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Introduction

Originally, the term ‘dynamic critical phenomena’ was coined for time-dependent
properties near second-order phase transitions in thermal equilibrium. The kinetics
of phase transitions in magnets, at the gas—liquid transition, and at the normal-
to superfluid phase transition in helium 4 were among the prominent examples
investigated already in the 1960s. The dynamic scaling hypothesis, generalizing
the scaling ansatz for the static correlation function and introducing an additional
dynamic critical exponent, successfully described a variety of these experiments.
Yet only the development of the systematic renormalization group (RG) approach
for critical phenomena in the subsequent decade provided a solid conceptual found-
ation for phenomenological scaling theories. Supplemented with exact solutions
for certain idealized model systems, and guided by invaluable input from computer
simulations in addition to experimental data, the renormalization group now pro-
vides a general framework to explore not only the static and dynamic properties
near a critical point, but also the large-scale and low-frequency response in sta-
ble thermodynamic phases. Scaling concepts and the renormalization group have
also been successfully applied to phase transitions at zero temperature driven by
quantum rather than thermal fluctuations. It is to be hoped that RG methods may
help to classify the strikingly rich phenomena encountered in far-from-equilibrium
systems as well. Recent advances in studies of simple reaction-diffusion systems,
active to absorbing state phase transitions, driven lattice gases, and scaling prop-
erties of moving interfaces and growing surfaces, among others, appear promising
in this respect.

The first part of this book focuses on equilibrium critical phenomena, dominated
by strong thermal fluctuations near a thermodynamic instability. Here we introduce
most of the fundamental concepts and analytical tools needed also for the analysis
of quantum and non-equilibrium critical dynamics. We begin with a review of
thermodynamic singularities and the behavior of the order parameter correlations
near a critical point. In addition to simple mean-field theory as encompassed in the
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4 Introduction

generic Landau—Ginzburg approach, we briefly survey Wilson’s momentum shell
RG method. Next, we introduce the basic principles that will allow us to study
inherently dynamic fluctuation phenomena. Chapter 2 covers linear response theory
as well as a discussion of master, Fokker—Planck, and Langevin equations that
capture stochastic kinetics on different description levels. We specifically highlight
the restrictive detailed-balance conditions required to reach thermal equilibrium in
the long-time limit. In the subsequent Chapter 3, we turn our attention to critical
slowing down and the implications of the dynamic scaling hypothesis. The crucial
influence of ‘slow’ diffusive conserved quantities besides the order parameter is
elucidated.

Thereby equipped with a basic understanding of the relevant physical picture,
we venture into more formal chapters on dynamic perturbation theory and the field-
theoretic variant of the renormalization group procedure. These central chapters
provide a powerful general analytic framework for many of the subsequent discus-
sions. Chapter 4 contains a detailed exposition of the perturbation expansion for
purely relaxational kinetics with either non-conserved or conserved order parame-
ter. In Chapter 5, the renormalization program is explicitly carried through for these
time-dependent Landau—Ginzburg models. The critical exponents are computed to
lowest non-trivial loop order, where a small parameter for the perturbation series is
given by the deviation € = d, — d from the (upper) critical dimension d. = 4. We
also explain how the emergence of massless Goldstone modes leads to generic scale
invariance in the entire low-temperature phase of systems with broken continuous
symmetry.

Chapter 6 explores the effect of additional conserved hydrodynamic modes
and reversible non-linear mode couplings. Exploiting underlying symmetries, we
derive scaling relations for the dynamic critical exponents associated with, e.g., the
equilibrium critical dynamics of magnetic systems, superfluid helium 4, and binary
liquids. A link is provided to self-consistent mode-coupling theory, a valuable
tool for the calculation of scaling functions and quantitative comparison with
experiments. Finally, Chapter 7 is concerned with phase transitions in quantum
systems and quantum-critical phenomena. Here, we introduce coherent-state path
integrals for bosonic and fermionic many-particle systems, and discuss several
illustrative examples, most prominently the properties of boson superfluids and
crossover features in quantum antiferromagnets.
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Equilibrium critical phenomena

