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1

The Black–Scholes Theory of Derivative Pricing

The aim of this first chapter is to review the basic objects, ideas, and results

of the classical Black–Scholes theory of derivative pricing. It is intended for

readers who want to enter the subject or simply refresh their memory. This

is not a complete treatment of this theory with detailed proofs but rather an

intuitive but precise presentation including a few key calculations. Detailed

presentations of the subject can be found in many books at various levels of

mathematical rigor and generality, a few of which we list in the notes at the

end of the chapter.

This book is about extending the Black–Scholes theory using pertur-

bation methods in order to handle markets with stochastic volatility. The

notation and many of the tools used in the constant volatility case will be

used for the more complex markets throughout the book.

1.1 Market Model

In this simple model, suggested by Samuelson and used by Black and

Scholes, there are two assets. One is a riskless asset (bond) with price βt

at time t described by the ordinary differential equation

dβt = rβt dt, (1.1)

where r, a non-negative constant, is the instantaneous interest rate for lend-

ing or borrowing money. Setting β0 = 1, we have βt = ert for t ≥ 0. The

price Xt of the other asset, the risky stock or stock index, evolves according

to the stochastic differential equation

dXt = µXtdt +σXt dWt , (1.2)

where µ is a constant mean return rate, σ > 0 is a constant volatil-

ity, and (Wt)t≥0 is a standard Brownian motion. This fundamental model
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2 The Black–Scholes Theory of Derivative Pricing

and the intuitive content of equation (1.2) are presented in the following

sections.

1.1.1 Brownian Motion

Brownian motion is a stochastic process whose definition, existence, prop-

erties, and applications were the subject of numerous studies during the

twentieth century (and still are, in the twenty-first). Our goal here is to give

a very intuitive and practical presentation.

A Brownian motion is a real-valued stochastic process with continuous

trajectories that have independent and stationary increments. The trajecto-

ries are denoted by t →Wt and for the standard Brownian motion, we have

that:

• W0 = 0;

• for any 0 < t1 < · · · < tn, the random variables (Wt1,Wt2 −Wt1, . . . ,Wtn −
Wtn−1

) are independent;

• for any 0 ≤ s < t, the increment Wt −Ws is a centered (mean-zero) normal

random variable with variance E{(Wt −Ws)
2} = t − s. In particular, Wt is

N (0, t)-distributed.

Denote by (Ω,F ,P) the probability space where our Brownian motion is

defined and the expectation E{·} is computed. For example, it could be Ω =
C ([0,+∞) : R), the space of all continuous trajectories ω , with Wt(ω) =

ω(t). The σ -algebra F contains all sets of the form {ω ∈Ω : |ω(s)|< R,s≤
t}; the Wiener measure, P, is the probability distribution of the standard

Brownian motion.

The increasing family of σ -algebras Ft generated by (Ws)s≤t , the infor-

mation on W up to time t, and all the sets of probability 0 in F , is called the

natural filtration of the Brownian motion. This completion by the null sets

is important, in particular for the following reason. If two random variables

X and Y are equal almost surely (X = Y P-a.s. means P{X = Y}= 1) and if

X is Ft-measurable (meaning that any event {Xt ≤ x} belongs to Ft) then

Y is also Ft-measurable.

A stochastic process (Xt)t≥0 is adapted to the filtration (Ft)t≥0 if the

random variable Xt is Ft-measurable for every t. We say that (Xt) is (Ft)-
adapted. If another process (Yt) is such that Xt = Yt P-a.s. for every t then it

is also (Ft)-adapted.

The independence of the increments of the Brownian motion and their

normal distribution can be summarized using conditional characteristic

functions. For 0 ≤ s < t and u ∈ R
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1.1 Market Model 3

E

{
eiu(Wt−Ws) | Fs

}
= e−

u2(t−s)
2 . (1.3)

If W is a Brownian motion, by independence of the increment Wt −Ws from

the past Fs, the left-hand side of (1.3) is simply E

{
eiu(Wt−Ws)

}
, which is the

characteristic function of a centered normal random variable with variance

t − s, and is equal to the right-hand side. Conversely, if (1.3) holds, then the

continuous process (Wt) is a standard Brownian motion.

This independence of increments makes the Brownian motion an ideal

candidate for defining a complete family of independent infinitesimal incre-

ments dWt , which are centered, normally distributed with variance dt and

which will serve as a model of (Gaussian white) noise. The drawback is

that the trajectories of (Wt) cannot be “nice” in the sense that they are not

of bounded variation, as the following simple computation suggests. Let

t0 = 0 < t1 < · · · < tn = t be a subdivision of [0, t], which we may suppose

evenly spaced so that ti − ti−1 = t/n for each interval. The quantity

E

{
n

∑
i=1

|Wti −Wti−1
|

}
= nE{|W t

n
|} = n

√
t

n
E{|W1|}

goes to +∞ as n ↗ +∞, indicating that the integral with respect to dWt

cannot be defined in the usual way “trajectory by trajectory.” We describe

how such integrals can be defined in the next section.

