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Chapter 1

Classical Banach Spaces

To begin, recall that a Banach space is a complete normed linear space. That
is, a Banach space is a normed vector space (X, ‖ · ‖) that is a complete
metric space under the induced metric d(x, y) = ‖x − y‖. Unless otherwise
specified, we’ll assume that all vector spaces are over R, although, from time
to time, we will have occasion to consider vector spaces over C.

What follows is a list of the classical Banach spaces. Roughly translated,
this means the spaces known to Banach. Once we have these examples out
in the open, we’ll have plenty of time to fill in any unexplained terminology.
For now, just let the words wash over you.

The Sequence Spaces �p and c0

Arguably the first infinite-dimensional Banach spaces to be studied were the
sequence spaces �p and c0. To consolidate notation, we first define the vector
space s of all real sequences x = (xn) and then define various subspaces of s.

For each 1 ≤ p < ∞, we define

‖x‖p =
( ∞∑

n=1

|xn|p

)1/p

and take �p to be the collection of those x ∈ s for which ‖x‖p < ∞. The
inequalities of Hölder and Minkowski show that �p is a normed space; from
there it’s not hard to see that �p is actually a Banach space.

The space �p is defined in exactly the same way for 0 < p < 1 but, in this
case, ‖ · ‖p defines a complete quasi-norm. That is, the triangle inequality now
holds with an extra constant; specifically, ‖x + y‖p ≤ 21/p(‖x‖p + ‖y‖y).
It’s worth noting that d(x, y) = ‖x − y‖p

p defines a complete, translation-
invariant metric on �p for 0 < p < 1.

1
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2 Classical Banach Spaces

For p = ∞, we define �∞ to be the collection of all bounded sequences;
that is, �∞ consists of those x ∈ s for which

‖x‖∞ = sup
n

|xn| < ∞.

It’s easy to see that convergence in �∞ is the same as uniform convergence
on N and, hence, that �∞ is complete. There are two very natural (closed)
subspaces of �∞: The space c, consisting of all convergent sequences, and the
space c0, consisting of all sequences converging to 0. It’s not hard to see that
c and c0 are also Banach spaces.

As subsets of s we have

�1 ⊂ �p ⊂ �q ⊂ c0 ⊂ c ⊂ �∞ (1.1)

for any 1 < p < q < ∞. Moreover, each of the inclusions is norm one:

‖x‖1 ≥ ‖x‖p ≥ ‖x‖q ≥ ‖x‖∞. (1.2)

It’s of some interest here to point out that, although s is not itself a normed
space, it is, at least, a complete metric space under the so-called Fréchet metric

d(x, y) =
∞∑

n=1

2−n |xn − yn|
1 + |xn − yn| . (1.3)

Clearly, convergence in the Fréchet metric implies coordinatewise conver-
gence.

Finite-Dimensional Spaces

We will also have occasion to consider the finite-dimensional versions of
the �p spaces. We write �n

p to denote R
n under the �p norm. That is, �n

p is the
space of all sequences x = (x1, . . . , xn) of length n and is supplied with the
norm

‖x‖p =
(

n∑
i=1

|xi |p

)1/p

for p < ∞, and

‖x‖∞ = max
1≤i≤n

|xi |

for p = ∞.
Recall that all norms on R

n are equivalent. In particular, given any norm
‖ · ‖ on R

n , we can find a positive, finite constant C such that

C−1‖x‖1 ≤ ‖x‖ ≤ C‖x‖1 (1.4)
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The L p Spaces 3

for all x = (x1, . . . , xn) in R
n . Thus, convergence in any norm on R

n is the
same as “coordinatewise” convergence and, hence, every norm on R

n is com-
plete.

Because every finite-dimensional normed space is just “R
n in disguise,” it

follows that every finite-dimensional normed space is complete.

The L p Spaces

We first define the vector space L0[0, 1] to be the collection of all (equivalence
classes, under equality almost everywhere [a.e.], of) Lebesgue-measurable
functions f : [0, 1] −→ R. For our purposes, L0 will serve as the “measurable
analogue” of the sequence space s.

For 1 ≤ p < ∞, the Banach space L p[0, 1] consists of those f ∈ L0[0, 1]
for which

‖ f ‖p =
(∫ 1

0
| f (x)|p dx

)1/p

< ∞.