To set the stage for our subsequent thorough discussion of dynamic critical phe-
nomena, we first review the theoretical description of second-order equilibrium
phase transitions. (Readers already well acquainted with this material may readily
move on to Chapter 2.) To this end, we compare the critical exponents follow-
ing from the van-der-Waals equation of state for weakly interacting gases with
the results from the Curie—-Weiss mean-field approximation for the ferromagnetic
Ising model. We then provide a unifying description in terms of Landau—Ginzburg
theory, i.e., a long-wavelength expansion of the effective free energy with respect
to the order parameter. The Gaussian model is analyzed, and a quantitative criterion
is established that defines the circumstances when non-linear fluctuations need to
be taken into account properly. Thereby we identify d. = 4 as the upper critical
dimension for generic continuous phase transitions in thermal equilibrium. The
most characteristic feature of a critical point turns out to be the divergence of the
correlation length that renders microscopic details oblivious. As a consequence,
not only the correlation functions, but remarkably the thermodynamics as well of
a critical system are governed by an emergent unusual symmetry: scale invariance.
A simple scaling ansatz is capable of linking different critical exponents; as an
application, we introduce the basic elements of finite-size scaling. Finally, a brief
sketch of Wilson’s momentum shell renormalization group method is presented,
intended as a pedagogical preview of the fundamental RG ideas. Exploiting the
scale invariance properties at the critical point, the scaling forms of the free energy
and the order parameter correlation function are derived. The critical exponents
are computed perturbatively to first order in € = 4 — d. Beginning with Chapter 4,
we shall later venture into a more formal discussion of both static and dynamic
critical phenomena, utilizing the framework of renormalized field theory based on
non-linear Langevin stochastic equations of motion.
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6 Equilibrium critical phenomena

1.1 Mean-field theory

We begin our review with a brief discussion of the classic mean-field theories for the
gas—liquid and para-/ferromagnetic equilibrium critical point." The common fea-
ture of such mean-field approaches is that spatial fluctuations of the thermodynamic
variable serving as the order parameter for the transition are neglected. Ordinar-
ily, in a macroscopic system with N > 1 degrees of freedom, arguments akin to
the central-limit theorem can be safely applied to any extensive thermodynamic
quantity, whereupon one would expect its fluctuations relative to its mean (~ N) to
be of order N~!/2. However, in the vicinity of a critical point, the thermodynamic
response function associated with the order parameter diverges. This indicates that
its mean-square thermal fluctuations become of order N? (in mean-field approx-
imation) rather than N, and cannot generally be disregarded in the computation
of thermodynamic potentials and correlation functions. Nevertheless, mean-field
theories often provide qualitatively correct pictures of the essential physics and
phase diagrams.

1.1.1 Van-der-Waals equation of state
The van-der-Waals equation of state for a weakly interacting gas,

NkgT ~ N2a
V-Nb V2’
relates its pressure P to the volume V, temperature 7', and particle number N.
The parameter b > 0 stems from the short-range repulsions between the gas
molecules, and corresponds to the average excluded volume per hard-core particle.
This excluded volume repulsion naturally increases the gas pressure P. Attractive
two-body molecular forces, on the other hand, will reduce the pressure by a term
o —(N/V)?. For weak long-range pair interactions, e.g., of the van-der-Waals

P(T,V,N) =

(1.1)

form V(r) o« —1/r® originating in fluctuating electric dipole moments, essentially
only the radially averaged pair potential ~ a matters, which leads to the second
term in Eq. (1.1).

