The Calculus of Retirement Income

Financial Models for Pension Annuities and Life Insurance

This book introduces and develops—from a unique financial perspective—the basic actuarial models that underlie the pricing of life-contingent pension annuities and life insurance. The ideas and techniques are then applied to the real-world problem of generating sustainable retirement income toward the end of the human life cycle. The roles of lifetime income, longevity insurance, and systematic withdrawal plans are investigated within a parsimonious framework. The underlying technology and terminology of the book are based on continuous-time financial economics, merging analytic laws of mortality with the dynamics of equity markets and interest rates. Nonetheless, the text requires only a minimal background in mathematics, and it emphasizes examples and applications rather than theorems and proofs. The Calculus of Retirement Income is an ideal textbook for an applied course on wealth management and retirement planning, and it can serve also as a reference for quantitatively inclined financial planners. This book is accompanied by material on the Web site (www.ifid.ca/CRI).

Moshe A. Milevsky is Associate Professor of Finance at the Schulich School of Business, York University, and the Executive Director of the IFID Centre in Toronto, Canada. He was elected Fellow of the Fields Institute in 2002. Professor Milevsky is co-founding editor of the Journal of Pension Economics and Finance (published by Cambridge University Press) and has authored more than thirty scholarly articles in addition to three books. His writing for popular media received a Canadian National Magazine Award in 2004. He has lectured widely on the topics of retirement income planning, insurance, and investments in North America, South America, and Europe, and he is a frequent guest on North American television and radio.
The Calculus of Retirement Income

Financial Models for Pension Annuities and Life Insurance

MOSHE A. MILEVSKY

Schulich School of Business
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7</td>
<td>Median vs. Expected Remaining Lifetime</td>
<td>44</td>
</tr>
<tr>
<td>3.8</td>
<td>Exponential Law of Mortality</td>
<td>45</td>
</tr>
<tr>
<td>3.9</td>
<td>Gompertz–Makeham Law of Mortality</td>
<td>46</td>
</tr>
<tr>
<td>3.10</td>
<td>Fitting Discrete Tables to Continuous Laws</td>
<td>49</td>
</tr>
<tr>
<td>3.11</td>
<td>General Hazard Rates</td>
<td>51</td>
</tr>
<tr>
<td>3.12</td>
<td>Modeling Joint Lifetimes</td>
<td>53</td>
</tr>
<tr>
<td>3.13</td>
<td>Period vs. Cohort Tables</td>
<td>55</td>
</tr>
<tr>
<td>3.14</td>
<td>Further Reading</td>
<td>59</td>
</tr>
<tr>
<td>3.15</td>
<td>Notation</td>
<td>60</td>
</tr>
<tr>
<td>3.16</td>
<td>Problems</td>
<td>60</td>
</tr>
<tr>
<td>3.17</td>
<td>Technical Note: Incomplete Gamma Function in Excel</td>
<td>61</td>
</tr>
<tr>
<td>3.18</td>
<td>Appendix: Normal Distribution and Calculus Refresher</td>
<td>62</td>
</tr>
<tr>
<td>4</td>
<td>Valuation Models of Deterministic Interest</td>
<td>64</td>
</tr>
<tr>
<td>4.1</td>
<td>Continuously Compounded Interest Rates?</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>Discount Factors</td>
<td>66</td>
</tr>
<tr>
<td>4.3</td>
<td>How Accurate Is the Rule of 72?</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>Zero Bonds and Coupon Bonds</td>
<td>68</td>
</tr>
<tr>
<td>4.5</td>
<td>Arbitrage: Linking Value and Market Price</td>
<td>70</td>
</tr>
<tr>
<td>4.6</td>
<td>Term Structure of Interest Rates</td>
<td>72</td>
</tr>
<tr>
<td>4.7</td>
<td>Bonds: Nonflat Term Structure</td>
<td>73</td>
</tr>
<tr>
<td>4.8</td>
<td>Bonds: Nonconstant Coupons</td>
<td>74</td>
</tr>
<tr>
<td>4.9</td>
<td>Taylor’s Approximation</td>
<td>75</td>
</tr>
<tr>
<td>4.10</td>
<td>Explicit Values for Duration and Convexity</td>
<td>76</td>
</tr>
<tr>
<td>4.11</td>
<td>Numerical Examples of Duration and Convexity</td>
<td>78</td>
</tr>
<tr>
<td>4.12</td>
<td>Another Look at Duration and Convexity</td>
<td>80</td>
</tr>
<tr>
<td>4.13</td>
<td>Further Reading</td>
<td>81</td>
</tr>
<tr>
<td>4.14</td>
<td>Notation</td>
<td>82</td>
</tr>
<tr>
<td>4.15</td>
<td>Problems</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>Models of Risky Financial Investments</td>
<td>83</td>
</tr>
<tr>
<td>5.1</td>
<td>Recent Stock Market History</td>
<td>83</td>
</tr>
<tr>
<td>5.2</td>
<td>Arithmetic Average Return versus Geometric Average Return</td>
<td>86</td>
</tr>
<tr>
<td>5.3</td>
<td>A Long-Term Model for Risk</td>
<td>88</td>
</tr>
<tr>
<td>5.4</td>
<td>Introducing Brownian Motion</td>
<td>91</td>
</tr>
<tr>
<td>5.5</td>
<td>Index Averages and Index Medians</td>
<td>97</td>
</tr>
<tr>
<td>5.6</td>
<td>The Probability of Regret</td>
<td>98</td>
</tr>
<tr>
<td>5.7</td>
<td>Focusing on the Rate of Change</td>
<td>100</td>
</tr>
<tr>
<td>5.8</td>
<td>How to Simulate a Diffusion Process</td>
<td>101</td>
</tr>
<tr>
<td>5.9</td>
<td>Asset Allocation and Portfolio Construction</td>
<td>102</td>
</tr>
<tr>
<td>5.10</td>
<td>Space–Time Diversification</td>
<td>104</td>
</tr>
<tr>
<td>5.11</td>
<td>Further Reading</td>
<td>107</td>
</tr>
<tr>
<td>5.12</td>
<td>Notation</td>
<td>108</td>
</tr>
<tr>
<td>5.13</td>
<td>Problems</td>
<td>108</td>
</tr>
</tbody>
</table>
Contents