The space L∞[0, 1] consists of all (essentially) bounded f ∈ L0[0, 1] under
the essential supremum norm

‖ f ‖∞ = ess.sup
0≤x≤1

| f (x)| = inf {B : | f | ≤ B a.e.}

(in practice, though, we often just write “sup” in place of “ess.sup”). Again,
the inequalities of Hölder and Minkowski play an important role here.

As before, the spaces L p[0, 1] are also defined for 0 < p < 1, but ‖ · ‖p

defines only a quasi-norm. Again, d( f, g) = ‖ f − g‖p
p defines a complete,

translation-invariant metric on L p for 0 < p < 1. The space L0[0, 1] is given
the topology of convergence (locally) in measure. For Lebesgue measure on
[0, 1], this topology is known to be equivalent to that given by the metric

d( f, g) =
∫ 1

0

| f (x) − g(x)|
1 + | f (x) − g(x)| dx . (1.5)

As subsets of L0[0, 1], we have the following inclusions:

L1[0, 1] ⊃ L p[0, 1] ⊃ Lq [0, 1] ⊃ L∞[0, 1], (1.6)

for any 1 < p < q < ∞. Moreover, the inclusion maps are all norm one:

‖ f ‖1 ≤ ‖ f ‖p ≤ ‖ f ‖q ≤ ‖ f ‖∞. (1.7)

The spaces L p(R) are defined in much the same way but satisfy no such
inclusion relations. That is, for any p �= q, we have L p(R) �⊂ Lq (R). Never-
theless, you may find it curious to learn that L p(R) and L p[0, 1] are linearly
isometric.
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More generally, given a measure space (X, �, µ), we might consider the
space L p(µ) consisting of all (equivalence classes of) �-measurable functions
f : X −→ R under the norm

‖ f ‖p =
(∫

X
| f (x)|p dµ(x)

)1/p

(with the obvious modification for p = ∞).
It is convenient to consider at least one special case here: Given any set 	,

we define �p(	) = L p(	, 2	, µ), whereµ is counting measure on	. What this
means is that we identify functions f : 	 −→ R with “sequences” x = (xγ )
in the usual way: xγ = f (γ ), and we define

‖x‖p =
(∑

γ∈	

|xγ |p

)1/p

=
(∫

	

| f (γ )|p dµ(γ )

)1/p

= ‖ f ‖p

for p < ∞. Please note that if x ∈ �p(	), then xγ = 0 for all but countably
many γ . For p = ∞, we set

‖x‖∞ = sup
γ∈	

|xγ | = sup
γ∈	

| f (γ )| = ‖ f ‖∞.

We also define c0(	) to be the space of all those x ∈ �∞(	) for which the set
{γ : |xγ | > ε} is finite for any ε > 0. Again, this forces an element of c0(	)
to have countable support. Clearly, �p(N) = �p and c0(N) = c0.

A priori, the Banach space characteristics of L p(µ) will depend on the
underlying measure space (X, �, µ). As it happens, though, Lebesgue mea-
sure on [0, 1] and counting measure on N are essentially the only two cases
we have to worry about. It follows from a deep result in abstract measure
theory (Maharam’s theorem [97]) that every complete measure space can be
decomposed into “nonatomic” parts (copies of [0, 1]) and “purely atomic”
parts (counting measure on some discrete space). From a Banach space point
of view, this means that every L p space can be written as a direct sum of
copies of L p[0, 1] and �p(	) (or �n

p).
For the most part we will divide our efforts here into three avenues of

attack: Those properties of L p spaces that don’t depend on the underlying
measure space, those that are peculiar to L p[0, 1], and those that are peculiar
to the �p spaces.

The C(K ) Spaces

Perhaps the earliest known example of a Banach space is the space C[a, b]
of all continuous real-valued functions f : [a, b] −→ R supplied with the
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“uniform norm”:

‖ f ‖ = max
a≤t≤b

| f (t)|.

More generally, if K is any compact Hausdorff space, we write C(K ) to
denote the Banach space of all continuous real-valued functions f : K −→ R

under the norm

‖ f ‖ = max
t∈K

| f (t)|.

For obvious reasons, we sometimes write the norm in C(K ) as ‖ f ‖∞ and
refer to it as the “sup norm.” In any case, convergence in C(K ) is the same as
uniform convergence on K .