1.1.2 Stochastic Integrals

For T a fixed finite time, let (Xt)0≤t≤T be a continuous stochastic process

adapted to (Ft)0≤t≤T , the filtration of the Brownian motion up to time T ,

such that

E

{∫ T

0
X2

t dt

}
< +∞. (1.4)

Using iterated conditional expectations and the independent increments

property of Brownian motion, we note that with t0 < t1 < · · · < tn = t

E

⎧
⎨
⎩

(
n

∑
i=1

Xti−1

(
Wti −Wti−1

)
)2

⎫
⎬
⎭ = E

{
n

∑
i=1

(
Xti−1

)2
(ti − ti−1)

}
,

for t ≤ T , which is a basic calculation in the construction of stochastic inte-

grals. Note also that the Brownian increments on the left are forward in

time and that the sum on the right converges to E
{∫ t

0 X2
s ds

}
, which is finite

by (1.4).
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4 The Black–Scholes Theory of Derivative Pricing

The stochastic integral of (Xt) with respect to the Brownian motion (Wt)
is defined as a limit in the mean-square sense (L2(Ω))

∫ t

0
XsdWs = lim

n↗+∞

n

∑
i=1

Xti−1

(
Wti −Wti−1

)
, (1.5)

as the mesh size of the subdivision goes to zero.

As a function of time t, this stochastic integral defines a continuous

square integrable process such that

E

{(∫ t

0
XsdWs

)2
}

= E

{∫ t

0
X2

s ds

}
, (1.6)

and has the martingale property

E

{∫ t

0
XudWu | Fs

}
=

∫ s

0
XudWu P-a.s., for s ≤ t, (1.7)

as can easily be deduced from the definition (1.5). The quadratic variation

〈Y 〉t of the stochastic integral Yt =
∫ t

0 XudWu is

〈Y 〉t = lim
n↗+∞

n

∑
i=1

(Yti −Yti−1
)2 =

∫ t

0
X2

s ds (1.8)

in the mean-square sense.

Stochastic integrals are zero-mean, continuous, and square integrable

martingales. It is interesting to note that the converse is also true: every

zero-mean, continuous, and square integrable martingale is a Brownian

stochastic integral. This representation result will be made precise and used

in Section 1.4.

1.1.3 Risky Asset Price Model

The Black–Scholes model for the risky asset price corresponds to a con-

tinuous process (Xt) such that, in an infinitesimal amount of time dt, the

infinitesimal return dXt/Xt has mean µdt, proportional to dt, with a con-

stant rate of return µ , and centered random fluctuations independent of the

past up to time t. These fluctuations are modeled by σdWt , where σ is a pos-

itive constant volatility which measures the strength of the noise, and dWt

the infinitesimal increments of the Brownian motion. The corresponding

formula for the infinitesimal return is

dXt

Xt

= µdt +σdWt , (1.9)
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1.1 Market Model 5

which is the stochastic differential equation (1.2). The right-hand side has

the natural financial interpretation of a return term plus a risk term. We are

also assuming that there are no dividends paid in the time interval that we

are considering. It is easy to incorporate a continuous dividend rate in all

that follows, but for simplicity we shall omit this here.

In integral form, this equation is

Xt = X0 + µ

∫ t

0
Xsds+σ

∫ t

0
XsdWs, (1.10)

where the last integral is a stochastic integral as described in Section 1.1.2

and where X0 is the initial value, which is assumed to be independent of the

Brownian motion and square integrable.

Equation (1.10), or (1.2) in the differential form, is a particular case of

a general class of stochastic differential equations driven by a Brownian

motion:

dXt = µ(t,Xt)dt +σ(t,Xt)dWt , (1.11)

or in integral form

Xt = X0 +
∫ t

0
µ(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs. (1.12)

In the Black–Scholes model, µ(t,x) = µx and σ(t,x) = σx; these are inde-

pendent of t, differentiable in x, and linearly growing at infinity (since they

are linear). This is enough to ensure existence and uniqueness of a contin-

uous adapted and square integrable solution (Xt). The proof of this result is

based on simple estimates like

E
{

X2
t

}
= E

{(
X0 + µ

∫ t
0 Xsds+σ

∫ t
0 XsdWs

)2
}

≤ 3
(
E

{
X2

0

}
+(µ2T +σ2)

∫ t
0 E

{
X2

s

}
ds

)
,

where we used the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2), the Cauchy–

Schwarz inequality

E

(∫ t

0
Xsds

)2

≤ t

∫ t

0
E

{
X2

s

}
ds,

and (1.6). We deduce

0 ≤ E
{

X2
t

}
≤ c1 + c2

∫ t

0
E

{
X2

s

}
ds,

for 0 ≤ t ≤ T and constants c1 and c2 ≥ 0. By a direct application of

Gronwall’s lemma, we deduce that the solution is a priori square inte-

grable. The construction of a solution and the proof of uniqueness can be
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6 The Black–Scholes Theory of Derivative Pricing

obtained by similar and slightly more complicated estimates that use the

Kolmogorov–Doob inequality for martingales.

