1.6).

Problem 1.6

Show that the deformation of materials represented by

the points on the line for k¼ 1 in the Flinn diagram is

plane strain (two-dimensional strain) if the volume is

conserved.

Solution

If the volume is conserved by deformation, then

ð"1 þ 1Þð"2 þ 1Þð"3 þ 1Þ ¼ 1 (see equation (1.41)).

k = 0

k = 1

k = ∞

1
1

a 
=

 (ε
1 +

 1
) 

/ (
ε 2

 +
 1)

b = (ε2 + 1) / (ε3 + 1)

FIGURE 1.6 The Flinn diagram (after HOBBS et al., 1976).
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Combined with the relation ð"1 þ 1Þ=ð"2 þ 1Þ ¼
ð"2 þ 1Þ=ð"3 þ 1Þ, we obtain ð"2 þ 1Þ3 ¼ 1 and hence

"2 ¼ 0. Therefore deformation is plane strain.

1.2.5. Foliation, lineation (Fig. 1.7)

When the anisotropic microstructure of a rock is

studied, it is critical to define the reference frame of

the coordinate. Once one identifies a plane of reference

and the reference direction on that plane, then the three

orthogonal axes (parallel to lineation (X direction),

normal to lineation on the foliation plane (Y direction),

normal to foliation (Z direction)) define the reference

frame.

Foliation is usually used to define a reference plane

and lineation is used define a reference direction on the

foliation plane. Foliation is a planar feature in a given

rock, but its origin can be various (HOBBS et al., 1976).

The foliation plane may be defined by a plane normal

to the maximum shortening strain (Fig. 1.7). Foliation

can also be caused by compositional layering, grain-size

variation and the orientation of platy minerals such as

mica. When deformation is heterogeneous, such as the

case for S-C mylonite (LISTER and SNOKE, 1984), one

can identify two planar structures, one corresponds to

the strain ellipsoid (a plane normal to maximum short-

ening, "3) and another to the shear plane.

Lineation is a linear feature that occurs repetitively

in a rock. In most cases, the lineation is found on the

foliation plane, although there are some exceptions.

The most common is mineral lineation, which is defined

by the alignment of non-spherical minerals such as

clay minerals. The alignment of spinel grains in a spinel

lherzolite and recrystallized orthopyroxene in a garnet

lherzolite are often used to define the lineation in peri-

dotites. One cause of lineation is strain, and in this case,

the direction of lineation is parallel to the maximum

elongation direction. However, there are a number of

other possible causes for lineation including the pref-

erential growth of minerals (e.g., HOBBS et al., 1976).

Consequently, the interpretation of the significance

of these reference frames (foliation/lineation) in natu-

ral rocks is not always unique. In particular, the ques-

tion of growth origin versus deformation origin, and

the strain ellipsoid versus the shear plane/shear direc-

tion can be elusive in some cases. Interpretation and

identification of foliation/lineation become more diffi-

cult if the deformation geometry is not constant with

time. Consequently, it is important to state clearly how

one defines foliation/lineation in the structural analysis

of a deformed rock. For more details on foliation and

lineation, a reader is referred to a structural geology

textbook such as HOBBS et al. (1976).

1.2.6. Various deformation geometries

The geometry of strain is completely characterized by the

principal strain, and therefore adiagramsuchas theFlinn

diagram (Fig. 1.6) can be used to define strain. However,

in order to characterize the geometry of deformation

completely, it is necessary to characterize the deformation

gradient tensor ðdij ð¼ "ij þ oijÞÞ. Therefore the rota-

tional component (vorticity tensor), oij, must also be

characterized. In this connection, it is important to dis-

tinguish between irrotational and rotational deformation

geometry. Rotational deformation geometry refers to

deformation in which oij 6¼ 0, and irrotational deforma-

tion geometry corresponds to oij ¼ 0. The distinction

between them is important at finite strain. To illustrate

this point, let us consider two-dimensional deformation

(Fig. 1.8). For irrotational deformation, the orientations

of the principal axes of strain are always parallel to those

of principal stress. Therefore such a deformation is called

coaxial deformation. In contrast, when deformation is

rotational, such as simple shear, the orientations of

principal axes of strain rotate progressively with respect

to those of the stress (see Problem 1.5). This type of

foliation lineation

L

FIGURE 1.7 Typical cases of (a)

foliation and (b) lineation.
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