WEATHER DERIVATIVE VALUATION

Weather Derivative Valuation is the first book to cover all the meteorological, statistical, financial and mathematical issues that arise in the pricing and risk management of weather derivatives. There are chapters on meteorological data and data cleaning, the modelling and pricing of single weather derivatives, the modelling and valuation of portfolios, the use of weather and seasonal forecasts in the pricing of weather derivatives, arbitrage pricing for weather derivatives, risk management, and the modelling of temperature, wind and precipitation. Specific issues covered in detail include the analysis of uncertainty in weather derivative pricing, time series modelling of daily temperatures, the creation and use of probabilistic meteorological forecasts and the derivation of the weather derivative version of the Black–Scholes equation of mathematical finance. Written by consultants who work within the weather derivative industry, this book is packed with practical information and theoretical insight into the world of weather derivative pricing.

STEPHEN JEWSON works for a financial consultancy, where he manages a group that produces commercial software and meteorological data for the weather derivative industry. He has published a large number of articles in the fields of fundamental climate research, applied meteorology and weather derivatives.

ANDERS BRIX works for a financial software and consultancy company, where he runs a group with responsibility for researching and implementing stochastic models for natural catastrophes and weather risk. He has carried out research in probability and statistics, and has applied statistical modelling to a wide variety of fields including weather, insurance, weed science and medical research.

WEATHER DERIVATIVE VALUATION

The Meteorological, Statistical, Financial and Mathematical Foundations

STEPHEN JEWSON AND ANDERS BRIX with contributions from Christine Ziehmann

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press

The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org information on this title: www.cambridge.org/9780521843713

© Stephen Jewson, Anders Brix 2005

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2005

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Weather derivative valuation: the meteorological, statistical, financial and mathematical foundations / Stephen Jewson and Anders Brix, with contributions from Christine Ziehmann.

p. cm. Includes bibliographical references and index. ISBN 0 521 84371 5 (hb : alk. paper) 1. Weather derivatives – Valuation I. Brix, Anders. II. Title.

 $\begin{array}{r} HG6052.J49 \ 2005 \\ 332.64'57 - dc22 \ \ 2004054200 \end{array}$

ISBN 0 521 84371 5

ISBN-13 978-0-521-84371-3 hardback ISBN-10 0-521-84371-5 hardback

Cambridge University Press has no responsibility for the presistence or accuracy of URLs for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List	of figures	page x
	List	of tables	XV
	Ackn	nowledgements	xvii
1	Weat	ther derivatives and the weather derivatives market	1
	1.1	Introduction	1
	1.2	Weather variables and indices	10
	1.3	Derivative pay-offs	19
	1.4	Principles of valuation	28
	1.5	The correlation between weather and the stock market	34
	1.6	Overview of contents	34
	1.7	Notes on citations	35
	1.8	Further reading	36
2	Data	cleaning and trends	37
	2.1	Data cleaning	37
	2.2	The sources of trends in meteorological data	42
	2.3	Removing trends in practice	47
	2.4	What kind of trend and how many years of historical	
		data to use?	53
	2.5	Conclusions	57
	2.6	Further reading	58
3	The [·]	valuation of single contracts using burn analysis	59
	3.1	Burn analysis	59
	3.2	Further reading	72
4	The [·]	valuation of single contracts using index modelling	73
	4.1	Statistical modelling methods	73
	4.2	Modelling the index distribution	74
	4.3	Parametric distributions	77
	4.4	Non-parametric distributions	85

ambridge University Press
521843715 - Weather Derivative Valuation: The Meteorological, Statistical, Financial and Mathematical
oundations
ephen Jewson and Anders Brix
ontmatter
ore information