In Banach’s day, point set topology was still very much in its developmental
stages. In his book [6], Banach considered C(K ) spaces only in the case of
compact metric spaces K . We, on the other hand, may have occasion to venture
further. At the very least, we will consider the case in which K is a compact
Hausdorff space (since the theory is nearly identical in this case). And, if we
really get ambitious, we may delve into more esoteric settings. For the sake
of future reference, here is a brief summary of the situation.

If X is any topological space, we write C(X ) to denote the algebra of all
real-valued continuous functions f : X −→ R. For general X , though, C(X )
may not be metrizable. If X is Hausdorff and σ -compact, say X = ⋃∞

n=1 Kn ,
then C(X ) is a complete metric space under the topology of “uniform con-
vergence on compacta” (or the “compact-open” topology). This topology is
generated by the so-called Fréchet metric

d( f, g) =
∞∑

n=1

2−n ‖ f − g‖n

1 + ‖ f − g‖n
, (1.8)

where ‖ f ‖n is the norm of f |Kn in C(Kn).
If we restrict our attention to the bounded functions in C(X ), then we may

at least apply the sup norm; for this reason, we consider instead the Banach
space Cb(X ) of all bounded, continuous, real-valued functions f : X −→ R

endowed with the sup norm

‖ f ‖ = sup
x∈X

| f (x)|.

Obviously, Cb(X ) is a closed subspace of �∞(X ). If X is at least completely
regular, then Cb(X ) contains as much information as C(X ) itself in the sense
that the topology on X is completely determined by knowing the bounded,
continuous, real-valued functions on X .
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If X is noncompact, then we might also consider the normed space CC (X )
of all continuous f : X −→ R with compact support. That is, f ∈ CC (X ) if
f is continuous and if the support of f , namely, the set

supp f = {x ∈ X : f (x) �= 0},
is compact. Although we may apply the sup norm to CC (X ), it’s not, in general,
complete. The completion of CC (X ) is the space C0(X ) consisting of all those
continuous f : X −→ R that “vanish at infinity.” Specifically, f ∈ C0(X ) if f
is continuous and if, for each ε > 0, the set {| f | ≥ ε} has compact closure.
The space C0(X ) is a closed subspace of Cb(X ) and hence is a Banach space
under the sup norm.

If X is compact, then, of course, CC (X ) = Cb(X ) = C(X ). For general X ,
however, the best we can say is

CC (X ) ⊂ C0(X ) ⊂ Cb(X ) ⊂ C(X ).

At least one easy example might be enlightening here: Consider the case
X = N; obviously, N is locally compact and metrizable. Now every func-
tion f : N −→ R is continuous, and any such function can quite plainly be
identified with a sequence; namely, its range ( f (n)). That is, we can iden-
tify C(N) with s by way of the correspondence f ∈ C(N) ←→ x ∈ s, where
xn = f (n). Convince yourself that

Cb(N) = �∞, C0(N) = c0, C0(N) ⊕ R = c, (1.9)

and that

CC (N) = {x ∈ s : xn = 0 for all but finitely many n}. (1.10)

While this is curious, it doesn’t quite tell the whole story. Indeed, both �∞ and
c are actually C(K ) spaces. To get a glimpse into why this is true, consider
the space N

∗ = N ∪ {∞}, the one-point compactification of N (that is, we
append a “point at infinity”). If we define a neighborhood of ∞ to be any
set with finite (compact) complement, then N

∗ becomes a compact Hausdorff
space. Convince yourself that

c = C(N∗) and c0 = { f ∈ C(N∗) : f (∞) = 0)}. (1.11)

We’ll have more to say about these ideas later.

Hilbert Space

As you’ll no doubt recall, the spaces �2 and L2 are both Hilbert spaces, or
complete inner product spaces. Recall that a vector space H is called a Hilbert
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space if H is endowed with an inner product 〈·, ·〉 with the property that the
induced norm, defined by

‖x‖ =
√

〈x, x〉, (1.12)

is complete. It is most important here to recognize that the norm in H is
intimately related to an inner product by way of (1.12). This is a tall order for
the run-of-the-mill norm. From this point of view, Hilbert spaces are quite
rare among the teeming masses of Banach spaces.