6 Models of Pension Life Annuities 110
 6.1 Motivation and Agenda 110
 6.2 Market Prices of Pension Annuities 110
 6.3 Valuation of Pension Annuities: General 114
 6.4 Valuation of Pension Annuities: Exponential 115
 6.5 The Wrong Way to Value Pension Annuities 115
 6.6 Valuation of Pension Annuities: Gompertz–Makeham 116
 6.7 How Is the Annuity’s Income Taxed? 119
 6.8 Deferred Annuities: Variation on a Theme 121
 6.9 Period Certain versus Term Certain 123
 6.10 Valuation of Joint and Survivor Pension Annuities 125
 6.11 Duration of a Pension Annuity 128
 6.12 Variable vs. Fixed Pension Annuities 130
 6.13 Further Reading 134
 6.14 Notation 136
 6.15 Problems 136

7 Models of Life Insurance 138
 7.1 A Free (Last) Supper? 138
 7.2 Market Prices of Life Insurance 138
 7.3 The Impact of Health Status 139
 7.4 How Much Life Insurance Do You Need? 140
 7.5 Other Kinds of Life Insurance 142
 7.6 Value of Life Insurance: Net Single Premium 143
 7.7 Valuing Life Insurance Using Pension Annuities 145
 7.8 Arbitrage Relationship 147
 7.9 Tax Arbitrage Relationship 148
 7.10 Value of Life Insurance: Exponential Mortality 149
 7.11 Value of Life Insurance: GoMa Mortality 149
 7.12 Life Insurance Paid by Installments 150
 7.13 NSP: Delayed and Term Insurance 150
 7.14 Variations on Life Insurance 151
 7.15 What If You Stop Paying Premiums? 154
 7.16 Duration of Life Insurance 157
 7.17 Following a Group of Policies 159
 7.18 The Next Generation: Universal Life Insurance 160
 7.19 Further Reading 162
 7.20 Notation 162
 7.21 Problems 162

8 Models of DB vs. DC Pensions 164
 8.1 A Choice of Pension Plans 164
 8.2 The Core of Defined Contribution Pensions 165
 8.3 The Core of Defined Benefit Pensions 169
Contents

8.4 What Is the Value of a DB Pension Promise? 172
8.5 Pension Funding and Accounting 176
8.6 Further Reading 180
8.7 Notation 181
8.8 Problems 182

