Introduction to Color Imaging Science

Color imaging technology has become almost ubiquitous in modern life in the form of color photography, color monitors, color printers, scanners, and digital cameras. This book is a comprehensive guide to the scientific and engineering principles of color imaging. It covers the physics of color and light, how the eye and physical devices capture color images, how color is measured and calibrated, and how images are processed. It stresses physical principles and includes a wealth of real-world examples. The book will be of value to scientists and engineers in the color imaging industry and, with homework problems, can also be used as a text for graduate courses on color imaging.

HSIEN-CHE LEE received his B.S. from National Taiwan University in 1973 and Ph.D. in electrical engineering from Purdue University in 1981. He then worked for 18 years at Kodak Research Laboratories in Rochester, New York. There he did research on digital color image processing, color science, human color vision, medical imaging, and computer vision. He is now Senior Vice President of Advanced Imaging at Foxlink Peripherals, Inc., Fremont, California. With more than 20 years of research and product development experience in imaging science, he has given many lectures and short courses on color imaging, color science, and computer vision at various universities and research institutes. He has published many technical papers and has 14 US patents in inventions related to color imaging science.
Introduction to

Color Imaging Science

HSIEN-CHE LEE
This book is dedicated with love and gratitude to my mother, my wife Hui-Jung, and my daughter Joyce for their many, many years of help, support, patience, and understanding.
Contents

Preface

1 Introduction
1.1 What is color imaging science?
1.2 Overview of the book
1.2.1 Measurement of light and color
1.2.2 Optical image formation
1.2.3 In the eye of the beholder
1.2.4 Tools for color imaging
1.2.5 Color image acquisition and display
1.2.6 Image quality and image processing
1.3 The International System of Units (SI)
1.4 General bibliography and guide to the literatures
1.5 Problems

2 Light
2.1 What is light?
2.2 Wave trains of finite length
2.3 Coherence
2.3.1 Temporal coherence
2.3.2 Spatial coherence
2.4 Polarization
2.4.1 Representations of polarization
2.4.2 Stokes parameters
2.4.3 The Mueller matrix
2.4.4 The interference of polarized light
2.5 Problems

3 Radiometry
3.1 Concepts and definitions
3.2 Spectral radiometry
3.3 The International Lighting Vocabulary
3.4 Radiance theorem
3.5 Integrating cavities
Contents

3.6 Blackbody radiation 43
3.6.1 Planck's radiation law 44
3.6.2 Blackbody chromaticity loci of narrow-band systems 46
3.7 Problems 47

4 Photometry 49
4.1 Brightness matching and photometry 49
4.2 The spectral luminous efficiency functions 52
4.3 Photometric quantities 54
4.4 Photometry in imaging applications 58
4.4.1 Exposure value (EV) 59
4.4.2 Guide number 59
4.4.3 Additive system of photographic exposure (APEX) 61
4.5 Problems 62

5 Light–matter interaction 63
5.1 Light, energy, and electromagnetic waves 63
5.2 Physical properties of matter 64
5.3 Light and matter 66
5.3.1 Optical properties of matter 67
5.3.2 Light wave propagation in media 69
5.3.3 Optical dispersion in matter 72
5.3.4 Quantum mechanics and optical dispersion 76
5.4 Light propagation across material boundaries 76
5.4.1 Reflection and refraction 77
5.4.2 Scattering 81
5.4.3 Transmission and absorption 83
5.4.4 Diffraction 84
5.5 Problems 87

