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Applications and motivations

In practical applications over a wide field of study one often faces the problem of recon-

structing an unknown function f from a finite set of discrete data. These data consist of data

sites X = {x1, . . . , xN } and data values f j = f (x j ), 1 ≤ j ≤ N , and the reconstruction has

to approximate the data values at the data sites. In other words, a function s is sought that ei-

ther interpolates the data, i.e. that satisfies s(x j ) = f j , 1 ≤ j ≤ N , or at least approximates

the data, s(x j ) ≈ f j . The latter case is in particular important if the data contain noise.

In many cases the data sites are scattered, i.e. they bear no regular structure at all, and there

is a very large number of them, easily up to several million. In some applications, the data

sites also exist in a space of very high dimensions. Hence, for a unifying approach methods

have to be developed which are capable of meeting this situation. But before pursuing this

any further let us have a closer look at some possible applications.

1.1 Surface reconstruction

Probably the most obvious application of scattered data interpolation and approximation

is the reconstruction of a surface S. Here, it is crucial to distinguish between explicit and

implicit surfaces. Explicit surfaces play an important role in terrain modeling, for example.

They can be represented as the graph of a function f : � → R defined on some region

� ⊆ R
d , where d is in general given by d = 2. Staying with the terminology of terrain

modeling, the data sites X ⊆ � depict certain points on a map, while a data value f j = f (x j )

describes the height at the point x j . The data sites might form a regular grid, they might

be situated on isolines (as in Figure 1.1), or they might have no structure at all. The region

� itself might also carry some additional information; for example, it could represent the

earth. Such additional information should be taken into account during the reconstruction

process.

The reconstruction of an implicit surface, or more precisely of a compact, orientable

manifold, is even more demanding. Such surfaces appear for example as sculptures, machine

parts, and archaeological artifacts. They are often digitized using laser scanners, which easily

produce huge point clouds X = {x1, . . . , xN } ⊆ S consisting of several million points in

R
3. In this situation, the surface S can no longer be represented as the graph of a single
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2 Applications and motivations

Fig. 1.1 Reconstruction of a glacier from isolines.

Fig. 1.2 Reconstruction (on the right) of the Stanford dragon (on the left).

function f . There are in the main two different approaches to building accurate models

for implicit surfaces. In the first approach, one tries to find local parameterizations of the

object that allow an efficient rendering. However, for complicated models (such as the

dragon shown in Figure 1.2) this approach is limited. In the second approach, one tries

to describe S as the zero-level set of a function F , i.e. S = {x ∈ � : F(x) = 0}. Such

an implicit representation easily delivers function-based operations, for example shape

blending or deformation or any other constructive solid geometry (CSG) operation such as

the union, difference, or intersection of two or more objects.

The function F can be evaluated everywhere, which allows stepless zooming and smooth

detail-extraction. Furthermore, it gives, to a certain extent, a measure of how far away a

point x ∈ � is from the surface. Moreover, the surface normal is determined by the gradient

of F whenever the representation is smooth enough.

The price we have to pay for such flexibility is that an implicit surface does not auto-

matically lead to a fast visualization. An additional step is necessary, which is normally

provided by either a ray-tracer or a polygonizer. But, for both, sufficiently good and ap-

propriate solutions exist. Since our measured point cloud X is a subset of the surface S we

are looking for an approximate solution s that satisfies s(x j ) = 0 for all x j ∈ X . Obviously

these interpolation conditions do not suffice to determine an accurate approximation to the
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1.1 Surface reconstruction 3

surface, since, for example, the zero function satisfies them. The remedy for this problem

is to add additional off-surface points. To make this approach work, we assume that our

surface is the boundary of a compact set and that the function F can be chosen such that F is

positive inside and negative outside that set. We also need surface normals to the unknown

surface. If the data comes from a mesh or from a laser scanner that provides also normal

information via its position during the scanning process these normals are immediately

to hand. Otherwise, they have to be estimated from the point cloud itself, which can be

done in two steps. In the first step, for each point x j ∈ X we search its K � N nearest

neighbors in X and try to determine a local tangent plane. This can be done by a principal

component analysis. Let us assume thatN (x j ) contains the indices of these neighbors. Then

we compute the center of gravity of {xk : k ∈ N (x j )}, i.e. x̂ j := K −1
∑

k∈N (x j )
xk , and the

associated covariance matrix

Cov (x j ) :=
∑

k∈N (x j )

(xk − x̂ j )(xk − x̂ j )
T ∈ R

3×3.