II WEALTH MANAGEMENT: APPLICATIONS AND IMPLICATIONS

9 Sustainable Spending at Retirement 185
9.1 Living in Retirement 185
9.2 Stochastic Present Value 187
9.3 Analytic Formula: Sustainable Retirement Income 190
9.4 The Main Result: Exponential Reciprocal Gamma 192
9.5 Case Study and Numerical Examples 193
9.6 Increased Sustainable Spending without More Risk? 202
9.7 Conclusion 206
9.8 Further Reading 208
9.9 Problems 208
9.10 Appendix: Derivation of the Formula 209

10 Longevity Insurance Revisited 215
10.1 To Annuitize or Not To Annuitize? 215
10.2 Five 95-Year-Olds Playing Bridge 216
10.3 The Algebra of Fixed and Variable Tontines 218
10.4 Asset Allocation with Tontines 220
10.5 A First Look at Self-Annuitization 225
10.6 The Implied Longevity Yield 226
10.7 Advanced-Life Delayed Annuities 234
10.8 Who Incurs Mortality Risk and Investment Rate Risk? 241
10.9 Further Reading 244
10.10 Notation 245
10.11 Problems 245

III ADVANCED TOPICS

11 Options within Variable Annuities 249
11.1 To Live and Die in VA 249
11.2 The Value of Paying by Installments 252
11.3 A Simple Guaranteed Minimum Accumulation Benefit 257
11.4 The Guaranteed Minimum Death Benefit 258
11.5 Special Case: Exponential Mortality 259
11.6 The Guaranteed Minimum Withdrawal Benefit 262
11.7 Further Reading 268
11.8 Notation 269
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>The Utility of Annuitization</td>
<td>270</td>
</tr>
<tr>
<td>12.1</td>
<td>What Is the Protection Worth?</td>
<td>270</td>
</tr>
<tr>
<td>12.2</td>
<td>Models of Utility, Value, and Price</td>
<td>271</td>
</tr>
<tr>
<td>12.3</td>
<td>The Utility Function and Insurance</td>
<td>272</td>
</tr>
<tr>
<td>12.4</td>
<td>Utility of Consumption and Lifetime Uncertainty</td>
<td>274</td>
</tr>
<tr>
<td>12.5</td>
<td>Utility and Annuity Asset Allocation</td>
<td>278</td>
</tr>
<tr>
<td>12.6</td>
<td>The Optimal Timing of Annuitization</td>
<td>281</td>
</tr>
<tr>
<td>12.7</td>
<td>The Real Option to Defer Annuitization</td>
<td>282</td>
</tr>
<tr>
<td>12.8</td>
<td>Advanced RODA Model</td>
<td>287</td>
</tr>
<tr>
<td>12.9</td>
<td>Subjective vs. Objective Mortality</td>
<td>289</td>
</tr>
<tr>
<td>12.10</td>
<td>Variable vs. Fixed Payout Annuities</td>
<td>290</td>
</tr>
<tr>
<td>12.11</td>
<td>Further Reading</td>
<td>291</td>
</tr>
<tr>
<td>12.12</td>
<td>Notation</td>
<td>292</td>
</tr>
<tr>
<td>13</td>
<td>Final Words</td>
<td>293</td>
</tr>
<tr>
<td>14</td>
<td>Appendix</td>
<td>295</td>
</tr>
</tbody>
</table>