6 Colorimetry 89
6.1 Colorimetry and its empirical foundations 89
6.2 The receptor-level theory of color matching 90
6.3 Color matching experiments 93
6.4 Transformation between two sets of primaries 95
6.5 The CIE 1931 Standard Colorimetric Observer (2°) 97
6.6 The CIE 1964 Supplementary Standard Colorimetric Observer (10°) 102
6.7 Calculation of tristimulus values 104
6.8 Some mathematical relations of colorimetric quantities 104
6.9 Cautions on the use of colorimetric data 106
6.10 Color differences and uniform color spaces 107
6.10.1 CIE 1976 UCS diagram 109
6.10.2 CIELUV color space 110
6.10.3 CIELAB color space 111
<table>
<thead>
<tr>
<th>Contents</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.10.4 The CIE 1994 color-difference model (CIE94)</td>
<td>113</td>
</tr>
<tr>
<td>6.10.5 CIE2000 color-difference formula: CIEDE2000</td>
<td>113</td>
</tr>
<tr>
<td>6.11 CIE terms</td>
<td>115</td>
</tr>
<tr>
<td>6.12 The CIE standard light sources and illuminants</td>
<td>116</td>
</tr>
<tr>
<td>6.13 Illuminating and viewing conditions</td>
<td>119</td>
</tr>
<tr>
<td>6.14 The vector space formulation of color calculations</td>
<td>121</td>
</tr>
<tr>
<td>6.15 Applications of colorimetry</td>
<td>124</td>
</tr>
<tr>
<td>6.15.1 The NTSC color signals</td>
<td>124</td>
</tr>
<tr>
<td>6.15.2 Computer graphics</td>
<td>126</td>
</tr>
<tr>
<td>6.15.3 Digital color image processing</td>
<td>127</td>
</tr>
<tr>
<td>6.16 Default color space for electronic imaging: sRGB</td>
<td>128</td>
</tr>
<tr>
<td>6.17 Problems</td>
<td>130</td>
</tr>
<tr>
<td>7 Light sources</td>
<td>132</td>
</tr>
<tr>
<td>7.1 Natural sources</td>
<td>132</td>
</tr>
<tr>
<td>7.1.1 Sunlight and skylight</td>
<td>132</td>
</tr>
<tr>
<td>7.1.2 Moonlight</td>
<td>135</td>
</tr>
<tr>
<td>7.1.3 Starlight</td>
<td>136</td>
</tr>
<tr>
<td>7.2 Artificial sources: lamps</td>
<td>137</td>
</tr>
<tr>
<td>7.2.1 Incandescent lamps</td>
<td>137</td>
</tr>
<tr>
<td>7.2.2 Fluorescent lamps</td>
<td>139</td>
</tr>
<tr>
<td>7.2.3 Electronic flash lamps</td>
<td>140</td>
</tr>
<tr>
<td>7.2.4 Mercury lamps, sodium lamps, and metal halide lamps</td>
<td>141</td>
</tr>
<tr>
<td>7.2.5 Light-emitting diodes (LEDs)</td>
<td>141</td>
</tr>
<tr>
<td>7.3 Color-rendering index</td>
<td>142</td>
</tr>
<tr>
<td>7.4 Problems</td>
<td>144</td>
</tr>
<tr>
<td>8 Scene physics</td>
<td>145</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>145</td>
</tr>
<tr>
<td>8.2 General description of light reflection</td>
<td>145</td>
</tr>
<tr>
<td>8.2.1 The bidirectional reflectance distribution function (BRDF)</td>
<td>147</td>
</tr>
<tr>
<td>8.2.2 Interface reflection</td>
<td>150</td>
</tr>
<tr>
<td>8.2.3 Body reflection</td>
<td>158</td>
</tr>
<tr>
<td>8.2.4 Empirical surface reflection models</td>
<td>160</td>
</tr>
<tr>
<td>8.3 Radiative transfer theory and colorant formulation</td>
<td>164</td>
</tr>
<tr>
<td>8.3.1 Transparent media</td>
<td>164</td>
</tr>
<tr>
<td>8.3.2 Turbid media</td>
<td>167</td>
</tr>
<tr>
<td>8.4 Causes of color</td>
<td>173</td>
</tr>
<tr>
<td>8.4.1 Selective absorption</td>
<td>174</td>
</tr>
<tr>
<td>8.4.2 Scattering</td>
<td>175</td>
</tr>
<tr>
<td>8.4.3 Interference</td>
<td>175</td>
</tr>
<tr>
<td>8.4.4 Dispersion</td>
<td>175</td>
</tr>
<tr>
<td>8.5 Common materials</td>
<td>175</td>
</tr>
<tr>
<td>8.5.1 Water</td>
<td>175</td>
</tr>
</tbody>
</table>
8.5.2 Metals 176
8.5.3 Minerals 176
8.5.4 Ceramics and cements 176
8.5.5 Glass 178
8.5.6 Polymers 178
8.5.7 Plants 179
8.5.8 Animals 180
8.5.9 Humans 181
8.5.10 Pigments and dyes 185
8.5.11 Paints 186
8.5.12 Paper 187
8.5.13 Printing inks 188
8.6 Statistics of natural scenes 190
8.6.1 Colors tend to integrate to gray 190
8.6.2 Log luminance range is normally distributed 191
8.6.3 Log radiances tend to be normally distributed 191
8.6.4 Color variations span a low-dimensional space 191
8.6.5 Power spectra tend to fall off as \((1/f)^n\) 191
8.7 Problems 192

