Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms

The oceans play a crucial role in the climate system by redistributing heat and carbon across the planet through a complex interplay of physical, chemical, and biological processes. This textbook for advanced undergraduate and graduate students presents a modern, multidisciplinary approach—essential for a complete understanding of ocean circulation and how it drives and controls marine biogeochemistry and biological productivity at a global scale.

Background chapters on ocean physics, chemistry, and biology provide students from a variety of disciplines with a solid platform of knowledge to then examine the range of large-scale physical and dynamic phenomena that control the ocean carbon cycle and its interaction with the atmosphere. Throughout the text, observational data are integrated with basic physical theory to address cutting-edge research questions in ocean biogeochemistry.

- Simple theoretical models, data plots and schematic illustrations are used to summarise key results and connect the physical theory to real observations.
- Advanced mathematics is provided in boxes and the appendix where it can be drawn on as needed to put theory into practice.
- Numerous worked examples and homework exercises encourage students to develop first-hand experience and skills with real data and research problems.
- Further reading lists at the end of each chapter and a comprehensive glossary provide students and instructors with a complete learning package.

Ric Williams obtained a Ph.D. in Physical Oceanography from University of East Anglia in 1987. He worked as a researcher at Imperial College and as a research fellow at the Massachusetts Institute of Technology before taking up a Lectureship at the University of Liverpool in 1993. In 2004, he was promoted to a Professor with a Chair in Ocean Dynamics and Biogeochemistry, and he is now Director of a Research Centre in Marine Sciences and Climate Change in Liverpool. Professor Williams’ research focusses on understanding how the ocean circulates and its role in the climate system and he teaches undergraduate courses in ‘Climate, Atmospheres and Oceans’ and ‘Ocean Dynamics’.

Mick Follows obtained a Ph.D. in Atmospheric Sciences from the University of East Anglia in 1991. After a year as a Royal Society Post-Doctoral Fellow at the Max Planck Institute for Chemistry in Mainz, Germany, he moved to the Massachusetts Institute of Technology where he is now a Senior Research Scientist in the Program for Atmospheres, Oceans and Climate. His research is focussed on understanding the interplay of physical, chemical and biological processes which determines the distributions and fluxes of elements in the ocean, and the relationship between marine ecosystems and their environment.

Cover illustrations (front and back): snapshots of surface current speed and the abundance of phytoplankton from a global ocean model (see linked website for animated views). Bright whites indicate fast speed revealing coherent streams linked to the ocean currents. The intensity of green represents the abundance of modelled phytoplankton, revealing the strong influence of the current structure. Model integrations and image processing by Oliver Jahn with Chris Hill, Stephanie Dutkiewicz and Mick Follows.
Ocean Dynamics and the Carbon Cycle

Principles and Mechanisms

Richard G. Williams
University of Liverpool

Michael J. Follows
Massachusetts Institute of Technology
Contents

Preface	page ix
Acknowledgements | xi
Illustration credit | xii

Part I | Introduction

1 | Why is the ocean important? | 1
--- | ---
1.1 What is special about water? | 3
1.2 How does the ocean store and transfer heat? | 5
1.3 What is the role of the ocean in the global carbon cycle? | 7
1.4 How have climate and life evolved on the planet? | 10
1.5 Summary and outlook | 15
1.6 Recommended reading | 16

Part II | Fundamentals

2 | An introductory view of the ocean | 17
--- | ---
2.1 Ocean circulation | 17
2.2 Atmospheric circulation | 26
2.3 Life and nutrient cycles in the ocean | 30
2.4 The carbon cycle in the ocean | 34
2.5 Summary | 38
2.6 Questions | 38
2.7 Recommended reading | 40

Part III | Transport fundamentals

3 | How do tracers spread? | 43
--- | ---
3.1 Tracer conservation and transport | 49
3.2 What is the effect of a time-varying, eddy circulation? | 55
3.3 Summary | 62
3.4 Questions | 63
3.5 Recommended reading | 65

Part IV | Physics fundamentals

4 | Which forces are important for the ocean circulation? | 66
--- | ---
4.1 How is the surface circulation determined? | 68
4.2 How is the interior circulation determined? | 76
4.3 Global-scale patterns of atmospheric forcing | 80
4.4 Summary | 89
4.5 Questions | 90
4.6 Recommended reading | 92
CONTENTS