vi		Contents	
	4.5	Estimating the pay-off distribution and the	
		expected pay-offs	87
	4.6	Further reading	92
5	Furth	ner topics in the valuation of single contracts	94
	5.1	Linear sensitivity analysis: the greeks	94
	5.2	The interpretation of delta and gamma	104
	5.3	A summary of the interpretation of the greeks	106
	5.4	Examples of the greeks	107
	5.5	The relative importance of choosing data, trends	100
	FC	and distributions	108
	5.0	Comparing the accuracy of burn analysis and index	100
		modelling for option pricing	109
	5.7	in day and delling	110
	ЕQ	Index modeling	110
	0.8 5.0	Pricing costless swaps	111
	5.9 E 10	Multi-year contracts	112
	5.10 5.11	The pay off integrand	110 119
	0.11 5 19	The pay-on integrand	115 115
	5.12 5.12	Hodging options with a single swap	110
	5.14	Sampling options with a single swap	110
	5.14 5.15	Loop yoars	110
	5.16	Euclip years	120
6	The T	runner reading	120
0	6 1	The advantages of daily modelling	121
	6.2	The disadvantages of daily modelling	121
	6.3	Modelling daily temperatures	125
	6.4	The statistical properties of the anomalies	120
	6.5	Modelling the anomalies	134
	6.6	Non-parametric daily modelling	143
	6.7	The use of daily models	145
	6.8	The potential accuracy of daily models versus	110
	0.0	index models	145
	6.9	Further reading	147
	6.10	Acknowledgements	147
7	Mode	elling portfolios	148
	7.1	Portfolios, diversification and hedging	149
	7.2	Index dependences	153
	7.3	Burn analysis for portfolios	156
	7.4	Modelling the multivariate index distribution	158

		Contents	vii
	7.5	The daily modelling of portfolios	163
	7.6	Parametric models for multivariate	
		temperature variability	163
	7.7	Dimension reduction	164
	7.8	A general portfolio aggregation method	167
	7.9	Further reading	168
8	Mana	aging portfolios	169
	8.1	Risk and return	169
	8.2	Expanding a portfolio	181
	8.3	Pricing against a portfolio	182
	8.4	Market making	184
	8.5	Efficient implementation methods for adding single	
		contracts to a portfolio	184
	8.6	Understanding portfolios	186
	8.7	Reducing portfolio risk	189
	8.8	Further reading	191
9	An ir	ntroduction to meteorological forecasts	192
	9.1	Weather forecasts	192
	9.2	Forecasts of the expected temperature	196
	9.3	Forecast skill	198
	9.4	Improving forecasts of the expected temperature	203
	9.5	Probabilistic forecasts	207
	9.6	The use of ensemble forecasts for making	
		probabilistic forecasts	209
	9.7	Seasonal forecasts	212
	9.8	Predicting El Niño and its effects	216
	9.9	Other sources of seasonal predictability	218
	9.10	Further reading	219
10	The ι	use of meteorological forecasts in pricing	220
	10.1	The use of weather forecasts	221
	10.2	Linear swaps on separable linear indices	222
	10.3	Linear swaps on separable indices	223
	10.4	The general case: any contract, any index	224
	10.5	Seasonal forecasts	240
	10.6	Further reading	240
	10.7	Acknowledgements	240
11	Arbit	rage pricing models	241
	11.1	Standard arbitrage theory	242
	11.2	Comments on the standard theory	247
	11.3	Extensions to the standard theory	252

V	viii	Contents	
	11.4	Weather swap price processes	254
	11.5	Pricing dual-trigger contracts	266
	11.6	Further reading	266
1	2 Risk	management	268
	12.1	Risk management in liquid markets	268
	12.2	Marking positions	269
	12.3	Expiry risk	273
	12.4	Actuarial value at risk	275
	12.5	Liquidation value at risk	279
	12.6	Credit risk	280
	12.7	Liquidity risk	280
	12.8	Summary	281
	12.9	Further reading	281
1	13 Mod	lelling non-temperature data	282
	13.1	Precipitation	282
	13.2	Wind	287
	13.3	Further reading	291
I	A Tren	nd models	292
	A.1	A general theory for trend modelling and the	
		uncertainty of trend estimates	292
Ι	B Para	ameter estimation	295
	B.1	Statistical models	295
	B.2	Parameter estimation	295
(C Goo	dness of fit tests	298
	C.1	Goodness of fit tests	298
Ι	D Exp	ected pay-offs for normally distributed indices	302
	D.1	Pay-off definitions	302
	D.2	Pay-off distributions	303
	D.3	Useful relations for deriving expressions for the	
		expected pay-off	306
	D.4	Closed-form expressions for the expected pay-off	307
	D.5	Numerical examples	313
I	E Pay-	off variances for normally distributed indices	315
	E.1	Useful relations for deriving expressions for the	
		pay-off variance	315
	E.2	Closed-form expressions for the pay-off variance	316
	E.3	Numerical examples	322
I	F Gree	eks for normally distributed indices	324
	F.1	Useful relations for deriving expressions for the greeks	324
	F.2	Closed-form expressions for the greeks	325
	F.3	Numerical examples	332