Typical van-der-Waals isotherms P(v) at T = const. are sketched in Fig. 1.1
as function of the reduced volume (inverse particle density) v =V /N = 1/n. At
high temperatures T > T, they approach the universal ideal gaslaw PV = NkgT,
independent of the microscopic interaction parameters a and ». Upon lowering T,
the isotherms develop an inflection point with decreasing slope. As we shall see,
the critical temperature 7 = T, is reached when this inflection point turns into

! More detailed descriptions can be found in most modern graduate level textbooks on equilibrium statistical
mechanics, e.g.: Chaikin and Lubensky (1995), Pathria (1996), Cowan (2005), Schwabl (2006), Kardar (2007a,
b), Reichl (2009), and Van Vliet (2010).
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1.1 Mean-field theory 7

T>T,

T=T,

v

Fig. 1.1 Sketch of van-der-Waals isotherms in different temperature regimes. The
critical point (v., P.) (dotted) and the coexistence curve (dashed), which encloses
the coexistence area (grey), are indicated. For T < T, Maxwell’s construction
demands that the shaded areas delimited by v; and vy be equal.

a saddle point with horizontal tangent. For T < T, the function P(v) has two
extrema. However, the van-der-Waals equation becomes unphysical in the region
where (0 P/dv)r > 0, because thermodynamic stability requires the isothermal
compressibility kr = —v~'(dv/d P)r to be positive in thermal equilibrium. In fact,
in the grand-canonical ensemble it is related to the mean-square particle number
fluctuations,

V(AN)?
NkgT

We interpret the instability for 7 < T to indicate phase separation between a

more dilute gaseous (g) state and a denser liquid (1) phase. In equilibrium, these

two phases are not only at the same temperature and pressure, but must have
identical chemical potentials s = p;. Following Maxwell’s construction, we thus

>0. (1.2)

KT =

replace the van-der-Waals isotherm for v; < v < vg with a line of constant pressure
Py(T). Employing the Gibbs—Duhem relation 4 = G/N and the differential of
the free enthalpy (Gibbs free energy) dG = —SdT + VdP + udN, we have for
T, N = const.:

0=ug—m=/ vdP , (1.3)
v

which represents the oriented area under the v(P) curve. Therefore v and v, are
uniquely determined by the condition that the shaded areas in Fig. 1.1 be equal.
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8 Equilibrium critical phenomena

v

gas

T,

C

T

Fig. 1.2 Phase diagram in the (7, P) plane. The vapor pressure curve Py(T)
separating the gas and liquid phases terminates at the critical point (Tt, P.).

As the pressure is increased at constant temperature 7 < T, the density discontin-
uously jumps from n, = 1/v, to nj = 1/v; the associated change in entropy per
particle s releases the latent heat g1 = T (s, — s1). Thus, for T < T, the van-der-
Waals equation describes a first-order gas—liquid phase transition.

The phase coexistence region (the surface bounded by the dashed line in Fig. 1.1)
does not extend beyond 7.. Correspondingly, the vapor pressure curve Py(T),
defined as the projection of the coexistence surface onto the (7', P) plane, terminates
at the critical point (Fig. 1.2). While the vapor pressure curve marks a first-order
transition line, at 7, the latent heat vanishes (see Problem 1.1), and the gas-liquid
phase transition becomes of second order. This very special critical point in the
phase diagram is defined by the conditions (3 P/dv)7, ,, = 0 = (3> P/dv?)z. ., and
P. = P(T., v.). Notice that the first equation implies the divergence of x7 in the
thermodynamic limit N, V — oo (with n held fixed). Inserting the van-der-Waals
equation of state, one readily identifies

Sa oy 4
277 27p2
and hence P.v./kgT. = 3/8 universally for all fluids. In fact, upon rescaling to
quantities measured relative to their critical values, ¢ = (v — v.)/ve, T = (T —
T.)/T.,and p = (P — P.)/ P., the microscopic parameters a and b disappear from
the equation of state (1.1) entirely:
41+ 1) 3

P =TT, Tdrer

ve=3b, kgl = (1.4)

(1.5)

According to this law of corresponding states, when expressed in terms of ¢, T,
and p, the equations of states for all weakly interacting fluids should, at least
approximately, be described by the same universal relation.
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1.1 Mean-field theory 9

We may now derive the properties in the vicinity of the critical point by expanding
Eq. (1.5) for small ¢, retaining only the lowest-order non-vanishing terms. This
yields

3
p~4r—6w—§<p3, (1.6)
wherefrom we immediately infer the cubic critical isotherm (t = 0),
3 3
—prR =@ . 1.7
PR (1.7)