9 Optical image formation 193
9.1 Geometrical and physical optics 193
9.2 The basis of geometrical optics 194
9.3 Projective geometry 196
9.4 The geometrical theory of optical imaging 199
9.5 Conventions and terminology in optical imaging 204
9.6 Refraction at a spherical surface 206
9.6.1 On-axis imaging by a spherical surface 209
9.6.2 Off-axis imaging by a spherical surface 211
9.7 Matrix method for paraxial ray tracing 211
9.8 Matrix description of Gaussian optical imaging systems 219
9.9 Generalized ray tracing 221
9.10 Physical optics 222
9.10.1 Scalar and vector theories of diffraction 223
9.10.2 The field impulse response of an imaging system 226
9.10.3 The optical transfer function (OTF) 229
9.11 Problems 231

10 Lens aberrations and image irradiance 234
10.1 Introduction 234
10.2 Radiometry of imaging 235
10.2.1 On-axis image irradiances 237
10.2.2 Off-axis image irradiances 238
10.2.3 General image irradiances 238
10.3 Light distribution due to lens aberrations

- **10.3.1 Monochromatic aberrations**
- **10.3.2 Depth of field**
- **10.3.3 Sine condition**
- **10.3.4 Chromatic aberration**

10.4 Optical blur introduced by the camera

- **10.4.1 The real lens**
- **10.4.2 The diaphragm**
- **10.4.3 The shutter**
- **10.4.4 Effects of object motion**

10.5 Camera flare

10.6 Problems

11 Eye optics

- **11.1 Anatomy of the eye**
- **11.2 Reduced eye and schematic eyes**
- **11.3 Conversion between retinal distance and visual angle**
- **11.4 Retinal illuminance**
- **11.5 Depth of focus and depth of field**
- **11.6 Focus error due to accommodation**
- **11.7 Pupil size**
- **11.8 Stiles–Crawford effect**
- **11.9 Visual acuity**
- **11.10 Measurements and empirical formulas of the eye MTF**
- **11.11 Method of eye MTF calculation by van Meeteren**
- **11.12 Problems**

12 From retina to brain

- **12.1 The human visual system**
- **12.2 The concepts of receptive field and channel**
- **12.3 Parallel pathways and functional segregation**
- **12.4 The retina**
 - **12.4.1 Photoreceptors: rods and cones**
 - **12.4.2 Horizontal cells**
 - **12.4.3 Bipolar cells**
 - **12.4.4 Amacrine cells**
 - **12.4.5 Ganglion cells**
- **12.5 Lateral geniculate nucleus (LGN)**
 - **12.5.1 Color-opponent encoding**
- **12.6 Visual areas in the human brain**
 - **12.6.1 Primary visual cortex**
 - **12.6.2 Other cortical areas**
- **12.7 Visual perception and the parallel neural pathways**
- **12.8 Problems**
13 Visual psychophysics

13.1 Psychophysical measurements
- 13.1.1 Measurement scales
- 13.1.2 Psychometric methods
- 13.1.3 Data interpretation

13.2 Visual thresholds
- 13.2.1 Absolute thresholds
- 13.2.2 Contrast thresholds
- 13.2.3 Contrast sensitivity functions (CSFs)
- 13.2.4 Photochromatic interval
- 13.2.5 Thresholds of visual blur

13.3 Visual adaptation
- 13.3.1 Achromatic adaptation
- 13.3.2 Chromatic adaptation

13.4 Eye movements and visual perception

13.5 Perception of brightness and lightness
- 13.5.1 Brightness perception of a uniform visual field (ganzfeld)
- 13.5.2 Brightness perception of an isolated finite uniform area
- 13.5.3 Brightness perception of two adjacent uniform areas
- 13.5.4 Brightness and lightness perception depends on the perceived spatial layout