There is a critical distinction to be made here; perhaps an example will
help to explain. Let X denote the space �2 supplied with the norm ‖x‖ =
‖x‖2 + ‖x‖∞. Then X is isomorphic (linearly homeomorphic) to �2 because
our new norm satisfies ‖x‖2 ≤ ‖x‖ ≤ 2‖x‖2. But X is not itself a Hilbert
space. The test is whether the parallelogram law holds:

‖x + y‖2 + ‖x − y‖2 ?= 2
(‖x‖2 + ‖y‖2

)
.

And it’s easy to check that the parallelogram law fails if x = (1, 0, 0, . . .) and
y = (0, 1, 0, . . .), for instance. The moral here is that it’s not enough to have
a well-defined inner product, nor is it enough to have a norm that is close to a
known Hilbert space norm. In a Hilbert space, the norm and the inner product
are inextricably bound together through equation (1.12).

Hilbert spaces exhibit another property that is rare among the Banach
spaces: In a Hilbert space, every closed subspace is the range of a continuous
projection. This is far from the case in a general Banach space. (In fact, it
is known that any space with this property is already isomorphic to Hilbert
space.)

“Neoclassical” Spaces

We have more or less exhausted the list of spaces that were well known in
Banach’s time. But we have by no means even begun to list the spaces that are
commonplace these days. In fact, it would take pages and pages of definitions
to do so. For now we’ll content ourselves with the understanding that all of
the known examples are, in a sense, generalizations of the spaces we have
seen thus far.

The Big Questions

We’re typically interested in both the isometric as well as the isomorphic
character of a Banach space. (For our purposes, all isometries are linear.
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Also, as a reminder, an isomorphism is a linear homeomorphism.) Here are
just a few of the questions we might consider:

� Are all the spaces listed above isometrically distinct? For example, is
it at all possible that �4 and �6 are isometric? What about �p and L p?
Or L p[0, 1] and L p(R)?

� When is a given Banach space X isometric to a subspace of one of the
classical spaces? When does X contain an isometric copy of one of the
classical spaces? In particular, does L1 embed isometrically into L2?
Does �p embed isometrically into C[0, 1]?

� We might pose all of the preceding questions, replacing the word “iso-
metric” with “isomorphic.”

� Characterize all of the subspaces of a given Banach space X , if possi-
ble, both isometrically and isomorphically. In particular, identify those
subspaces that are the range of a continuous projection (that is, the
complemented subspaces of X ). Knowing all of the subspaces of a
given space would tell us something about the linear operators into or
on the space. (And vice versa: After all, the kernel and range of a linear
operator are subspaces.)

� All of the spaces we’ve defined above carry some additional structure.
C[a, b] is an algebra of functions, for example, and L1[0, 1] is a lattice.
What, if anything, does this extra structure tell us from the point of view
of Banach space theory? Is it an isometric invariant of these spaces?
An isomorphic invariant? Does it imply the existence of interesting
subspaces? Or interesting operators?

� It’s probably fair to say that functional analysis concerns the study
of operators between spaces. Insert the adjective “linear,” wherever
possible, and you will have a working definition of linear functional
analysis. Where does the study of Banach spaces fit within the larger
field of functional analysis? In other words, does a better understanding
of Banach spaces tell us anything about the operators between these
spaces?

� Good mathematics doesn’t exist in a vacuum. We also want to keep
an eye out for applications of the theory of Banach spaces to “main-
stream” analysis. Conversely, we will want to be on the lookout for ap-
plications of mainstream tools to the theory of Banach spaces. Among
others, we will look for connections with probability, harmonic anal-
ysis, topology, operator theory, and plain ol’ calculus. By way of an
example, we might consider the calculus of “vector-valued” functions
f : [0, 1] −→ X , where X is a Banach space. It would make perfect
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sense to ask whether f is of bounded variation, for instance, or whether∫ 1
0 ‖ f (x)‖ dx < ∞. We’ll put these tantalizing questions aside until

we’re better prepared to deal with them.

Notes and Remarks

The space C[a, b] is arguably the oldest of the examples presented here; it
was Maurice Fréchet who offered the first systematic study of the space (as
a metric space) beginning in 1906. The space �2 was introduced in 1907 by
Erhard Schmidt (of the “Gram–Schmidt process”). The space that bears his
name held little interest for Hilbert, by the way. Hilbert preferred the concrete
setting of integral equations to the abstractions of Hilbert space theory.

