Weather Derivative Valuation

Weather Derivative Valuation is the first book to cover all the meteorological, statistical, financial and mathematical issues that arise in the pricing and risk management of weather derivatives. There are chapters on meteorological data and data cleaning, the modelling and pricing of single weather derivatives, the modelling and valuation of portfolios, the use of weather and seasonal forecasts in the pricing of weather derivatives, arbitrage pricing for weather derivatives, risk management, and the modelling of temperature, wind and precipitation. Specific issues covered in detail include the analysis of uncertainty in weather derivative pricing, time series modelling of daily temperatures, the creation and use of probabilistic meteorological forecasts and the derivation of the weather derivative version of the Black–Scholes equation of mathematical finance. Written by consultants who work within the weather derivative industry, this book is packed with practical information and theoretical insight into the world of weather derivative pricing.

Stephen Jewson works for a financial consultancy, where he manages a group that produces commercial software and meteorological data for the weather derivative industry. He has published a large number of articles in the fields of fundamental climate research, applied meteorology and weather derivatives.

Anders Brix works for a financial software and consultancy company, where he runs a group with responsibility for researching and implementing stochastic models for natural catastrophes and weather risk. He has carried out research in probability and statistics, and has applied statistical modelling to a wide variety of fields including weather, insurance, weed science and medical research.
WEATHER DERIVATIVE VALUATION
The Meteorological, Statistical, Financial and Mathematical Foundations

STEPHEN JEWSON AND ANDERS BRIX
with contributions from Christine Ziehmann
Contents

List of figures page x
List of tables xv
Acknowledgements xvii

1 Weather derivatives and the weather derivatives market 1
 1.1 Introduction 1
 1.2 Weather variables and indices 10
 1.3 Derivative pay-offs 19
 1.4 Principles of valuation 28
 1.5 The correlation between weather and the stock market 34
 1.6 Overview of contents 34
 1.7 Notes on citations 35
 1.8 Further reading 36

2 Data cleaning and trends 37
 2.1 Data cleaning 37
 2.2 The sources of trends in meteorological data 42
 2.3 Removing trends in practice 47
 2.4 What kind of trend and how many years of historical data to use? 53
 2.5 Conclusions 57
 2.6 Further reading 58

3 The valuation of single contracts using burn analysis 59
 3.1 Burn analysis 59
 3.2 Further reading 72

4 The valuation of single contracts using index modelling 73
 4.1 Statistical modelling methods 73
 4.2 Modelling the index distribution 74
 4.3 Parametric distributions 77
 4.4 Non-parametric distributions 85
Contents

4.5 Estimating the pay-off distribution and the expected pay-offs 87
4.6 Further reading 92
5 Further topics in the valuation of single contracts 94
5.1 Linear sensitivity analysis: the greeks 94
5.2 The interpretation of delta and gamma 104
5.3 A summary of the interpretation of the greeks 106
5.4 Examples of the greeks 107
5.5 The relative importance of choosing data, trends and distributions 108
5.6 Comparing the accuracy of burn analysis and index modelling for option pricing 109
5.7 The correlation between the results from burn and index modelling 110
5.8 Pricing costless swaps 111
5.9 Multi-year contracts 112
5.10 Derived prices 113
5.11 The pay-off integrand 113
5.12 Pricing options using the swap price 115
5.13 Hedging options with a single swap 116
5.14 Sampling error and structuring 118
5.15 Leap years 120
5.16 Further reading 120

6 The valuation of single contracts using daily modelling 121
6.1 The advantages of daily modelling 121
6.2 The disadvantages of daily modelling 125
6.3 Modelling daily temperatures 125
6.4 The statistical properties of the anomalies 129
6.5 Modelling the anomalies 134
6.6 Non-parametric daily modelling 143
6.7 The use of daily models 145
6.8 The potential accuracy of daily models versus index models 145
6.9 Further reading 147
6.10 Acknowledgements 147

7 Modelling portfolios 148
7.1 Portfolios, diversification and hedging 149
7.2 Index dependences 153
7.3 Burn analysis for portfolios 156
7.4 Modelling the multivariate index distribution 158
Contents

7.5 The daily modelling of portfolios 163
7.6 Parametric models for multivariate temperature variability 163
7.7 Dimension reduction 164
7.8 A general portfolio aggregation method 167
7.9 Further reading 168