13.6 Trichromatic and opponent-process theories

13.7 Some visual phenomena
- 13.7.1 Brilliance as a separate perceptual attribute
- 13.7.2 Simultaneous perception of illumination and objects
- 13.7.3 Afterimages
- 13.7.4 The Mach band
- 13.7.5 The Chevreul effect
- 13.7.6 Hermann–Hering grids
- 13.7.7 The Craik–O’Brien–Cornsweet effect
- 13.7.8 Simultaneous contrast and successive contrast
- 13.7.9 Assimilation
- 13.7.10 Subjective (illusory) contours
- 13.7.11 The Bezold–Brücke effect
- 13.7.12 The Helmholtz–Kohlrausch effect
- 13.7.13 The Abney effect
- 13.7.14 The McCollough effect
- 13.7.15 The Stiles–Crawford effect
- 13.7.16 Small field tritanopia
- 13.7.17 The oblique effect
- 13.7.18 The McCollough effect
- 13.7.19 Subjective (illusory) contours
- 13.7.20 The Bezold–Brücke effect
- 13.7.21 The Helmholtz–Kohlrausch effect
- 13.7.22 The Abney effect
- 13.7.23 The McCollough effect
- 13.7.24 The Stiles–Crawford effect
- 13.7.25 Small field tritanopia
- 13.7.26 The oblique effect

13.8 Problems

14 Color order systems

14.1 Introduction
14.2 The Ostwald system 360
14.2.1 The Ostwald color order system 361
14.2.2 The Ostwald color atlas 362
14.3 The Munsell system 362
14.3.1 The Munsell color order system 362
14.3.2 The Munsell color atlas 363
14.4 The NCS 365
14.4.1 The NCS color order system 365
14.4.2 The NCS color atlas 366
14.5 The Optical Society of America (OSA) color system 366
14.5.1 The OSA color order system 366
14.5.2 The OSA color atlas 367
14.6 Color harmony 367
14.7 Problems 368

15 Color measurement 369
15.1 Spectral measurements 369
15.1.1 Spectroradiometer 369
15.1.2 Spectrophotometer 371
15.1.3 Factors to consider 371
15.2 Gonioreflectometers 372
15.3 Measurements with colorimetric filters 373
15.4 Computation of tristimulus values from spectral data 374
15.5 Density measurements 374
15.5.1 Reflection density, D_r and D_R 376
15.5.2 Transmission density 378
15.6 Error analysis in calibration measurements 381
15.6.1 Error estimation 381
15.6.2 Propagation of errors 382
15.7 Expression of measurement uncertainty 384
15.8 Problems 385

16 Device calibration 387
16.1 Colorimetric calibration 388
16.1.1 Input calibration 388
16.1.2 Output calibration 390
16.1.3 Device model versus lookup tables 392
16.2 Computational tools for calibration 394
16.2.1 Interpolation 395
16.2.2 Tetrahedral interpolation 401
16.2.3 Regression and approximation 403
16.2.4 Constrained optimization 406
16.3 Spatial calibration 410
16.3.1 Resolution calibration 411
16.3.2 Line fitting on a digital image 413
16.4 Problems 414

17 Tone reproduction 415
17.1 Introduction 415
17.2 TRCs 417
17.3 The concept of reference white 419
17.4 Experimental studies of tone reproduction 420
17.4.1 Best tone reproduction depends on scene contents 422
17.4.2 Best tone reproduction depends on luminance levels 423
17.4.3 Best tone reproduction depends on viewing surrounds 423
17.4.4 Best tone reproduction renders good black 424
17.5 Tone reproduction criteria 425
17.5.1 Reproducing relative luminance 426
17.5.2 Reproducing relative brightness 427
17.5.3 Reproducing visual contrast 428
17.5.4 Reproducing maximum visible details 429
17.5.5 Preferred tone reproduction 431
17.6 Density balance in tone reproduction 431
17.7 Tone reproduction processes 432
17.8 Flare correction 437
17.9 Gamma correction 438
17.10 Problems 440

18 Color reproduction 442
18.1 Introduction 442
18.2 Additive and subtractive color reproduction 442
18.3 Objectives of color reproduction 443
18.3.1 Appearance color reproduction 444
18.3.2 Preferred color reproduction 444
18.4 Psychophysical considerations 446
18.4.1 The effect of the adaptation state 446
18.4.2 The effect of viewing surrounds 449
18.4.3 The effect of the method of presentation 450
18.5 Color balance 450
18.5.1 Problem formulations 451
18.5.2 Color cues 453
18.5.3 Color balance algorithms 454
18.6 Color appearance models 459
18.6.1 Color appearance attributes 460
18.6.2 Descriptions of the stimuli and the visual field 461
18.6.3 CIECAM97s 461
18.6.4 CIECAM02 and revision of CIECAM97s 465
18.7 Theoretical color gamut 468
18.8 Color gamut mapping 470
 18.8.1 Selection of color space and metrics 471
 18.8.2 Computing the device color gamut 472
 18.8.3 Image-independent methods for color gamut mapping 472
18.9 Using more than three color channels 474
18.10 Color management systems 474
18.11 Problems 476