Final Words

Bibliography

Index
Figures and Tables

Figures

2.1 The human financial life cycle: Savings, wealth & consumption (constant investment rate)
 page 25

2.2 The human financial life cycle: Savings, wealth & consumption (varying investment rate)
 32

3.1 RP2000 mortality table used for pensions
 36

3.2 Relationships between mortality descriptions
 40

3.3 The CDF versus the PDF of a “normal” remaining lifetime R.V.
 42

3.4 The hazard rate for the normal distribution
 42

3.5 The CDF versus the PDF of an “exponential” remaining lifetime R.V.
 47

3.6 RP2000 (unisex pension) mortality table vs. best Gompertz fit vs. exponential approximation
 50

4.1 Evolution of the bond price over time
 69

4.2 Model bond value vs. valuation rate
 71

4.3 The term structure of interest rates
 73

4.4 “Taylor’s D” as maturity gets closer
 77

4.5 How good is the approximation?
 81

5.1 Visualizing the stochastic growth rate
 89

5.2 Sample path of Brownian motion over 40 years
 92

5.3 Another sample path of Brownian motion over 40 years
 93

5.4 Sample paths: BM vs. nsBM vs. GBM
 94

5.5 What is the Probability of Regret (PoR)?
 99

5.6 Space–time diversification
 107

6.1 Pension annuity quotes: Relationship between credit rating and average payout (income)
 113

6.2 One sample path – Three outcomes depending on h
 135

8.1 Pension systems
 165

8.2 Salary/wage profile vs. weighting scheme: Modeling pension vesting & career averages
 169
Figures and Tables

8.3 ABO vs. PBO vs. RBO 174
9.1 The retirement triangle 186
9.2 Stochastic present value (SPV) of retirement consumption 189
9.3 Minimum wealth required at various ages to maintain a fixed retirement ruin probability 200
9.4 Probability given spending rate is not sustainable 201
9.5 Expected wealth: 65-year-old consumes $5 per year but protects portfolio with 5% out-of-the-money puts 204
9.6 Ruin probability conditional on returns 205
10.1 I want a lifetime income 228
10.2 Advanced life delayed annuity 235
11.1 Three types of puts 250
11.2 Titanic vs. vanilla put 260
12.1 Expected loss 271

Tables
1.1 Old-age dependency ratio around the world 6
1.2 Expected number of years spent in retirement around the world 7
2.1 Financial exchange rate between $1 saved annually over 30 working years and dollar consumption during retirement 23
2.2 Government-sponsored pension plans: How generous are they? 26
2.3 Discounted value of life-cycle plan = $0.241 under first sequence of varying returns 31
2.4 Discounted value of life-cycle plan = −$0.615 under second sequence of varying returns 31
3.1 Mortality table for healthy members of a pension plan 35
3.2 Mortality odds when life is normally distributed 41
3.3 Life expectancy at birth in 2005 43
3.4 Increase since 1950 in life expectancy at birth $E[T_0]$ 44
3.5 Mortality odds when life is exponentially distributed 46
3.6 Example of fitting Gompertz–Makeham law to a group mortality table—Female 49
3.7 Example of fitting Gompertz–Makeham law to a group mortality table—Male 49
3.8 How good is a continuous law of mortality?—Gompertz vs. exponential vs. RP2000 50
3.9 Working with the instantaneous hazard rate 52
3.10 Survival probabilities at age 65 54
3.11 Change in mortality patterns over time—Female 56
3.12 Change in mortality patterns over time—Male 57
4.1 Year-end value of $1 under infrequent compounding 65
4.2 Year-end value of $1 under frequent compounding 65
Figures and Tables

4.3 Years required to double or triple $1 invested at various interest rates 67
4.4 Valuation of 5-year bonds as a fraction of face value 70
4.5 Valuation of 10-year bonds as a fraction of face value 70
4.6 Estimated vs. actual value of $10,000 bond after change in valuation rates 80
5.1 Nominal investment returns over 10 years 84
5.2 Growth rates during different investment periods 85
5.3 After-inflation (real) returns over 10 years 86
5.4 Geometric mean returns 87
5.5 Probability of losing money in a diversified portfolio 90
5.6 SDE simulation of GBM using the Euler method 102
6.1 Monthly income from $100,000 premium single-life pension annuity 111
6.2 A quick comparison with the bond market 112
6.3 Monthly income from $100,000 premium joint life pension annuity 112
6.4 IPAF $\overline{\alpha}_x$: Price of lifetime $1 annual income 118
6.5 Taxable portion of income flow from $1-for-life annuity purchased with non–tax-sheltered funds 121
6.6 DPAF $\overline{\nu}_{45}$: Price of lifetime $1 annual income for 45-year-old 123
6.7 Value $V(r, T)$ of term certain annuity factor vs. immediate pension annuity factor 124
6.8 Duration value D (in years) of immediate pension annuity factor 129
6.9 Pension annuity factor at age $x = 50$ when $r = 5\%$ 131
6.10 Annuity payout at age $x = 65$ ($100,000$ premium) 134
7.1 U.S. monthly premiums for a $100,000 death benefit 139
7.2 U.S. monthly premiums for a $100,000 death benefit—50-year-old nonsmoker 140
7.3 Net single premium for $100,000 of life insurance protection 150
7.4 Net periodic premium for $100,000 of life insurance protection 151
7.5 Model results: $100,000$ life insurance—Monthly premiums for 50-year-old by health status 153
7.6 $100,000$ life insurance—Monthly premiums for 50-year-old by lapse rate 156
7.7 Duration value D (in years) of NSP for life insurance 158
7.8 Modeling a book of insurance policies over time 159
8.1 DC pension retirement income 171
8.2 DC pension: Income replacement rate 171
8.3 DB pension retirement income 172
8.4 DB pension: Income replacement rate 173
8.5 Current value of sample retirement pension by valuation rate and by type of benefit obligation 175
Figures and Tables