Looking at equation (1.9), it is very tempting to write Xt/X0 explicitly as

the exponential of (µt +σWt). However, this is not correct because the usual

chain rule is not valid for stochastic differentials. For instance W 2
t is not

equal to 2
∫ t

0 WsdWs as might be expected since, by the martingale property

(1.7), this last integral has an expectation equal to zero but E
{

W 2
t

}
= t.

This discrepancy is corrected by Itô’s formula, which we explain now.

1.1.4 Itô’s Formula

A function of the Brownian motion Wt defines a new stochastic process

g(Wt). We suppose in the following that the function g is twice continuously

differentiable, bounded, and has bounded derivatives. The purpose of the

chain rule is to compute the differential dg(Wt), or equivalently its integral

g(Wt)−g(W0). Using the subdivision t0 = 0 < t1 < · · · < tn = t of [0, t], we

write

g(Wt)−g(W0) =
n

∑
i=1

(g(Wti)−g(Wti−1
)).

We then apply Taylor’s formula to each term to obtain

g(Wt)−g(W0) =
n

∑
i=1

g′(Wti−1
)(Wti −Wti−1

)

+
1

2

n

∑
i=1

g′′(Wti−1
)(Wti −Wti−1

)2 +R,

where R contains all the higher-order terms.

If (Wt) were differentiable only the first sum would contribute to the limit

as the mesh size of the subdivision goes to zero, leading to the chain rule

dg(Wt) = g′(Wt)W
′

t dt of classical calculus. In the Brownian case, (Wt) is not

differentiable and, by (1.5), the first sum converges to the stochastic integral
∫ t

0
g′(Ws)dWs.

The correction comes from the second sum which, like (1.8), converges to

1

2

∫ t

0
g′′(Ws)ds,

as can be seen by comparing it in L2 with 1
2 ∑n

i=1 g′′(Wti−1
)(ti − ti−1). The

higher-order terms contained in R converge to zero and do not contribute to

the limit, which is
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1.1 Market Model 7

g(Wt)−g(W0) =
∫ t

0
g′(Ws)dWs +

1

2

∫ t

0
g′′(Ws)ds. (1.13)

This is the simplest version of Itô’s formula. It is often written in differential

form:

dg(Wt) = g′(Wt)dWt +
1

2
g′′(Wt)dt. (1.14)

The next step is deriving a similar formula for dg(Xt), where Xt is the

solution of a stochastic differential equation like (1.11). We give here this

general formula for a function g depending also on time t:

dg(t,Xt) =
∂g

∂ t
(t,Xt)dt +

∂g

∂x
(t,Xt)dXt +

1

2

∂ 2g

∂x2
(t,Xt)d〈X〉t , (1.15)

where dXt is given by the stochastic differential equation (1.11) and

〈X〉t =
∫ t

0
σ2(s,Xs)ds

is the quadratic variation of the martingale part of Xt : that is, of the stochas-

tic integral on the right-hand side of (1.12). In terms of dt and dWt the

formula is

dg(t,Xt) =(
∂g

∂ t
+ µ(t,Xt)

∂g

∂x
+

1

2
σ2(t,Xt)

∂ 2g

∂x2

)
dt +σ(t,Xt)

∂g

∂x
dWt , (1.16)

where all the partial derivatives of g are evaluated at (t,Xt).

As an application we can compute the differential of the discounted price

g(t,Xt) = e−rtXt :

d
(
e−rtXt

)
= −re−rtXtdt + e−rtdXt

= e−rt (−rXt + µ(t,Xt))dt + e−rtσ(t,Xt)dWt , (1.17)

since the second derivative of g(t,x) = xe−rt with respect to x is zero. In the

particular case of the price Xt given by (1.2), µ(t,x) = µx and σ(t,x) = σx

so we obtain

d
(
e−rtXt

)
= (µ − r)

(
e−rtXt

)
dt +σ

(
e−rtXt

)
dWt . (1.18)

The discounted price X̃t = e−rtXt satisfies the same equation as Xt where the

return µ has been replaced by µ − r.
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8 The Black–Scholes Theory of Derivative Pricing

1.1.5 Lognormal Risky Asset Price

Coming back to the stochastic differential equation (1.9) for the evolution of

the stock price Xt , it is natural to suspect from the ordinary calculus formula∫
dx/x = logx that logXt might satisfy an equation that we can integrate

explicitly. We compute the differential of logXt by applying Itô’s formula

(1.16) with g(t,x) = logx, µ(t,x) = µx, and σ(t,x) = σx:

d logXt =

(
µ −

1

2
σ2

)
dt +σdWt .