5 Biological fundamentals
- 5.1 Photosynthesis and respiration 93
- 5.2 What are marine microbes made of? 94
- 5.3 How is phytoplankton growth affected by the environment? 98
- 5.4 Phytoplankton community structure 106
- 5.5 Primary production and the fate of organic matter 110
- 5.6 Consequences for ocean biogeochemistry 115
- 5.7 Summary 121
- 5.8 Questions 122
- 5.9 Recommended reading 124

6 Carbonate chemistry fundamentals
- 6.1 Solubility of carbon dioxide 125
- 6.2 What are the reactions of the carbonate system in seawater? 128
- 6.3 What controls DIC in the surface ocean? 131
- 6.4 Coupling of DIC and alkalinity cycles with depth 139
- 6.5 How are changes in pCO2 related to changes in DIC? 142
- 6.6 Air–sea exchange of carbon dioxide 145
- 6.7 Summary 152
- 6.8 Questions 154
- 6.9 Recommended reading 155

Part III Physical Phenomena and their Biogeochemical Signals

7 Seasonality of the upper ocean
- 7.1 Seasonality in the physics 159
- 7.2 Seasonality in phytoplankton 164
- 7.3 Seasonality in the carbon cycle 172
- 7.4 Seasonality in the shelf and coastal seas 175
- 7.5 Summary 179
- 7.6 Questions 180
- 7.7 Recommended reading 182

8 Ocean gyres and intense currents
- 8.1 What are ocean gyres? 183
- 8.2 What are western boundary currents? 189
- 8.3 A theoretical view of ocean gyres and boundary currents 191
- 8.4 How is the Southern Ocean different to the rest of the globe? 203
- 8.5 Summary 206
- 8.6 Questions 208
- 8.7 Recommended reading 210
<table>
<thead>
<tr>
<th>9</th>
<th>Ocean eddies</th>
<th>211</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>How does eddy variability alter over the globe?</td>
<td>211</td>
</tr>
<tr>
<td>9.2</td>
<td>A theoretical view of ocean eddy variability</td>
<td>215</td>
</tr>
<tr>
<td>9.3</td>
<td>Eddy fluxes of tracers</td>
<td>222</td>
</tr>
<tr>
<td>9.4</td>
<td>Summary</td>
<td>233</td>
</tr>
<tr>
<td>9.5</td>
<td>Questions</td>
<td>233</td>
</tr>
<tr>
<td>9.6</td>
<td>Recommended reading</td>
<td>235</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Ventilation</th>
<th>236</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>How does ventilation vary over the globe?</td>
<td>236</td>
</tr>
<tr>
<td>10.2</td>
<td>A mechanistic view of ventilation</td>
<td>243</td>
</tr>
<tr>
<td>10.3</td>
<td>Summary</td>
<td>257</td>
</tr>
<tr>
<td>10.4</td>
<td>Questions</td>
<td>258</td>
</tr>
<tr>
<td>10.5</td>
<td>Recommended reading</td>
<td>259</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Cycling and transport of nutrients and carbon</th>
<th>260</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>How are basin-scale contrasts in biological productivity maintained?</td>
<td>260</td>
</tr>
<tr>
<td>11.2</td>
<td>How is biological productivity sustained in ocean deserts?</td>
<td>267</td>
</tr>
<tr>
<td>11.3</td>
<td>What sets the nutrient distributions in the ocean interior?</td>
<td>276</td>
</tr>
<tr>
<td>11.4</td>
<td>Quantifying the ocean’s carbon reservoirs</td>
<td>280</td>
</tr>
<tr>
<td>11.5</td>
<td>Summary</td>
<td>287</td>
</tr>
<tr>
<td>11.6</td>
<td>Questions</td>
<td>287</td>
</tr>
<tr>
<td>11.7</td>
<td>Recommended reading</td>
<td>288</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>The deep ocean and overturning</th>
<th>290</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Why is the deep ocean important?</td>
<td>290</td>
</tr>
<tr>
<td>12.2</td>
<td>How does dense water form, mix and spread?</td>
<td>300</td>
</tr>
<tr>
<td>12.3</td>
<td>How does the deep ocean circulate?</td>
<td>311</td>
</tr>
<tr>
<td>12.4</td>
<td>How is dense water returned to the surface?</td>
<td>316</td>
</tr>
<tr>
<td>12.5</td>
<td>Summary</td>
<td>324</td>
</tr>
<tr>
<td>12.6</td>
<td>Questions</td>
<td>324</td>
</tr>
<tr>
<td>12.7</td>
<td>Recommended reading</td>
<td>326</td>
</tr>
</tbody>
</table>