The eigenvalues of this positive semi-definite matrix can be computed numerically or even

analytically. They indicate how closely the neighborhood {xk : k ∈ N (x j )} of x j determines

a plane. To be more precise, if we have two eigenvalues that are close together and a

third one, which is significantly smaller than the others, then the eigenvectors for the first

two eigenvalues determine the plane, while the eigenvector for the smallest eigenvalue

determines the normal to this plane. Hence, we have a tool for not only determining the

normal but also deciding whether a normal can be fitted at all.

The second step deals with orienting consistently the normals just created. If two data

points x j and xk are close then their associated normalized normals η j and ηk must point

in nearly the same direction, which means that ηT
j ηk ≈ 1. This relation should hold for all

points that are sufficiently close. To make this more precise, we use graph theory. First,

we build a Riemann graph. This graph has a vertex for every normal η j and an edge e j,k

between the vertices of η j and ηk if and only if j ∈ N (xk) or k ∈ N (x j ). The cost or weight

w(e j,k) of such an edge measures the deviation of the normals η j and ηk ; for example,

we could choose w(e j,k) = 1 − |ηT
j ηk |. Hence, the normals are taken to be consistently

oriented if we can find directions b j ∈ {−1, 1} such that
∑

e j,k
b j bkw(e j,k) is minimized.

Unfortunately, it is possible to show that this problem is NP-hard and hence that we can only

find an approximate solution. The idea is simply to start with an arbitrary normal and then

to propagate the orientation to neighboring normals. To this end, we compute the minimal

spanning tree or forest for the Riemann graph. Since the number of edges in this graph

is proportional to N , any reasonable algorithm for this problem, for example Kruskal’s

algorithm, will work fine in an acceptable amount of time. After that, we propagate the

orientations by traversing the minimal spanning tree.

Once we have oriented the normals, this allows us to extend the given data sets by off-

surface points. This can be done by for example adding one point along each normal on

the outside and one on the inside of the surface. Special care is necessary to avoid the
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4 Applications and motivations

situation where an outside point belonging to one normal is actually an interior point in

another part of the surface or that a supposedly interior point is so far away from its associated

surface point that it is actually outside the surface at another place. The associated function

values that s should attain are chosen to be proportional to the signed distance of the point

from the surface.

Another possible way of adding off-surface points is based on the following fact. Suppose

that x is a point which should be added. If x j denotes its nearest neighbor in X and if X is

a sufficiently dense sample of S, then x j comes close to the projection of x onto S. Hence

if x j is approximately equal to x then the latter is a point of S itself. Otherwise, if the angle

between the line through x j and x on the one hand and the normal η j (pointing outwards)

on the other hand is less than 90 degrees then the point is outside the surface; if the angle

is greater than 90 degrees then it is inside the surface.

After augmenting our initial data set by off-surface points, we are now back to a classical

interpolation or approximation problem.

1.2 Fluid–structure interaction in aeroelasticity

Aereolasticity is the science that studies, among other things, the behavior of an elastic

aircraft during flight. This behavior is influenced by the interaction between the deforma-

tions of the elastic structure caused by the fluid flow, and the impact that the aerodynamic

forces would have on a rigid structural framework. To model these different aspects in a

physically correct manner, different models have been developed, adapted to the specific

problems.

The related aeroelastic problem can be described in a coupled-field formulation, where the

interaction between the fluid and structural models is limited to the exchange of boundary

conditions. This loose coupling has the advantage that each component of the coupled

problem can be handled as an isolated entity. However, the challenging task is to reconcile

the benefits of this isolated view with a realistic treatment of the new physical effects arising

from the interaction.