The logarithm of the stock price is then given explicitly by

logXt = logX0 +

(
µ −

1

2
σ2

)
t +σWt ,

which leads to the following formula for the stock price:

Xt = X0 exp

(
(µ −

1

2
σ2)t +σWt

)
. (1.19)

The return Xt/X0 is lognormal: it is the exponential of a nonstandard Brow-

nian motion which is normally distributed with mean
(
µ − 1

2
σ2

)
t and

variance σ2t at time t. The process (Xt) is also called geometric Brown-

ian motion. The stock price given by (1.19) satisfies equation (1.9). It can

also be obtained as a diffusion limit of binomial tree models which arise

when Brownian motion is approximated by a random walk.

Notice that, if X0 = 0, Xt stays at zero at all times thereafter. Thus in this

model, bankruptcy (zero stock price) is a permanent state. However, Wt is

finite at all times, and therefore, if X0 > 0, Xt remains positive at all times.

In Figure 1.1, we show a sample path or realization of a geometric

Brownian motion (Xt) in which µ = 0.15, σ = 0.1, and X0 = 95. This

path exhibits the “average growth plus noise” behavior we expect from this

model of asset prices.

1.1.6 Ornstein–Uhlenbeck Process

Many financial quantities, volatility amongst them, are modeled as mean-

reverting processes, a term we shall explain in more detail in Chapters 2

and 3. The simplest example of a mean-reverting diffusion is the Ornstein–

Uhlenbeck process, defined as a solution of

dYt = α(m−Yt)dt +β dWt , (1.20)
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1.1 Market Model 9
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Figure 1.1 A sample path of a geometric Brownian motion defined by the

stochastic differential equation (1.9), with µ = 0.15, σ = 0.1, and X0 = 95.

where α and β are positive constants. This is one of the few explicitly

solvable stochastic differential equations, which we illustrate here as an

application of Itô’s formula.

First, we rearrange the terms to write

dYt +αYt dt = αmdt +β dWt .

Multiplying through by the “integrating factor” eαt gives

d(eαtYt) = αmeαt dt +βeαt dWt ,

where the left-hand exact integral is easily checked from Itô’s formula

(1.15). Integrating from zero to t and multiplying through by e−αt gives

Yt = m+(y−m)e−αt +β

∫ t

0
e−α(t−s)dWs, (1.21)

where y is its (assumed known) starting value.

From this representation, it follows that Y is a Gaussian process and the

distribution of Yt is N
(
m +(y−m)e−αt , β 2

2α (1− e−2αt)
)
. Its long-run dis-

tribution, obtained as t → ∞, is N (m,β 2/2α), which does not depend on y.
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10 The Black–Scholes Theory of Derivative Pricing

The concept of long-run (invariant) distribution will be discussed in detail

in Chapter 3.

1.2 Derivative Contracts

Derivatives are contracts based on the underlying asset price (Xt). They are

also called contingent claims. We will be interested primarily in options,

which can be European, American, path-independent, or path-dependent.

The definition of the options discussed in this first chapter is given in the

following sections.

1.2.1 European Call and Put Options

A European call option is a contract that gives its holder the right, but not

the obligation, to buy one unit of an underlying asset for a predetermined

strike price K on the maturity date T . If XT is the price of the underly-

ing asset at maturity time T , then the value of this contract at maturity, its

payoff, is

h(XT ) = (XT −K)+ =

{
XT −K if XT > K,
0 if XT ≤ K,

(1.22)

since in the first case the holder will exercise the option and make a profit

XT −K by buying the stock for K and selling it immediately at the market

price XT . In the second case the option is not exercised, since the market

price of the asset is less than the strike price.

Similarly, a European put option is a contract that gives its holder the

right, but not the obligation, to sell a unit of the asset for a strike price K at

the maturity date T . Its payoff is

h(XT ) = (K −XT )+ =

{
K −XT if XT < K,

0 if XT ≥ K ,
(1.23)

since in the first case buying the stock at the market price and exercising

the put option yields a profit of K−XT , and in the second case the option is

simply not exercised.

More generally, we will consider European derivatives defined by their

maturity time T and their non-negative payoff function h(x). This will be a

contract which pays h(XT ) at maturity time T when the stock price is XT .

The standard European-style derivatives are path-independent because the

payoff h(XT ) is only a function of the value of the stock price at maturity

time T .
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