| Part IV | Synthesis | 327 |

<table>
<thead>
<tr>
<th>13</th>
<th>Integral frameworks</th>
<th>329</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Variations in the ocean–atmosphere carbon cycle</td>
<td>329</td>
</tr>
<tr>
<td>13.2</td>
<td>What is the fate of fossil-fuel carbon dioxide?</td>
<td>331</td>
</tr>
<tr>
<td>13.3</td>
<td>Glacial–interglacial changes in atmospheric CO₂</td>
<td>338</td>
</tr>
<tr>
<td>13.4</td>
<td>Water-mass formation and transformation</td>
<td>344</td>
</tr>
<tr>
<td>13.5</td>
<td>Summary</td>
<td>350</td>
</tr>
<tr>
<td>13.6</td>
<td>Questions</td>
<td>351</td>
</tr>
<tr>
<td>13.7</td>
<td>Recommended reading</td>
<td>352</td>
</tr>
</tbody>
</table>
14 Overview and further challenges

14.1 Interconnections between the physics, chemistry and biology

14.2 Research approaches

14.3 Challenges

Appendix

A.1 Mathematical definitions

A.2 Derivation of the momentum equations

A.3 Solving the carbonate chemistry system

Symbols and definitions

- Biological and chemical symbols
- Physical symbols
- Mathematical definitions

Glossary

- Biological glossary
- Chemical glossary
- Physical glossary

Answers

References

Index

The colour plates are situated between pages 20 and 21.
Preface

We are all aware of how climate is continually changing on the Earth, but what is the role of the ocean in the climate system? To address this challenge, one needs to understand how the ocean circulates, how life flourishes in this environment and how carbon is stored and redistributed in the ocean. Understanding these issues requires an interdisciplinary approach, including fundamental knowledge and skills in physics, chemistry and biology.

This book is designed to provide a starting guide for any student or researcher enquiring as to how the ocean operates on the planet, bringing together the fundamentals needed to understand how the ocean behaves and a discussion of large-scale phenomena. The main themes addressed in the book are:

- How does the ocean circulate? Which are the principal physical phenomena in the ocean and how are they formed?
- How is the ocean ecosystem shaped by biological, physical and chemical processes?
- How is the ocean carbon cycle controlled and how is carbon dioxide exchanged between the atmosphere and ocean?

Our approach is to focus on the fundamental processes and mechanisms using observational data whenever possible to motivate our discussion. To make the material accessible, we have selected the appropriate theory that we feel is most relevant for interpreting the observational signals, rather than provide a more comprehensive theoretical review.

The book is divided into four parts. Part I provides an overall introduction: Chapter 1 starts with a broad-ranging context as to why the ocean is important for the planet, and Chapter 2 a descriptive and preliminary view of the themes addressed in more detail in the book – how the ocean circulates, where phytoplankton grow in the ocean and how carbon is cycled on the planet.

Part II applies basic undergraduate physics, chemistry and biology to address the underlying fundamental principles at work in the ocean: the transport concepts of advection, diffusion and eddy transfer; the physical concepts of large-scale flow and atmospheric forcing; the basic biological principles of cell growth and production of organic matter; and the chemical concepts of mass balance, energetics and charge balance regulating the carbon cycle.

Part III addresses a range of physical phenomena and their effects on the biogeochemistry and cycling of carbon, including the following themes: how seasonality varies; why there are gyres and boundary currents; how ocean eddies form and their large-scale effect; how surface waters are transferred to the ocean interior; how the interplay of physical and biological processes affect the carbon cycle; and how the deep ocean overturns.

Part IV provides two integrated frameworks to understand, firstly, how carbon is cycled and partitioned between the atmosphere and ocean, and secondly, how water masses are formed over the globe. Finally, we provide concluding remarks about the way forward.

Colour plates are used to provide a mini atlas, conveying how physical and biogeochemical properties vary throughout the ocean, complementing the black and white figures used throughout the book.