Let us make this more precise. Suppose at first that we are interested only in computing

the flow field around a given aircraft. This can be modeled mathematically by the Navier–

Stokes or the Euler equations, which can be solved numerically using for example a finite-

volume code. Such a solver requires a detailed model of the aircraft and its surroundings.

In particular, the surface of the aircraft has to be rendered with a very high resolution, as

indicated in the right-hand part of Figure 1.3. Let us suppose that our solver has computed

a solution, which consists of a velocity field and a pressure distribution. For the time being,

we are not interested in the problem of how such a solution can be computed. For us, it is

crucial that the pressure distribution creates loads on the aircraft, which might and probably

will lead to a deformation. So the next step is to compute the deformation from the loads

or forces acting on the aircraft.

Obviously, though, a model having a fine resolution of the surface of the aircraft is not

necessary for describing its structure; this might even impede the numerical stability. Hence,
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1.2 Fluid–structure interaction in aeroelasticity 5

Fig. 1.3 The structural and aerodynamical model of a modern aircraft.

another model is required which is better suited to describing the structural deformation,

for example the one shown in Figure 1.3 on the left. Again, along with the model comes a

partial differential equation, this time from elasticity theory, which can again be solved, for

example by finite elements. But before this can be done, the loads have to be transferred

from one mesh to the other in a physically reasonable way. If this has been done and the

deformation has been computed then we are confronted with another coupling problem.

This time, the deformations have to be transferred from the structural to the aerodynamical

model. If all these problems can be solved we can start to iterate the process until we find

a steady state, which presumably exists.

Since we have the aerodynamical model, the structural model, and the coupling problem,

one usually speaks in this context of a three-field formulation. As we said earlier, here

we are interested only in the coupling process, which can be described as a scattered data

approximation problem, as follows. Suppose that X denotes the nodes of the structural

mesh and Y the nodes of the aerodynamical mesh (neither actually has to be a mesh).

To transfer the deformations u(x j ) ∈ R
3 from X to Y we need to find a vector-valued

interpolant su,X satisfying su,X (x j ) = u(x j ). Then the deformations of Y are given simply

by su,X (y j ), y j ∈ Y . Conversely, if f (y j ) ∈ R denotes the load at y j ∈ Y then we need

another function s f,Y to interpolate f in Y . The loads on the mesh X are again simply given

by evaluation at X . A few more things have to be said. First of all, if the loads are constant or

if the displacements come from a linear transformation, this situation should be recovered

exactly, which means that our interpolation process has to be exact for linear polynomials.

Furthermore, certain physical entities such as energy and work should be conserved. This

means at least that

∑

y∈Y

f (y) =
∑

x∈X

s f,Y (x)

and

∑

y∈Y

f (y)su,X (y) =
∑

x∈X

s f,Y (x)u(x),
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Fig. 1.4 Steady state of the deformed aircraft.

where the last equation is to be taken component-wise. If the models differ too much then

both equations have to be understood in a more local sense. However, these equations

make it obvious that in certain applications more has to be satisfied than just simple point

evaluations. It is important to note that interpolation is crucial in this process since otherwise

each coupling step would result in a loss of energy.

The advantage of this scattered data approach is that it allows us to couple any two

models that have at least some node information. There is no additional information such as

the elements or connectivity of the nodes involved. Moreover, the two models can be quite

different. It often happens that the boundary of the aerodynamical aircraft has no joint node

with the structural model. The latter might even degenerate into a two-dimensional object.

Figure 1.4 shows a typical result for the example from Figure 1.3 based on a speed

M = 0.8, an angle of attack α = −0.087◦, and an altitude h =10 498 meters. On the left

the deformation of a wing is shown, while the right-hand graph gives the negative pressure

distribution at 77% wing span, for a static and an elastic computation. The difference

between the two pressure distributions indicates that elasticity causes a loss of buoyancy,

which can become critical for highly flexible structures, as found for example in the case

of a large civil aircraft.