8 Managing portfolios 169
8.1 Risk and return 169
8.2 Expanding a portfolio 181
8.3 Pricing against a portfolio 182
8.4 Market making 184
8.5 Efficient implementation methods for adding single contracts to a portfolio 184
8.6 Understanding portfolios 186
8.7 Reducing portfolio risk 189
8.8 Further reading 191

9 An introduction to meteorological forecasts 192
9.1 Weather forecasts 192
9.2 Forecasts of the expected temperature 196
9.3 Forecast skill 198
9.4 Improving forecasts of the expected temperature 203
9.5 Probabilistic forecasts 207
9.6 The use of ensemble forecasts for making probabilistic forecasts 209
9.7 Seasonal forecasts 212
9.8 Predicting El Niño and its effects 216
9.9 Other sources of seasonal predictability 218
9.10 Further reading 219

10 The use of meteorological forecasts in pricing 220
10.1 The use of weather forecasts 221
10.2 Linear swaps on separable linear indices 222
10.3 Linear swaps on separable indices 223
10.4 The general case: any contract, any index 224
10.5 Seasonal forecasts 240
10.6 Further reading 240
10.7 Acknowledgements 240

11 Arbitrage pricing models 241
11.1 Standard arbitrage theory 242
11.2 Comments on the standard theory 247
11.3 Extensions to the standard theory 252
11.4 Weather swap price processes 254
11.5 Pricing dual-trigger contracts 266
11.6 Further reading 266

12 Risk management 268
12.1 Risk management in liquid markets 268
12.2 Marking positions 269
12.3 Expiry risk 273
12.4 Actuarial value at risk 275
12.5 Liquidation value at risk 279
12.6 Credit risk 280
12.7 Liquidity risk 280
12.8 Summary 281
12.9 Further reading 281

13 Modelling non-temperature data 282
13.1 Precipitation 282
13.2 Wind 287
13.3 Further reading 291

A Trend models 292
A.1 A general theory for trend modelling and the uncertainty of trend estimates 292

B Parameter estimation 295
B.1 Statistical models 295
B.2 Parameter estimation 295

C Goodness of fit tests 298
C.1 Goodness of fit tests 298

D Expected pay-offs for normally distributed indices 302
D.1 Pay-off definitions 302
D.2 Pay-off distributions 303
D.3 Useful relations for deriving expressions for the expected pay-off 306
D.4 Closed-form expressions for the expected pay-off 307
D.5 Numerical examples 313

E Pay-off variances for normally distributed indices 315
E.1 Useful relations for deriving expressions for the pay-off variance 315
E.2 Closed-form expressions for the pay-off variance 316
E.3 Numerical examples 322

F Greeks for normally distributed indices 324
F.1 Useful relations for deriving expressions for the greeks 324
F.2 Closed-form expressions for the greeks 325
F.3 Numerical examples 332
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Exact solutions for the kernel density</td>
<td>334</td>
</tr>
<tr>
<td>G.1</td>
<td>Closed-form solutions for the expected pay-off on a kernel density</td>
<td>334</td>
</tr>
<tr>
<td>G.2</td>
<td>Closed-form solutions for the delta on a kernel density</td>
<td>335</td>
</tr>
<tr>
<td>G.3</td>
<td>Closed-form solutions for the gamma on a kernel density</td>
<td>337</td>
</tr>
<tr>
<td>G.4</td>
<td>Closed-form solutions for the pay-off variance on a kernel density</td>
<td>337</td>
</tr>
<tr>
<td>G.5</td>
<td>An example</td>
<td>338</td>
</tr>
<tr>
<td>H</td>
<td>The beta for a normally distributed index</td>
<td>340</td>
</tr>
<tr>
<td>H.1</td>
<td>Useful relations</td>
<td>340</td>
</tr>
<tr>
<td>H.2</td>
<td>Definitions</td>
<td>344</td>
</tr>
<tr>
<td>H.3</td>
<td>Closed-form expressions for the beta</td>
<td>344</td>
</tr>
<tr>
<td>H.4</td>
<td>Discussion</td>
<td>349</td>
</tr>
<tr>
<td>H.5</td>
<td>Numerical examples</td>
<td>350</td>
</tr>
<tr>
<td>I</td>
<td>Simulation methods</td>
<td>353</td>
</tr>
<tr>
<td>I.1</td>
<td>Introduction</td>
<td>353</td>
</tr>
<tr>
<td>J</td>
<td>Efficient methods for pricing against a portfolio</td>
<td>358</td>
</tr>
<tr>
<td>J.1</td>
<td>Efficient methods for modelling one extra contract</td>
<td>358</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>360</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>369</td>
</tr>
</tbody>
</table>
Figures