8.6 Change in value (from age 45 to 46) of sample retirement pension by valuation rate and by type of benefit obligation 177
8.7 Change in pension value at various ages assuming $r = 5\%$ valuation rate 177
8.8 Change in PBO from prior year 178
8.9 Change in ABO from prior year 178
9.1 Probability of retirement ruin given (arithmetic mean) return μ of 7\% with volatility σ of 20\% 195
9.2 Probability of retirement ruin given μ of 5\% with σ of 20\% 197
9.3 Probability of retirement ruin given μ of 5\% with σ of 10\% 197
9.4(a) Maximum annual spending given tolerance for 5\% probability of ruin 198
9.4(b) Maximum annual spending given tolerance for 10\% probability of ruin 198
9.4(c) Maximum annual spending given tolerance for 25\% probability of ruin 199
9.5 Probability of ruin for 65-year-old male given collared portfolio under a fixed spending rate 202
9.6 Probability of ruin for 65-year-old female given collared portfolio under a fixed spending rate 203
10.1 Algebra of fixed tontine vs. nontontine investment 218
10.2 Investment returns from fixed tontines given survival to year’s end 219
10.3 Algebra of variable tontine vs. nontontine investment 220
10.4 Optimal portfolio mix of stocks and safe cash 224
10.5 Monthly income from immediate annuity ($100,000 premium) 231
10.6 Cost for male of $569 monthly from immediate annuity 231
10.7 Cost for female of $539 monthly from immediate annuity 232
10.8 Should an 80-year-old annuitize? 232
10.9 ALDA: Net single premium $(u_{x}a_{x})$ required at age x to produce 1 of income starting at age $x + u$ 236
10.10 ALDA income multiple: Dollars received during retirement per dollar paid today 239
10.11 Lapse-adjusted ALDA income multiple 240
10.12 Profit spread (in basis points) from sale of ALDA given mortality misestimate of 20\% 244
11.1 BSM put option value as a function of spot price and maturity—Strike price $= 100$ 252
11.2 Discounted value of fees 256
11.3 Annual fee (in basis points) needed to hedge the death benefit—Female 258
11.4 Annual fee (in basis points) needed to hedge the death benefit—Male 259
Figures and Tables

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5</td>
<td>Value of exponential Titanic option</td>
<td>262</td>
</tr>
<tr>
<td>11.6</td>
<td>GMWB payoff and the probability of ruin within 14.28 years</td>
<td>265</td>
</tr>
<tr>
<td>11.7</td>
<td>Impact of GMWB rate and subaccount volatility on required fee k</td>
<td>268</td>
</tr>
<tr>
<td>12.1</td>
<td>Relationship between risk aversion γ and subjective insurance premium I_γ</td>
<td>275</td>
</tr>
<tr>
<td>12.2</td>
<td>When should you annuitize in order to maximize your utility of wealth?</td>
<td>288</td>
</tr>
<tr>
<td>12.3</td>
<td>Real option to delay annuitization for a 60-year-old male who disagrees with insurance company’s estimate of his mortality</td>
<td>289</td>
</tr>
<tr>
<td>12.4</td>
<td>When should you annuitize?—Given the choice of fixed and variable annuities</td>
<td>291</td>
</tr>
<tr>
<td>14.1(a)</td>
<td>RP2000 healthy (static) annuitant mortality table—Ages 50–89</td>
<td>296</td>
</tr>
<tr>
<td>14.1(b)</td>
<td>RP2000 healthy (static) annuitant mortality table—Ages 90–120</td>
<td>296</td>
</tr>
<tr>
<td>14.2</td>
<td>International comparison (year 2000) of mortality rates q_x at age 65</td>
<td>297</td>
</tr>
<tr>
<td>14.3(a)</td>
<td>2001 CSO (ultimate) insurance mortality table—Ages 50–89</td>
<td>298</td>
</tr>
<tr>
<td>14.3(b)</td>
<td>2001 CSO (ultimate) insurance mortality table—Ages 90–120</td>
<td>298</td>
</tr>
<tr>
<td>14.4</td>
<td>Cumulative distribution function for a normal random variable</td>
<td>299</td>
</tr>
<tr>
<td>14.5</td>
<td>Cumulative distribution function for a reciprocal Gamma random variable</td>
<td>299</td>
</tr>
</tbody>
</table>