It should, be clear that the coupling process described here is not limited to the field of

aeroelasticity. It can be applied in any situation where a given problem is decomposed into

several subproblems, provided that these subproblems exchange data over specified nodes.

1.3 Grid-free semi-Lagrangian advection

In this section we will discuss briefly how the scattered data approximation can be used to

solve advection equations. For simplicity, we restrict ourselves here to the two-dimensional

case and to the transport equation, which is given by

0 =
∂

∂t
u(x, y, t) + a1(x, y)

∂

∂x
u(x, y, t) + a2(x, y)

∂

∂y
u(x, y, t). (1.1)
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1.4 Learning from splines 7

It describes, for example, the advection of a fluid with velocity field a = (a1, a2) and it

will serve us as a model problem straight away. Suppose that (x(t), y(t)) describes a curve

for which the function ũ(t) := u(x(t), y(t), t) is constant, i.e. ũ(t) = const. Such a curve is

called a characteristic curve for (1.1). Differentiating ũ yields

0 =
∂u

∂t
+ ẋ(t)

∂u

∂x
+ ẏ(t)

∂u

∂y
,

where ẋ = dx/dt . The similarity to (1.1) allows us to formulate the following approximation

scheme for solving the transport equation (1.1) with initial data given by a known function u0.

Suppose that we know the distribution u at time tn and at sites X = {(x1, y1), . . . , (xN , yN )}

approximately, meaning that we have a vector u(n) ∈ R
N with u

(n)
j ≈ u(x j , y j , tn). To find

the values of u at site (x j , y j ) and time tn+1 we first have to find the upstream point (x−
j , y−

j )

with c := u(x−
j , y−

j , tn) = u(x j , y j , tn+1) and then have to estimate the value c from the

values of u at X and time tn . Hence, in the first step we have to solve N ordinary differential

equations

(ξ̇ j , η̇ j ) = a(ξ j , η j ), 1 ≤ j ≤ N ,

with initial value (ξ (tn+1), η(tn+1)) = (x j , y j ). The upstream point is the solution at tn , i.e.

(x−
j , y−

j ) = (ξ (tn), η(tn)). Since this point will in general not be contained in X , the value

u(x−
j , y−

j , tn) has to be estimated from u(n). This can be written as an interpolation problem.

We need to find a function su that satisfies su(x j ) = u
(n)
j for 1 ≤ j ≤ N .

The method just described is called a semi-Lagrangian method. It is obviously not re-

stricted to a two-dimensional setting. It also applies to advection equations other than the

transport problem (even nonlinear ones), but then an interpolatory step might also be nec-

essary when solving the ordinary differential equations.

Moreover, it is not necessary at all to use the same set of sites X in each time step. It is

much more appropriate to adapt the set X as required.

Finally, if the concept of scattered data approximation is generalized to allow also func-

tionals other than pure point-evaluation functionals, there are plenty of other possibili-

ties for solving partial differential equations. We will discuss some of them later in this

book.

1.4 Learning from splines

The previous sections should have given some insight into the application of scattered data

interpolation and approximation in the multivariate case.

To derive some concepts, we will now have a closer look at the univariate setting. Hence

we will suppose that the data sites are ordered as follows,

X : a < x1 < x2 < . . . < xN < b, (1.2)

and that we have certain data values f1, . . . , fN to be interpolated at the data sites. In other
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8 Applications and motivations

words, we are interested in finding a continuous function s : [a, b] → R with

s(x j ) = f j , 1 ≤ j ≤ N .

At this point it is not necessary that the data values { f j } actually stem from a function f ,

but we will keep this possibility in mind for reasons that will become clear later.