1.1 Daily minimum, maximum and average temperatures for London Heathrow, 2000
1.2 Heating and cooling degree days for London Heathrow, 2000
1.3 The pay-off functions for the various contracts described in the text
2.1 CDDs for New York LaGuardia over the last thirty-five years
2.2 A segment of stationary white noise; the values have been chosen to look like the number of CDDs at New York LaGuardia
2.3 The rate of November to March HDD trends over the last thirty years for two hundred US locations
2.4 Historical values for summer CDDs at New York LaGuardia and New York Central Park
2.5 Examples of the six trend shapes discussed in the text, all fitted to London Heathrow November to March HDDs, 1972 to 2001
2.6 The estimated mean index for London Heathrow November to March HDDs as a function of the number of years of historical data used, and estimates of the standard deviation of the HDD index
2.7 The RMSE for different detrending methods applied over the last fifty years, averaged over two hundred US locations
2.8 The linear trend in the average temperature at Chicago O’Hare for different weeks of the year, 1972 to 2002
3.1 The results of burn analysis on three contracts based on London Heathrow
List of figures

3.2 The results of a trading simulation in which the same option is traded over and over again for independent realisations of the index 67
3.3 The distribution from which the estimate of the fair price will come; the correct value is 33.34 70
4.1 Various ways of comparing a fitted distribution with data 79
4.2 Cumulative distribution functions 80
4.3 QQ plots showing the goodness of fit of Poisson, binomial and negative binomial distributions to an index of extreme weather 84
4.4 A histogram and three different kernel densities fitted to thirty years of loess detrended historical data for the November to March HDD index for London Heathrow 87
4.5 The CDFs and PDFs for the pay-off from a capped swap and a capped option contract 88
4.6 Various convergences 91
5.1 Eight realisations of the possible development of the expected index for a call option contract 96
5.2 Eight realisations of the possible development of delta for a call option contract 98
5.3 Eight realisations of the possible development of gamma for a call option contract 99
5.4 Eight realisations of the possible development of zeta for a call option contract 99
5.5 The ratio of the sensitivity of the expected pay-off of call option contracts due to changes in the trend to the sensitivity of the expected pay-off due to changes in the distribution, versus the strike in non-dimensional units, for London, New York, Chicago and Tokyo 108
5.6 The ratio of the sensitivity of the expected pay-off of call option contracts due to changes in the trend to the sensitivity of the expected pay-off due to changes in the number of years of data used, versus the strike in non-dimensional units, for London, New York, Chicago and Tokyo 109
5.7 The variation of the reduction in error with number of years of historical data for index modelling versus burn against strikes for a call option in non-dimensional units 111
5.8 The correlation between burn and modelling estimates of the expected pay-off for a call option

5.9 The shape of the pay-off integrand for the swap and option contracts described in the text

5.10 The optimum size of a static hedge for an option contract for different risk measures

6.1 The process of the deseasonalisation of daily temperatures

6.2 QQ plots showing the annual distribution of temperatures for Chicago and Miami

6.3 Chicago surface air temperature anomalies for summer and winter

6.4 QQ plots for temperature anomalies in Miami for the four seasons

6.5 The annual ACFs for temperature anomalies in Chicago and Miami

6.6 The observed ACFs for Miami for the four seasons

6.7 QQ plots for temperature anomalies in Miami for the four seasons, after having been transformed using the non-parametric, seasonally varying transform described in the text

6.8 The observed and modelled ACFs from ARMA models applied to Chicago daily temperatures

6.9 The residuals from the ARMA models shown in figure 6.8

6.10 QQ plots of indices derived from the ARMA models shown in figure 6.8

6.11 The observed and modelled ACF for Chicago temperature anomalies using an ARFIMA model

6.12 The residuals for the ARFIMA model shown in figure 6.11

6.13 QQ plots of indices derived from the ARFIMA model shown in figure 6.8

6.14 The observed and modelled ACFs for Chicago

6.15 The seasonal variation of the four regression parameters for the SAROMA model for Miami

6.16 The observed and modelled ACFs for Miami for the four seasons

6.17 The potential accuracy for an index model and a daily model applied to a thirty-day and a ninety-day contract

7.1 Correlations between Chicago temperature and temperature at other locations in the United States at different daily lags