The book is designed for two different audiences: Honours or graduate students wishing to gain an understanding of how the ocean behaves, with a firm emphasis on observational signals, as well as researchers in a particular discipline who wish to acquire a broader, more interdisciplinary view of the ocean. Students are recommended to read through Part I to gain a preliminary view, then work through the Fundamental chapters in Part II, before embarking on the more advanced material in Part III. More experienced researchers are recommended to work through the Fundamental chapters outside their own expertise in Part II, then examine the more detailed description of physical phenomena and their impacts on the carbon cycle in Part III, and the integrated frameworks in Part IV.
Understanding these topics can often be challenging at times and the language and level of mathematics off-putting. Consequently, we have designed this book to be as accessible as possible for an interdisciplinary audience. The scientific questions are discussed through a combination of data-based diagnostics, schematic illustrations and, in some cases, theoretical balances requiring an understanding of calculus, where a more quantitative understanding can be gained by working through the equations governing rates of change or identifying equilibrium states. More formal material is included in boxes and the appendix detailing derivations and mathematical tools, as well as in targeted questions to work through at the end of the chapters. Hopefully, readers can find the appropriate level to suit themselves.

Finally, we have presented our own perspective in addressing these questions and, in some cases, there is no clear consensus and readers need to be aware that many of the research topics are ongoing and merit further investigation.
Acknowledgements

We are grateful to the many researchers cited in the text who have generously allowed their carefully collected data to be reproduced here, as well as those researchers who have compiled ocean and atmospheric datasets, and developed visualisation tools; without their help we could not have written this book. Many people deserve thanks, but special mention goes to Kay Lancaster for meticulous work in fine editing and drawing the figures, Susan Lozier and her research group for hospitality and detailed feedback during a sabbatical at Duke University, and David Marshall for insightful discussions and encouragement. In developing the material for the book, we are grateful for thoughtful discussions with Arnaud Czaja, Stephanie Dutkiewicz, Phil Goodwin, John Green, Chris Hughes, Taka Ito, John Marshall, Jonathan Sharples, Darryn Waugh and Chris Wilson. For detailed feedback on draft chapters and assistance with figures, we also thank Gualtiero Badin, Simon Evans, Raf Ferrari, David Ferreira, Steve Groom for supplying the satellite images, Anna Hickman, John Huthnance, Oliver Jahn and Chris Hill for providing the cover images, Susan Leadbetter, Claire Mahaffey, Anne-Willem Omta, Andreas Oschlies, Vassil Roussenov, Geoff Vallis, Ben Ward, Martin White, Sam Williams, George Wolff and Carl Wunsch, as well as other friends, colleagues and students at Liverpool University, the Proudman Oceanography Laboratory and Massachusetts Institute of Technology. Finally, we especially thank our families for their encouragement, humour and support.
Illustration credits

The publishers listed below are gratefully acknowledged for giving their permission to reproduce original figures, and to use redrawn figures based on illustrations in journals and books for which they hold the copyright. The original authors of the figures are cited in the figure captions, and we are grateful to them also for the use of their figures. Publication details are given in the captions/References list. Every effort has been made to obtain permission to use copyrighted materials, and apologies are made for any errors or omissions.

American Geophysical Union: all original figures are © American Geophysical Union in the year as stated in caption/references, and reproduced/modified with permission.
Figures: 2.8, 5.17, 7.11, 8.19, 9.4, 11.3a, 11.4, 11.6, 11.15, 12.9, 12.22, 13.2.

American Meteorological Society: all original figures are © American Meteorological Society in the year as stated in caption/references, and reprinted/modified with permission.
Figures: 1.3, 2.13, 3.3, 3.18, 8.9, 8.18, 9.2, 9.3, 9.5, 9.9, 9.10, 9.11, 9.12, 9.14, 9.17, 9.18, 10.9, 10.10, 10.11, 10.14, 10.15, 10.16, 10.18, 12.4, 12.7, 12.11a, 12.15, 13.11

Elsevier journals: all original figures are copyrighted in the year as stated in caption/references, and reprinted/modified with permission from Elsevier.
Figures: 2.15, 3.5, 3.7, 3.17, 5.8, 5.14, 6.18, 7.9, 7.16, 7.21, 8.10, 11.12, 12.10, 12.11b, 12.12, 12.14, 12.21.

Nature/Nature Geoscience journals: all original figures are copyrighted in the year as stated in caption/references, and reprinted/modified by permission from Macmillan Publishers.