19 Color image acquisition 477
 19.1 General considerations for system design and evaluation 477
 19.1.1 Considerations for input spectral responsivities 478
 19.1.2 Calibration, linearity, signal shaping, and quantization 479
 19.1.3 Dynamic range and signal-to-noise ratio 479
 19.2 Photographic films 480
 19.2.1 The structure of a black-and-white film 480
 19.2.2 The latent image 481
 19.2.3 Film processing 481
 19.2.4 Color photography 482
 19.2.5 Subtractive color reproduction in photography 483
 19.2.6 Color masking 484
 19.2.7 Sensitometry and densitometry 485
 19.3 Color images digitized from photographic films 486
 19.3.1 The effective exposure MTF approach 487
 19.3.2 The nonlinear model approach 488
 19.3.3 Interimage effects 491
 19.4 Film calibration 492
 19.5 Solid-state sensors and CCD cameras 494
 19.5.1 CCD devices 495
 19.5.2 CCD sensor architectures 495
 19.5.3 CCD noise characteristics 497
 19.5.4 CMOS sensors 502
 19.5.5 Exposure control for CCD and CMOS sensors 503
 19.5.6 CCD/CMOS camera systems 504
 19.5.7 CCD/CMOS camera calibrations 507
 19.6 Scanners 512
 19.6.1 Scanner performance and calibration 515
 19.7 A worked example of 3×3 color correction matrix 515
 19.8 Problems 521