In the univariate case it is well known that s can be chosen to be a polynomial p of degree at

most N − 1, i.e. p ∈ πN−1(R). Or, more generally, if a Haar space S ⊆ C(R) of dimension

N is fixed then it is always possible to find a unique interpolant s ∈ S. In this context the

space S has the remarkable property that it depends only on the number of points in X

and not on any other information about the data sites, let alone about the data values. Thus

it would be reasonable to look for such spaces also in higher dimensions. Unfortunately,

a famous theorem of Mairhuber and Curtis (Mairhuber [115], see also Chapter 2) states

that this is impossible. Thus if working in space dimension d ≥ 2 it is impossible to fix an

N -dimensional function space beforehand that is appropriate for all sets of N distinct data

sites. However, probably no one with any experience in approximation theory would, even

in the univariate case, try to interpolate a hundred thousand points with a polynomial.

The bottom line here is that for a successful interpolation scheme in R
d either conditions

on the involved points have to be worked out, in such a way that a stable interpolation with

polynomials is still possible, or the function space has to depend on the data sites. The last

concept is also well known in the univariate case. It is a well-established fact that a large

data set is better dealt with by splines than by polynomials. In contrast to polynomials, the

accuracy of the interpolation process using splines is not based on the polynomial degree

but on the spacing of the data sites. Let us review briefly properties of univariate splines in

the special case of cubic splines. The set of cubic splines corresponding to a decomposition

(1.2) is given by

S3(X ) = {s ∈ C2[a, b] : s|[xi , xi+1] ∈ π3(R), 0 ≤ i ≤ N }, (1.3)

where x0 := a, xN+1 := b. It consists of all twice differentiable functions that coincide

with cubic polynomials on the intervals given by X . The space S3(X ) has dimension

dim(S3(X )) = N + 4, so that the interpolation conditions s(xi ) = fi , 1 ≤ i ≤ N , do not

suffice to guarantee a unique interpolant. Different strategies are possible to enforce unique-

ness and one of these is given by the concept of natural cubic splines. The set of natural

cubic splines

N S3(X ) = {s ∈ S3(X ) : s|[a, x1], s|[xN , b] ∈ π1(R)}

consists of all cubic splines that are linear polynomials on the outer intervals [a, x1] and

[xN , b]. It is easy to see that a cubic spline s is a natural cubic spline if and only if it satisfies

s ′′(x1) = s(3)(x1) = 0 and s ′′(xN ) = s(3)(xN ) = 0. Since we have imposed four additional

conditions it is natural to assume that the dimension of N S3(X ) is dim(N S3(X )) = N ,

which is indeed true. Even more, it can be shown that the initial interpolation problem has a

unique solution in N S3(X ). For this and all the other results on splines we refer the reader

to Greville’s article [75] or to the books by Schumaker [175] and de Boor [43].
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1.4 Learning from splines 9

This is not the end of the story, however; splines have several important properties and

we state some of them for the cubic case.

(1) They are piecewise polynomials.

(2) An interpolating natural cubic spline satisfies a minimal norm property. This can be

formulated as follows. Suppose f comes from the Sobolev space H 2[a, b], i.e. f ∈

C[a, b] has weak first- and second-order derivatives also in L2[a, b]. (We will give a

precise definition of this later on). Assume further that f satisfies f (x j ) = f j , 1 ≤ j ≤

N . If s f,X denotes the natural cubic spline interpolant then

( f ′′ − s ′′
f,X , s ′′

f,X )L2[a,b] = 0.

This leads immediately to the Pythagorean equation

‖ f ′′ − s ′′
f,X‖2

L2[a,b] + ‖s ′′
f,X‖2

L2[a,b] = ‖ f ′′‖2
L2[a,b],

which means that the natural cubic spline interpolant is that function from H 2[a, b] that

minimizes the semi-norm ‖ f ′′‖L2[a,b] under the conditions f (x j ) = f j , 1 ≤ j ≤ N .

(3) They possess a local basis (B-splines). These basis functions can be defined in various

ways: by recursion, by divided differences, or by convolution.

Of course, this list gives only a few properties of splines. For more information, we refer

the interested reader to the previously cited sources on splines.