7.2 The d parameter from the VARFIMA model
<table>
<thead>
<tr>
<th>List of figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3 ACFs and CCFs from observations and from the VARFIMA model fitted to three US locations</td>
<td>165</td>
</tr>
<tr>
<td>7.4 ACFs and CCFs from model and observations for three US locations; the model is the SVD-VARFIMA model fitted to twenty US locations</td>
<td>167</td>
</tr>
<tr>
<td>8.1 Graph of exponential utility for values of a of 1 and 2</td>
<td>176</td>
</tr>
<tr>
<td>9.1 An example forecast, with climatological mean and range, and observed temperatures, for a fixed forecast day</td>
<td>197</td>
</tr>
<tr>
<td>9.2 An example forecast, with climatological mean and range, and observed temperatures, for a fixed lead time of 2 days</td>
<td>197</td>
</tr>
<tr>
<td>9.3 An example forecast, with climatological mean and range, and observed temperatures, for a fixed target day</td>
<td>198</td>
</tr>
<tr>
<td>9.4 An example of an ensemble forecast</td>
<td>199</td>
</tr>
<tr>
<td>9.5 The bias versus lead time for the example forecast</td>
<td>200</td>
</tr>
<tr>
<td>9.6 The RMSE for the example forecast and for the climatological mean</td>
<td>202</td>
</tr>
<tr>
<td>9.7 The anomaly correlation versus lead time for the example forecast</td>
<td>203</td>
</tr>
<tr>
<td>9.8 A probabilistic version of the forecast in figure 9.1</td>
<td>208</td>
</tr>
<tr>
<td>9.9 The empirical relationship between spread and volatility for the NCEP forecast</td>
<td>212</td>
</tr>
<tr>
<td>9.10 The November to March average temperature for the Niño3.4 region of the equatorial Pacific</td>
<td>214</td>
</tr>
<tr>
<td>9.11 The relationship between the winter temperature in the Niño3.4 region and the winter temperature in four US cities</td>
<td>217</td>
</tr>
<tr>
<td>9.12 The relationship between the winter temperature in the Niño3.4 region and the winter temperature in Chicago</td>
<td>218</td>
</tr>
<tr>
<td>10.1 The correlation between cumulative temperature and the estimate of the standard deviation of cumulative temperature</td>
<td>227</td>
</tr>
<tr>
<td>10.2 The standard deviation of forecast changes versus lead time</td>
<td>234</td>
</tr>
<tr>
<td>10.3 The correlation of forecast changes between different lead times</td>
<td>235</td>
</tr>
<tr>
<td>10.4 The swap volatility from the trapezium model, and calculated from forecasts</td>
<td>237</td>
</tr>
<tr>
<td>10.5 The volatility from a seasonal trapezium model and a non-seasonal trapezium model for a one-month contract in November</td>
<td>238</td>
</tr>
</tbody>
</table>
List of figures

10.6 The volatility from a seasonal trapezium model and a non-seasonal trapezium model for a November to March contract 238
11.1 The relationship between the standard deviation of the settlement index and the risk loading 263
11.2 The modelling of the effects of transaction costs 265
12.1 Eight simulations of possible outcomes for the expected pay-off and the 10 per cent and 90 per cent quantiles of the pay-off distribution for a single call option contract 274
12.2 Eight simulations of possible outcomes for the 5 per cent relative actuarial VaR for a single call option 277
12.3 Eight simulations of possible outcomes for the expected pay-off and the actuarial VaR of a portfolio of two contracts 278
13.1 Daily precipitation at Chicago O’Hare, 1958 to 2002 283
13.2 The empirical CDF for daily precipitation at Chicago O’Hare, 1958 to 2002 284
13.3 Precipitation at Chicago O’Hare, 1958 to 2002, with a loess trend superimposed 284
13.4 The index CDFs for cumulative precipitation at Chicago O’Hare, 1958 to 2002 285
13.5 The index QQ plots for gamma distributions for cumulative precipitation at Chicago O’Hare, 1958 to 2002 285
13.6 The index QQ plots for a gamma and a normal distribution for total January precipitation at Chicago O’Hare, 1958 to 2002 286
13.7 A QQ plot for daily precipitation at Chicago O’Hare, 1958 to 2002 286
13.9 The November to March and May to September indices of cumulative cubed hourly wind speeds at Philadelphia International, 1961 to 2003 289
13.10 QQ plots for the daily indices of cumulative cubed hourly wind speeds at Philadelphia International, 1961 to 2003 290
13.11 Hourly wind speeds for two years of data at Philadelphia International 290
13.12 QQ plots for hourly wind speeds for two years of data at Philadelphia International 291
1.1 The inverse of the CDF F can be used to simulate a random variable with distribution F 354
Tables