For the vapor pressure curve, because of the antisymmetry near v., we may simply
pute = 0,and obtain py =~ 41 (t < 0). This sets the reference point for determining
the spontaneous specific volume change at the phase transition. The coexistence
curve is defined as the projection onto the (v, P) plane; hence —67¢ = % @3, or

gy = —p &~ (—40)'? (1 <0) (1.8)

on the gas and liquid side, respectively (compare the parabolic form of the dashed
curve in Fig. 1.1). The specific volume difference ¢, — ¢ = 2¢,, setting on contin-
uously at T = T,, may serve as the phase separation order parameter. We proceed
to compute the isothermal compressibility,

dp 1 1/6t, t©>0,
e (ap)r 6+ 292 {1/12|r|, r<0. (1.9)

Hence, k7 = k+|7|~! diverges on both sides of the critical point, but with different
amplitudes, «; /k_ = 2. According to Eq. (1.2), this implies very large particle
number or density fluctuations. These cause strong light scattering near the critical
point, a phenomenon known as critical opalescence (see Section 1.1.3). Finally,
employing the caloric equation of state, one finds that the specific heat C, displays
a discontinuity AC, = % Nkg at T, (Problem 1.1).

1.1.2 Mean-field theory for the ferromagnetic Ising model

In the theory of magnetism, and for the understanding of phase transitions and
critical phenomena, the (Lenz—)Ising model has played a pivotal role. Its degrees
of freedom are N discrete spin variables 0; = £-1 on d-dimensional lattice sites x;.
Subject to an external magnetic field 4 (in units of energy), the energy of a given
configuration of {o;} is given by the Ising Hamiltonian

1 N N
H(oih) = =3 > Jjoic;—h) o, (1.10)
i=1

i,j=1
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10 Equilibrium critical phenomena

with exchange couplings J;;. Notice that in the absence of h, this Hamiltonian
is symmetric with respect to sign inversion o; — —o; Vi. Henceforth, we shall
assume ferromagnetic interactions, favoring parallel spin alignment, and require
translational invariance, J;; = J(x; — x;) > 0. We may then perform a discrete
Fourier transform?

Jg) =) J(x)e e (1.11)

In equilibrium statistical mechanics, the task now is to evaluate the canonical
partition sum over all possible spin configurations,

Z(T,h,N) = Z g HoiD)/ksT 1.12)
{o;==1}

Thermodynamic properties are then given as averages of appropriate functions of
the binary spin variables o;,

1

A(lo) = = A({o;}) e HloD/ kT 1.13

(A{oi}) Z{m:zﬂ} ({o}) (1.13)
and may often be obtained via appropriate partial derivatives with respect to tem-
perature 7 or field /. In one dimension, this program can be easily carried through
explicitly, see Problem 1.2. Even in two dimensions, the Ising model may be
solved exactly, albeit with considerably greater effort. In higher dimensions, it has,
however, eluded any such attempts, and one must resort to approximations.

In Curie—Weiss mean-field theory, essentially the effective ‘local’ field

OH
heri = =5 =h+ Z Jijoj (1.14)
J

is replaced with its average (h.gx) = h + Jm, where J = J(g=0)=> J(xp),
and m = (0;) = M/N denotes the magnetization per spin. We would clearly
expect this approximation to work best when the exchange interactions are
long-range, and their effect on any site roughly uniform; or in high dimen-
sions, when the interactions with many neighboring sites average out local
fluctuations. The Ising Hamiltonian thus becomes that of a simple two-state
paramagnet, subject to the combined external and internal field (hg). The
magnetization m can then be determined self-consistently. More precisely, we
decompose the local spin into its average and fluctuation, o; = m + (0; — (07)),
whence o; 0; = m? 4+ m(o; — (0;) + 0; — (0})) + (0; — (0:))(0; — (0;)). Upon

2 Throughout this book, vector quantities will not be specifically indicated through arrows or boldface typing.
Neither will distinct symbols be used for the Fourier transforms of scalar or vector fields; if required to avoid
confusion, rather the arguments will be noted explicity.
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