The most dominant feature of splines, which has contributed most to their success,

is that they are piecewise polynomials. This feature together with a local basis not only

allows the efficient computation and evaluation of spline functions but also is the key

ingredient for a simple error analysis. Hence, the natural way of extending splines to the

multivariate setting is based on this property. To this end, a bounded region � ⊆ R
d is

partitioned into essentially disjoint subregions {� j }
N
j=1. Then the spline space consists

simply of those functions s that are piecewise polynomials on each patch � j and that have

smooth connections on the boundaries of two adjacent patches. In two dimensions the most

popular partition of a polygonal region is based on a triangulation. Even in this simplest case,

however, the dimension of the spline space is in general unknown (see Schumaker [176]).

Moreover, when coming to higher dimensions it is not at all clear what an appropriate

replacement for the triangulation would be. Hence, even if substantial progress has been

made in the two-dimensional setting, the method is not suited for general dimensions.

Another possible generalization to the multivariate setting is based on the third property.

In particular a construction based on convolution has led to the theory of Box splines (see

de Boor et al. [44]). Again, even the two-dimensional setting is tough to handle, not to speak

of higher-dimensional cases.

Hence, we want to take the second property as the motivation for a framework in higher

dimensions. This approach leads to a remarkably beautiful theory, where all space dimen-

sions can be handled in the same way. Since the resulting approximation spaces no longer

consist of piecewise polynomials, we do not want to call the functions splines. The buzz

phrase, which has become popular in this field, is radial basis functions.
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10 Applications and motivations

To get an idea of radial basis functions let us stick a little longer with natural cubic splines.

It is well known that the set S3(X ) has the basis (· − x j )
3
+, 1 ≤ j ≤ N , plus an arbitrary

basis for π3(R). Here, x+ takes the value of x for nonnegative x and zero in the other case.

Hence, every s ∈ N S3(X ) has a representation of the form

s(x) =

N∑

j=1

α j (x − x j )
3
+ +

3∑

j=0

β j x
j , x ∈ [a, b]. (1.4)

Because s is a natural spline we have the additional information that s is linear on the two

outer intervals. On [a, x1] it has the representation s(x) =
∑3

j=0 β j x
j so that necessarily

β2 = β3 = 0. Thus, (1.4) becomes

s(x) =

N∑

j=1

α j (x − x j )
3
+ + β0 + β1x, x ∈ [a, b]. (1.5)

To derive the representation of s on [xN , b] we simply have to remove all subscripts + on

the functions (· − x j )
3
+ in (1.5). Expanding these cubics and rearranging the sums leads to

s(x) =

3∑


=0

(
3




)
(−1)3−


(
N∑

j=1

α j x
3−

j

)
x
 + β0 + β1x, x ∈ [xN , b].

Thus, for s to be a natural spline, the coefficients of s have to satisfy

N∑

j=1

α j =

N∑

j=1

α j x j = 0. (1.6)

This is a first characterization of natural cubic splines. But we can do more. Using the

identity x3
+ = (|x |3 + x3)/2 leads, because of (1.6), to

s(x) =

N∑

j=1

α j

2
|x − x j |

3 +

N∑

j=1

α j

2
(x − x j )

3 + β0 + β1x

=

N∑

j=1

α j

2
|x − x j |

3 +

3∑


=0

1

2

(
3




)
(−1)3−


N∑

j=1

α j x
3−

j x
 + β0 + β1x

=

N∑

j=1

α̃ j |x − x j |
3 + β̃0 + β̃1x,

with α̃ j = 1
2
α j , 1 ≤ j ≤ N , and β̃0 = β0 − 1

2

∑
α j x

3
j , β̃1 = β1 + 3

2

∑
α j x

2
j .

Proposition 1.1 Every natural cubic spline s has a representation of the form

s(x) =

N∑

j=1

α jφ(|x − x j |) + p(x), x ∈ R, (1.7)

where φ(r ) = r3, r ≥ 0, and p ∈ π1(R). The coefficients {α j } have to satisfy (1.6). Vice

versa, for every set X = {x1, . . . , xN } ⊆ R of pairwise distinct points and for every f ∈ R
N
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