20 Color image display 523
 20.1 CRT monitors 523
 20.1.1 Cathode current as a function of drive voltage 525
 20.1.2 Conversion of electron motion energy into light 526
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1.3</td>
<td>CRT phosphors and cathodoluminescence</td>
<td>527</td>
</tr>
<tr>
<td>20.1.4</td>
<td>CRT tone transfer curve</td>
<td>528</td>
</tr>
<tr>
<td>20.1.5</td>
<td>CRT colorimetry</td>
<td>529</td>
</tr>
<tr>
<td>20.2</td>
<td>LCDs</td>
<td>532</td>
</tr>
<tr>
<td>20.2.1</td>
<td>Properties of liquid crystals</td>
<td>532</td>
</tr>
<tr>
<td>20.2.2</td>
<td>The structures of LCDs and how they work</td>
<td>532</td>
</tr>
<tr>
<td>20.2.3</td>
<td>LCD calibration</td>
<td>536</td>
</tr>
<tr>
<td>20.3</td>
<td>PDPs</td>
<td>537</td>
</tr>
<tr>
<td>20.4</td>
<td>Electroluminescent displays</td>
<td>539</td>
</tr>
<tr>
<td>20.4.1</td>
<td>OLED and PLED</td>
<td>539</td>
</tr>
<tr>
<td>20.5</td>
<td>Printing technologies</td>
<td>540</td>
</tr>
<tr>
<td>20.5.1</td>
<td>Offset lithography</td>
<td>541</td>
</tr>
<tr>
<td>20.5.2</td>
<td>Letterpress</td>
<td>542</td>
</tr>
<tr>
<td>20.5.3</td>
<td>Gravure</td>
<td>542</td>
</tr>
<tr>
<td>20.5.4</td>
<td>Screen printing</td>
<td>543</td>
</tr>
<tr>
<td>20.5.5</td>
<td>Silver halide photography</td>
<td>543</td>
</tr>
<tr>
<td>20.5.6</td>
<td>Electrophotography (xerography)</td>
<td>545</td>
</tr>
<tr>
<td>20.5.7</td>
<td>Inkjet printing</td>
<td>546</td>
</tr>
<tr>
<td>20.5.8</td>
<td>Thermal printing</td>
<td>547</td>
</tr>
<tr>
<td>20.6</td>
<td>Half-toning</td>
<td>548</td>
</tr>
<tr>
<td>20.6.1</td>
<td>Photomechanical half-tone screens and screen angles</td>
<td>548</td>
</tr>
<tr>
<td>20.6.2</td>
<td>Screen ruling, addressability, resolution, and gray levels</td>
<td>549</td>
</tr>
<tr>
<td>20.6.3</td>
<td>Digital half-toning</td>
<td>550</td>
</tr>
<tr>
<td>20.7</td>
<td>Printer calibration</td>
<td>557</td>
</tr>
<tr>
<td>20.7.1</td>
<td>Calibration of RGB printers</td>
<td>558</td>
</tr>
<tr>
<td>20.7.2</td>
<td>Four-color printing</td>
<td>560</td>
</tr>
<tr>
<td>20.8</td>
<td>Problems</td>
<td>562</td>
</tr>
<tr>
<td>21</td>
<td>Image quality</td>
<td>564</td>
</tr>
<tr>
<td>21.1</td>
<td>Objective image quality evaluation</td>
<td>564</td>
</tr>
<tr>
<td>21.1.1</td>
<td>Detector efficiency</td>
<td>565</td>
</tr>
<tr>
<td>21.1.2</td>
<td>Spatial frequency analysis</td>
<td>565</td>
</tr>
<tr>
<td>21.1.3</td>
<td>Image noise</td>
<td>567</td>
</tr>
<tr>
<td>21.2</td>
<td>Subjective image quality evaluation</td>
<td>571</td>
</tr>
<tr>
<td>21.2.1</td>
<td>Contrast</td>
<td>572</td>
</tr>
<tr>
<td>21.2.2</td>
<td>Sharpness</td>
<td>573</td>
</tr>
<tr>
<td>21.2.3</td>
<td>Graininess and noise perception</td>
<td>574</td>
</tr>
<tr>
<td>21.2.4</td>
<td>Tonal reproduction</td>
<td>575</td>
</tr>
<tr>
<td>21.2.5</td>
<td>Color reproduction</td>
<td>576</td>
</tr>
<tr>
<td>21.2.6</td>
<td>Combined effects of different image attributes</td>
<td>577</td>
</tr>
<tr>
<td>21.2.7</td>
<td>Multi-dimensional modeling of image quality</td>
<td>578</td>
</tr>
<tr>
<td>21.3</td>
<td>Photographic space sampling</td>
<td>579</td>
</tr>
<tr>
<td>21.4</td>
<td>Factors to be considered in image quality evaluation</td>
<td>580</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.4.1 Observer screening</td>
<td>581</td>
</tr>
<tr>
<td>21.4.2 Planning of experiments</td>
<td>581</td>
</tr>
<tr>
<td>21.5 Image fidelity and difference evaluation</td>
<td>582</td>
</tr>
<tr>
<td>21.5.1 Perceptible color differences</td>
<td>583</td>
</tr>
<tr>
<td>21.5.2 Visible difference prediction</td>
<td>583</td>
</tr>
<tr>
<td>21.6 Problems</td>
<td>584</td>
</tr>
</tbody>
</table>

22 Basic concepts in color image processing

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1 General considerations</td>
<td>585</td>
</tr>
<tr>
<td>22.2 Color spaces and signal representations</td>
<td>587</td>
</tr>
<tr>
<td>22.2.1 Signal characteristics</td>
<td>588</td>
</tr>
<tr>
<td>22.2.2 Noise statistics</td>
<td>590</td>
</tr>
<tr>
<td>22.2.3 System constraints</td>
<td>591</td>
</tr>
<tr>
<td>22.3 Color image segmentation</td>
<td>591</td>
</tr>
<tr>
<td>22.3.1 Color space for image segmentation</td>
<td>592</td>
</tr>
<tr>
<td>22.3.2 Comparison of linear and logarithmic spaces</td>
<td>593</td>
</tr>
<tr>
<td>22.3.3 Method for partitioning the color space</td>
<td>597</td>
</tr>
<tr>
<td>22.3.4 The distance metric</td>
<td>598</td>
</tr>
<tr>
<td>22.4 Color gradient</td>
<td>600</td>
</tr>
<tr>
<td>22.5 Color edge detection</td>
<td>601</td>
</tr>
<tr>
<td>22.5.1 Derivative of a color image</td>
<td>602</td>
</tr>
<tr>
<td>22.5.2 Statistics of noise in a boundary detector</td>
<td>603</td>
</tr>
<tr>
<td>22.5.3 Detection of a step boundary</td>
<td>606</td>
</tr>
<tr>
<td>22.6 Statistics of directional data</td>
<td>608</td>
</tr>
<tr>
<td>22.6.1 Representation and descriptive measures</td>
<td>608</td>
</tr>
<tr>
<td>22.6.2 Model distributions for directional data</td>
<td>609</td>
</tr>
<tr>
<td>22.7 Denoising</td>
<td>611</td>
</tr>
</tbody>
</table>