		Contents	ix
G	Exac	t solutions for the kernel density	334
	G.1	Closed-form solutions for the expected pay-off on a	
		kernel density	334
	G.2	Closed-form solutions for the delta on a kernel density	335
	G.3	Closed-form solutions for the gamma on	
		a kernel density	337
	G.4	Closed-form solutions for the pay-off variance on a	
		kernel density	337
	G.5	An example	338
Η	The	beta for a normally distributed index	340
	H.1	Useful relations	340
	H.2	Definitions	344
	H.3	Closed-form expressions for the beta	344
	H.4	Discussion	349
	H.5	Numerical examples	350
Ι	Simu	lation methods	353
	I.1	Introduction	353
J	Effici	ent methods for pricing against a portfolio	358
	J.1	Efficient methods for modelling one extra contract	358
	Refer	rences	360
	Index	C	369

Figures

1.1	Daily minimum, maximum and average temperatures for	
	London Heathrow, 2000	10
1.2	Heating and cooling degree days for London Heathrow, 2000	12
1.3	The pay-off functions for the various contracts described	
	in the text	19
2.1	CDDs for New York LaGuardia over the last thirty-five years	42
2.2	A segment of stationary white noise; the values have	
	been chosen to look like the number of CDDs at	
	New York LaGuardia	43
2.3	The rate of November to March HDD trends over the	
	last thirty years for two hundred US locations	45
2.4	Historical values for summer CDDs at New York	
	LaGuardia and New York Central Park	47
2.5	Examples of the six trend shapes discussed in the text,	
	all fitted to London Heathrow November to March	
	HDDs, 1972 to 2001	49
2.6	The estimated mean index for London Heathrow	
	November to March HDDs as a function of the	
	number of years of historical data used, and estimates	
	of the standard deviation of the HDD index	54
2.7	The RMSE for different detrending methods applied over	
	the last fifty years, averaged over two hundred US	
	locations	56
2.8	The linear trend in the average temperature at Chicago	
	O'Hare for different weeks of the year, 1972 to 2002	56
3.1	The results of burn analysis on three contracts based on	
	London Heathrow	65

	List of figures	xi
3.2	The results of a trading simulation in which the same option is traded over and over again for independent	67
• •	The distribution from which the estimate of the fair	07
J .J	register will correct the correct value is 22.24	70
4 1	Various more of comparing a fitted distribution with data	70
4.1	Current various ways of comparing a fitted distribution with data	79 80
4.2	Cumulative distribution functions OO plots showing the moduloss of ft of Deisson	80
4.0	binomial and negative binomial distributions to an	
	index of extreme weather	84
4.4	A histogram and three different kernel densities fitted to thirty years of loess detrended historical data for the	
	November to March HDD index for London Heathrow	87
4.5	The CDFs and PDFs for the pay-off from a capped swap	
	and a capped option contract	88
4.6	Various convergences	91
5.1	Eight realisations of the possible development of the expected index for a call option contract	96
5.2	Eight realisations of the possible development of delta	00
	for a call option contract	98
5.3	Eight realisations of the possible development of gamma	
	for a call option contract	99
5.4	Eight realisations of the possible development of zeta for a call option contract	99
5.5	The ratio of the sensitivity of the expected pay-off of call	
	option contracts due to changes in the trend to the sensitivity of the expected pay-off due to changes in	
	the distribution, versus the strike in non-dimensional units, for London, New York, Chicago and Tokyo	108
5.6	The ratio of the sensitivity of the expected pay-off of call option contracts due to changes in the trend to the	
	sensitivity of the expected pay-off due to changes in	
	the number of years of data used, versus the strike in	
	non-dimensional units, for London, New York, Chicago and Tokyo	109
5.7	The variation of the reduction in error with number of	
	years of historical data for index modelling versus burn	
	against strikes for a call option in non-dimensional	
	units	111