1.1 Expectations of monthly numbers of days above a baseline, estimated using thirty years of data with linear detrending and one year of extrapolation, at various locations in Europe and Japan and in the United States 13

1.2 Expectations of monthly sums of daily HDDs, estimated using thirty years of data with linear detrending and one year of extrapolation, at various locations in Europe and Japan and in the United States 14

1.3 Expectations of monthly numbers of days below a baseline, estimated using thirty years of data with linear detrending and one year of extrapolation, at various locations in Europe and Japan and in the United States 15

1.4 Expectations of monthly sums of CDDs, estimated using thirty years of data with linear detrending and one year of extrapolation, at various locations in Europe and Japan and in the United States 16

1.5 Expectations of monthly averages of daily average temperatures, estimated using thirty years of data with linear detrending and one year of extrapolation, at various locations in Europe and Japan and in the United States 17

2.1 The mean and standard deviation of the settlement index for London Heathrow November to March HDDs, estimated using different numbers of years of historical data and different trend assumptions 52
List of tables

3.1 The estimated sampling uncertainty on the mean and the standard deviation of a weather index estimated using ten, twenty, thirty and forty years of data 69

6.1 Eight US weather stations, with the optimum lengths of the four moving averages, as selected automatically as part of the fitting procedure for the AROMA model 142

7.1 Winter HDD correlations between a number of US locations 154
7.2 Winter HDD correlations between London and a number of US locations 155
7.3 Winter HDD correlations between a number of European locations 155

9.1 El Niño and La Niña winters since 1950 215
13.1 The daily precipitation statistics for Chicago O’Hare, 1958 to 2002, in inches 283
G.1 The observed numbers of London Heathrow November to March HDDs, 1993 to 2002 338
Acknowledgements

There are many people to whom we are grateful for interesting discussions on topics related to weather derivatives pricing. In particular we would like to thank Ali al Ali, Andre de Vries, Anlong Li, Anna Maria Velioti, Arnaud Remy, Auguste Boissonneade, Barney Schauble, Bill Gebhardt, Cat Woolgar, Chris Michael, Claudio Baraldi, Dario Villani, Dave Pethick, Dave Whitehead, David Chen, Dorje Brody, Ed Kim, Fabien Dornier, Gearoid Lane, Guillaume Legal, James Dolby, Jas Badyal, Jay Ganz, Jeff Hamlin, Jeremy Penzer, Jeff Porter, Jerome Brochard, Joe Hrgovic, Jo Syroka, Juerg Trueb, Lenny Smith, Lin Zhang, Marc Hannebert, Mark Lenseen, Mark Roulston, Martin Jones, Martin Malinow, Mark Nichols, Mark Tawney, Mihail Zervos, Neil Hohmann, Nick Ward, Olivier Luc, Pascal Mailier, Paul Vandermarck, Peter Brewer, Philipp Schönbucher, Richard Dixon, Rick Knabb, Rodrigo Caballero, Ross McIntyre, Sandeep Ramachandran, Sarah Lauridsen, Scott Lupien, Seth Padowitz, Sharad Agnihotri, Simon Mason, Stuart Jones, Tony Barnston and Vivek Kumar.

In addition we would like to thank the people who created and made available the various bits of free software that we have used (Tex, Latex and Miktek, Cygwin, Emacs, Ferret, OpenOffice and R), and to thank Earth Satellite Corporation for providing the data used to create some of the graphics.

Finally Stephen Jewson would like to thank Rie and Lynne for their patience and encouragement, without which it would not have been possible to write this book, and Anders Brix would like to thank Sarah for her support and patience throughout the project.

The authors’ revenues from sales of this book will all be donated to Centrepoint, a charity for homeless and socially excluded young people in the United Kingdom (see http://www.centrepoint.org.uk).

xvii