Appendix Extended tables

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1 CIE 1931 color matching functions and corresponding chromaticities</td>
<td>614</td>
</tr>
<tr>
<td>A.2 CIE 1964 10-degree color matching functions</td>
<td>616</td>
</tr>
<tr>
<td>A.3 Cone fundamentals</td>
<td>618</td>
</tr>
<tr>
<td>A.4 Judd’s modified $V_M(\lambda)$ (CIE 1988) and scotopic $V'(\lambda)$ (CIE 1951)</td>
<td>619</td>
</tr>
<tr>
<td>A.5 Standard illuminants</td>
<td>620</td>
</tr>
<tr>
<td>A.6 CIE daylight vectors</td>
<td>622</td>
</tr>
<tr>
<td>A.7 Pointer’s gamut of real surfaces</td>
<td>623</td>
</tr>
</tbody>
</table>

Glossary

References

Index
Preface

To understand the capturing, the processing, and the display of color images requires knowledge of many disciplines, such as image formation, radiometry, colorimetry, psychophysics, and color reproduction, that are not parts of the traditional training for engineers. Yet, with the advance of sensor, computing, and display technologies, engineers today often have to deal with aspects of color imaging, some more frequently than others. This book is intended as an introduction to color imaging science for engineers and scientists. It will be useful for those who are preparing to work or are already working in the field of color imaging or other fields that would benefit from the understanding of the fundamental processes of color imaging.

The sound training of imaging scientists and engineers requires more than teaching practical knowledge of color signal conversion, such as YIQ to RGB. It also has to impart good understanding of the physical, mathematical, and psychophysical principles underlying the practice. Good understanding ensures correct usage of formulas and enables one to come up with creative solutions to new problems. The major emphasis of this book, therefore, is to elucidate the basic principles and processes of color imaging, rather than to compile knowledge of all known systems and algorithms. Many applications are described, but they serve mainly as examples of how the basic principles can be used in practice and where compromises are made.

Color imaging science covers so many fields of research that it takes much more than one book to discuss its various aspects in reasonable detail. There are excellent books on optics, radiometry, photometry, colorimetry, color science, color vision, visual perception, pigments, dyes, photography, image sensors, image displays, image quality, and graphic arts. Indeed, the best way to understand the science of color imaging is to read books on each of these topics. The obvious problem is the time and effort required for such an undertaking, and this is the main motivation for writing this book. It extracts the essential information from the diverse disciplines to present a concise introduction to the science of color imaging. In doing so, I have made unavoidable personal choices as to what should be included. I have covered most of the topics that I considered important for a basic understanding of color imaging. Readers, who want to know more on any topic, are strongly encouraged to study the books and articles cited in the reference list for further information.

I would like to thank Professor Thomas S. Huang of University of Illinois, for his wonderful lectures and his suggestion of writing a book on color imaging. I would also like to thank Professor Thomas W. Parks of Cornell University for his numerous suggestions on how to improve the presentation of the material and for his help in constructing homework.
problems for students. During the time he and I cotaught a course on color imaging science at Cornell, I learned a lot from his many years of teaching experience. My career in imaging science began under Mr. James S. Alkofer and Dr. Michael A. Kriss. They let me wander around in the interesting world of color imaging under their experienced guidance. I appreciate their encouragement, friendship, and wisdom very much. I am also very grateful to my copy-editor, Maureen Storey, for her patient and meticulous editing of my manuscript.

During the preparation of this book, my wife took care of the family needs and all the housework. Her smiles brightened my tired days and her lively description of her daily activities kept me in touch with the real world. She loves taking pictures and her casual comments on image quality serve as reality checks of all the theories I know. My book-writing also required me to borrow many weekends from my daughter. Her witty and funny remarks to comfort me on my ever increasing time debt just made it more difficult for me to figure out how much I owe her. Certain things cannot be quantified.