xii	List of figures	
5.8	The correlation between burn and modelling estimates of	
	the expected pay-off for a call option	111
5.9	The shape of the pay-off integrand for the swap and	
F 10	option contracts described in the text	114
5.10	a ne optimum size of a static hedge for an option	110
6.1	The process of the deseasonalisation of daily temperatures	110
6.2	QQ plots showing the annual distribution of	120
0.2	temperatures for Chicago and Miami	129
6.3	Chicago surface air temperature anomalies for summer	
	and winter	130
6.4	QQ plots for temperature anomalies in Miami for the	
	four seasons	130
6.5	The annual ACFs for temperature anomalies in Chicago	
	and Miami	131
6.6	The observed ACF's for Miami for the four seasons	131
6.7	QQ plots for temperature anomalies in Miami for the	
	non-parametric seasonally varying transform	
	described in the text	135
6.8	The observed and modelled ACFs from ARMA models	100
	applied to Chicago daily temperatures	138
6.9	The residuals from the ARMA models shown in figure 6.8	138
6.10	QQ plots of indices derived from the ARMA models	
	shown in figure 6.8	139
6.11	The observed and modelled ACF for Chicago	
	temperature anomalies using an ARFIMA model	140
6.12	The residuals for the ARFIMA model shown in figure 6.11	141
6.13	QQ plots of indices derived from the ARFIMA model	1 4 1
C 14	shown in figure 6.8	141
$0.14 \\ 6.15$	The conserved and modelled ACFS for Unicago	143
0.15	for the SAROMA model for Miami	143
6.16	The observed and modelled ACFs for Miami for the four	140
0.10	seasons	144
6.17	The potential accuracy for an index model and a daily	
	model applied to a thirty-day and a ninety-day contract	146
7.1	Correlations between Chicago temperature and	
	temperature at other locations in the United States at	
	different daily lags	154
7.2	The d parameter from the VARFIMA model	164

	List of figures	xiii
7.3	ACFs and CCFs from observations and from the VARFIMA model fitted to three US locations	165
7.4	ACFs and CCFs from model and observations for three US locations; the model is the SVD-VARFIMA model	
	fitted to twenty US locations	167
8.1	Graph of exponential utility for values of a of 1 and 2	176
9.1	An example forecast, with climatological mean and	
	range, and observed temperatures, for a fixed forecast day	197
9.2	An example forecast, with climatological mean and	
	range, and observed temperatures, for a fixed lead	105
0.0	time of 2 days	197
9.3	An example forecast, with climatological mean and	100
0.4	An example of an ensemble forecast	198
9.4 9.5	The bias versus lead time for the example forecast	200
9.6	The BMSE for the example forecast and for the	200
0.0	climatological mean	202
9.7	The anomaly correlation versus lead time for the	
	example forecast	203
9.8	A probabilistic version of the forecast in figure 9.1	208
9.9	The empirical relationship between spread and volatility	
	for the NCEP forecast	212
9.10	The November to March average temperature for the	
	Niño3.4 region of the equatorial Pacific	214
9.11	The relationship between the winter temperature in the	
	Niño 3.4 region and the winter temperature in four US	01 -
0.10		217
9.12	Nião 2.4 norion and the winter temperature in Chicago	919
10.1	The correlation between cumulative temperature and the	210
10.1	estimate of the standard deviation of cumulative	
	temperature	227
10.2	The standard deviation of forecast changes versus lead	
	time	234
10.3	The correlation of forecast changes between different	
	lead times	235
10.4	The swap volatility from the trapezium model, and	
	calculated from forecasts	237
10.5	The volatility from a seasonal trapezium model and a	
	non-seasonal trapezium model for a one-month	020
	contract in November	238

xiv	List of figures	
10.6	The volatility from a seasonal trapezium model and a non-seasonal trapezium model for a November to	
	March contract	238
11.1	The relationship between the standard deviation of the	000
11.0	Settlement index and the risk loading	203
11.2 19.1	Fight simulations of passible outcomes for the superiod	200
12.1	pay-off and the 10 per cent and 90 per cent quantiles of the pay-off distribution for a single call option contract	274
12.2	Fight simulations of possible outcomes for the 5 per cent	211
12.2	relative actuarial VaB for a single call option	277
12.3	Fight simulations of possible outcomes for the expected	211
12.0	pay-off and the actuarial VaR of a portfolio of two contracts	278
13.1	Daily precipitation at Chicago O'Hare, 1958 to 2002	$\frac{-10}{283}$
13.2	The empirical CDF for daily precipitation at Chicago	
	O'Hare. 1958 to 2002	284
13.3	Precipitation at Chicago O'Hare, 1958 to 2002, with a	-
	loess trend superimposed	284
13.4	The index CDFs for cumulative precipitation at Chicago	
	O'Hare, 1958 to 2002	285
13.5	The index QQ plots for gamma distributions for	
	cumulative precipitation at Chicago O'Hare, 1958 to 2002	285
13.6	The index QQ plots for a gamma and a normal	
	distribution for total January precipitation at Chicago	
	O'Hare, 1958 to 2002	286
13.7	A QQ plot for daily precipitation at Chicago O'Hare,	
	1958 to 2002	286
13.8	The daily average wind speed at Philadelphia	
	International, 1961 to 2003	288
13.9	The November to March and May to September indices	
	of cumulative cubed hourly wind speeds at	
	Philadelphia International, 1961 to 2003	289
13.10	QQ plots for the daily indices of cumulative cubed hourly	
	wind speeds at Philadelphia International, 1961 to 2003	290
13.11	Hourly wind speeds for two years of data at Philadelphia	
	International	290
13.12	QQ plots for hourly wind speeds for two years of data at	
	Philadelphia International	291
I.1	The inverse of the CDF F can be used to simulate a	
	random variable with distribution F	354