Schmidt’s paper is notable in that it is believed to contain the first appear-
ance of the familiar “double-bar” notation for norms. Both the notation �2 and
the attribution “Hilbert space,” though, are due to Frigyes (Frederic) Riesz.
In fact, Riesz introduced the L p spaces, and he, Fréchet, and Ernst Fischer
noticed their connections with the �p spaces. Although many of these ideas
were “in the air” for several years, it was Banach who launched the first com-
prehensive study of normed spaces in his 1922 dissertation [5], culminating
in his 1932 book [6]. For more on the prehistory of functional analysis and,
in particular, the development of function spaces, see the detailed articles by
Michael Bernkopf [13, 14], the writings of A. F. Monna [104, 105], and the
excellent chapter notes in Dunford and Schwartz [42].

For much more on the classical and “neoclassical” Banach spaces, see
the books by Adams [1], Bennett and Sharpley [12], Dunford and Schwartz
[42], Duren [43], Lacey [88], Lindenstrauss and Tzafriri [93, 94, 95], and
Wojtaszczyk [147]. For more on the history of open questions and unresolved
issues in Banach space theory, see Banach’s book [6], its review by Diestel
[32], and its English translation with notes by Bessaga and Pelczyński [7];
see also Day [29], Diestel [33], Diestel and Uhl [34], Megginson [100], and
the articles by Casazza [20, 21, 22, 23], Mascioni [99], and Rosenthal [124,
125, 126, 127].

Exercises

1. If (X, ‖ · ‖) is any normed linear space, show that the operations (x, y) �→
x + y and (α, x) �→ αx are continuous (on X × X and R × X ,
respectively). [It doesn’t much matter what norms we use on X × X and
R × X ; for example, ‖(x, y)‖ = ‖x‖ + ‖y‖ works just fine. (Why?)] If Y
is a (linear) subspace of X , conclude that its closure Y is again a subspace.
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2. Show that (X, ‖ · ‖) is complete if and only if every absolutely summable
series is summable; that is, if and only if

∑∞
n=1 ‖xn‖ < ∞ always implies

that
∑∞

n=1 xn converges in (the norm of) X .

3. Show that C (1)[0, 1], the space of functions f : [0, 1] −→ R having a
continuous first derivative, is complete under the norm ‖ f ‖ = ‖ f ‖∞ +
‖ f ′‖∞.

4. Show that s is complete under the Fréchet metric (1.3).

5. Show that �∞ is not separable.

6. Given 0 < p < 1, show that ‖ f + g‖p ≤ 21/p(‖ f ‖p + ‖g‖p) for f , g ∈
L p. A better estimate (with a slightly harder proof) yields the constant
2(1/p)−1 in place of 21/p.

7. Let 1 < p < ∞ and let 1/p + 1/q = 1. Show that for positive real num-
bers a and b we have ab ≤ a p/p + bq/q with equality if and only if
a = b. For 0 < p < 1 (and q < 0!), show that the inequality reverses.

8. Let 0 < p < 1 and let 1/p + 1/q = 1. If f and g are nonnnegative func-
tions with f ∈ L p and

∫
gq > 0, show that

∫
f g ≥ (

∫
f p)1/p(

∫
gq )1/q .

9. Given 0 < p < 1 and nonnegative functions f , g ∈ L p, show that
‖ f + g‖p ≥ ‖ f ‖p + ‖g‖p.

10. Prove the string of inequalities (1.2) for x ∈ �1.

11. Prove the string of inequalities (1.7) for f ∈ L∞[0, 1].

12. Given 1 ≤ p, q ≤ ∞, p �= q, show that L p(R) �⊂ Lq (R).

13. Given a compact Hausdorff space X , show that C0(X ) is a closed sub-
space of Cb(X ) and that CC (X ) is dense in C0(X ).

14. Let H be a separable Hilbert space with orthonormal basis (en) and let
K be a compact subset of H . Given ε > 0, show there exists an N such
that ‖ ∑∞

n=N 〈x, en〉en‖ < ε for every x ∈ K . That is, if K is compact,
then these “tail series” can be made uniformly small over K .