Tables

1.1	Expectations of monthly numbers of days above a	
	baseline, estimated using thirty years of data with	
	linear detrending and one year of extrapolation, at	
	various locations in Europe and Japan and in the	
	United States	13
1.2	Expectations of monthly sums of daily HDDs, estimated	
	using thirty years of data with linear detrending and	
	one year of extrapolation, at various locations in	
	Europe and Japan and in the United States	14
1.3	Expectations of monthly numbers of days below a	
	baseline, estimated using thirty years of data with	
	linear detrending and one year of extrapolation, at	
	various locations in Europe and Japan and in the	
	United States	15
1.4	Expectations of monthly sums of CDDs, estimated using	
	thirty years of data with linear detrending and one year	
	of extrapolation, at various locations in Europe and	
	Japan and in the United States	16
1.5	Expectations of monthly averages of daily average	
	temperatures, estimated using thirty years of data with	
	linear detrending and one year of extrapolation, at	
	various locations in Europe and Japan and in the	
	United States	17
2.1	The mean and standard deviation of the settlement index	
	for London Heathrow November to March HDDs,	
	estimated using different numbers of years of historical	
	data and different trend assumptions	52

xvi	List of tables	
3.1	The estimated sampling uncertainty on the mean and the standard deviation of a weather index estimated using	CO.
0.1	ten, twenty, thirty and forty years of data	69
6.1	Eight US weather stations, with the optimum lengths of	
	the four moving averages, as selected automatically as	
	part of the fitting procedure for the AROMA model	142
7.1	Winter HDD correlations between a number of US locations	154
7.2	Winter HDD correlations between London and a number	
	of US locations	155
7.3	Winter HDD correlations between a number of European	
	locations	155
9.1	El Niño and La Niña winters since 1950	215
13.1	The daily precipitation statistics for Chicago O'Hare,	
	1958 to 2002, in inches	283
13.2	The daily average wind speed statistics for Philadelphia	
	International, 1961 to 2003	288
G.1	The observed numbers of London Heathrow November to	
	March HDDs, 1993 to 2002	338

Acknowledgements

There are many people to whom we are grateful for interesting discussions on topics related to weather derivatives pricing. In particular we would like to thank Ali al Ali, Andre de Vries, Anlong Li, Anna Maria Velioti, Arnaud Remy, Auguste Boissonnade, Barney Schauble, Bill Gebhardt, Cat Woolgar, Chris Michael, Claudio Baraldi, Dario Villani, Dave Pethick, Dave Whitehead, David Chen, Dorje Brody, Ed Kim, Fabien Dornier, Gearoid Lane, Guillaume Legal, James Dolby, Jas Badyal, Jay Ganz, Jeff Hamlin, Jeremy Penzer, Jeff Porter, Jerome Brochard, Joe Hrgovcic, Jo Syroka, Juerg Trueb, Lenny Smith, Lin Zhang, Marc Hannebert, Mark Lenssen, Mark Roulston, Martin Jones, Martin Malinow, Mark Nichols, Mark Tawney, Mihail Zervos, Neil Hohmann, Nick Ward, Olivier Luc, Pascal Mailier, Paul Vandermarck, Peter Brewer, Philipp Schönbucher, Richard Dixon, Rick Knabb, Rodrigo Caballero, Ross McIntyre, Sandeep Ramachandran, Sarah Lauridsen, Scott Lupien, Seth Padowitz, Sharad Agnihotri, Simon Mason, Stuart Jones, Tony Barnston and Vivek Kumar.

In addition we would like to thank the people who created and made available the various bits of free software that we have used (Tex, Latex and Miktek, Cygwin, Emacs, Ferret, OpenOffice and R), and to thank Earth Satellite Corporation for providing the data used to create some of the graphics.

Finally Stephen Jewson would like to thank Rie and Lynne for their patience and encouragement, without which it would not have been possible to write this book, and Anders Brix would like to thank Sarah for her support and patience throughout the project.

The authors' revenues from sales of this book will all be donated to Centrepoint, a charity for homeless and socially excluded young people in the United Kingdom (see http://www.centrepoint.org.uk).