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Introduction

1.1 What is an electronic composite?

‘‘Composite’’ is a well-accepted word, generally referring to structural compo-

nents with enhanced mechanical performance. There are a number of text-

books and review articles on these types of composites (e.g., Kelly, 1973; Tsai

and Hahn, 1980; Hull, 1981; Chawla, 1987; Clyne and Withers, 1993; Daniel

and Ishai, 1994; Gibson, 1994; Hull and Clyne, 1996).

Historically, composites with enhanced mechanical performance have been

in existence from ancient-Egyptian time, c. 2000 BC, when bricks were made

of mud, soil and straw (Exodus, Chapter 5, verse 7). Structural composites are

designed primarily to enhance the mechanical properties of a matrix material

by introducing reinforcement; the primary mechanical properties to be

enhanced are strength, stiffness, and fracture resistance.

Normally, a composite consists of a matrix material and one kind of filler,

but sometimes more than one kind of filler can be used, forming a ‘‘hybrid

composite’’. Depending on the matrix material, one can group composites into

three basic types: polymer matrix composites (PMCs), metal matrix compo-

sites (MMCs), and ceramic matrix composites (CMCs). Among these, PMCs

are the most popular type for electronic composites due to their low processing

temperatures and associated cost-effectiveness.

An ‘‘electronic composite’’ is defined as a composite that is composed of at

least two different materials and whose function is primarily to exhibit elec-

tromagnetic, thermal, and/or mechanical behavior while maintaining struc-

tural integrity. Thus, ‘‘electronic’’ should not be interpreted narrowly as

referring only to electronic behavior, but instead be understood in much

broader terms, including physical and coupling behavior. In this sense, elec-

tronic composites are distinguished from structural composites whose primary

function is to enhance mechanical properties.
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Among various applications, electronic composites have been extensively

used as the major component materials in electronic packaging: printed circuit

boards (PCBs), thermal interface materials (TIMs), encapsulants, etc., most of

which are polymer-based composites providing ease of fabrication and cost-

effectiveness. As an extension of electronic packaging, electronic composites

are used now in micro-electromechanical systems (MEMS) and BioMEMS,

where their functions are multi-fold: active, sensing and housing materials.

The properties of electronic composites can be tailored to meet specific

applications. Thus, prediction of the composite properties at an early stage of

designing electronic composites is a key task. Normally the composite property

is expected to fall between those of the matrix and filler, following the law-of-

mixtures type formula, and depends greatly highly on the microstructural

parameters: volume fraction, filler shape and size distributions; the properties

of the matrix and filler; and also the properties of the matrix–filler interface.

Sometimes, the property of an electronic composite becomes quite different

from those of the matrix material and filler, and is far from that based on the

law-of-mixture type formula. Such a unique property of the composite can be

designed purposely or found accidentally in the course of development of a

functional composite; it is termed a ‘‘cross product’’ exhibiting ‘‘coupling

behavior’’ (Newnham et al., 1978). Since coupling behavior between various

physical properties is included in the definition of electronic composites, com-

posites with such coupling behavior are often referred to as ‘‘smart composites’’

or ‘‘multi-functional materials,’’ which are the key materials systems for use in

smart structures and devices ranging from bio-micro-electromechanical sys-

tems (BioMEMS) through sensors to actuators. Therefore, construction of

accurate models for the macro-property–microstructure (or –nanostructure)

relation is strongly desired. These models are multi-scale, i.e., covering nano-,

micro-, meso-, and macro-levels. If these models at different scale levels are

interconnected smoothly, one can establish a hierarchical model which will be

useful for many scientists and engineers who want to design new smart (or

intelligent) materials, MEMS and BioMEMS devices, and multi-functional

structures. The main body of this book is devoted to presenting a number of

such models. In the remainder of this chapter, we shall review earlier models of

electronic composites.

1.2 Early modeling of electronic composites

Modeling of electronic composites in the nineteenth century and early part of

the twentieth century focused on the prediction of the dielectric constant " and

electrical conductivity � or resistivity � of a composite composed of spherical
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fillers with "f, �f (�f) and matrix with "m and �m (�m) where the subscripts f and

m denote filler and matrix, respectively. Landauer (1978) made an extensive

literature survey of early models for the electrical conductivity of composites

that were proposed in the nineteenth century through to the mid twentieth

century. We shall review some of the early models used to predict the electro-

magnetic properties of composites, i.e., (1) Lorentz sphere problem, (2)

demagnetization in a ferromagnetic body, and (3) concepts of thermal, electric,

and magnetic circuits. The first two provide the background for modeling

based on the effective medium theory, the last for the resistor network model.

Both models will be discussed in detail in later chapters.

1.2.1 Lorentz sphere problem

Consider a dielectric material with dielectric constant " which is subjected to

a uniform electric field E, Fig.1.1(a). At a macroscopic level, the dielectric

material is considered to consist of a uniform electric dipole moment with

polarization P (per unit volume). At the atomic level, one can find a free

space with "0 dielectric constant between lattice points (atoms) or molecules

that constitute the dielectric medium. If we consider a spherical domain of

radius r0 between the atoms or molecules, Fig. 1.1(b), a layer of electric

charges (positive and negative) is distributed on the inner surface of the
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Fig. 1.1 Lorentz sphere problem: (a) macro-level model in a dielectric
material subjected to uniform electric field resulting in uniform polarization
P, (b) nano-level model where free space is polarized by pairs of positive and
negative charges. (c) Lorentz sphere problem to idealize (b). (After Ishimaru,
1991, with permission from Pearson Education, Inc.)
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sphere, which is called the ‘‘Lorentz sphere’’, Fig. 1.1(c). The net (or total)

electric field Et in the sphere is expected to be larger than the applied field by

an amount Ep, i.e.,

Et ¼ Eþ Ep: (1:1)

We shall compute the magnitude of Et using a model developed by four

pioneers in the modeling of electric composites, Mossotti (1850), Clausius

(1879), Lorenz (1880) and Lorentz (1909), which is summarized by Ishimaru

(1991).

The magnitude of the chargePr in the radial direction on the surface element

da is given by

Pr ¼ P � da ¼ Pcos� da; (1:2a)

where

da ¼ 2pr sin� r d�; (1:2b)

and P is the magnitude of P.

This charge Pr induces an electric field dEp in the radial direction given by

the following formula

dEp ¼ Pr

4p r20"0

: (1:3)

Thus, the magnitude of the electric field, Ep, in the x3-direction, contributed

by the layer of distributed charge on the entire inner surface of the sphere, is

obtained as

Ep ¼
Z
s

Pr cos�

4 p r20"0

da

¼
Z p

0

P cos2�

4 p r20"0

2pr0 sin � r0d� ¼ P

2"0

Z p

0

cos2� sin� d�

¼ P

3"0:

(1:4a)

Since the components of Ep along the x1- and x2-directions are zero, the

result of Eq. (1.4a) can be written in vector form as

Ep ¼ P

3"0
: (1:4b)
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Macroscopically, the dielectric medium is governed by

D ¼ "0Eþ P; (1:5)

where D is the electric flux density vector (coulombs [C]/m2). The first term in

Eq. (1.5) is the flux density in free space (i.e., if there were no atoms, or

molecules) and the second term is the electric polarization vector resulting

from electric dipole moments that exist in the dielectric medium. The electric

flux density vector in a medium with dielectric constant " is also proportional

to the applied electric field, i.e.,

D ¼ "E: (1:6)

For isotropic materials, P is proportional to the field E as

P ¼ "0�eE; (1:7)

where �e is the electric susceptibility. From Eqs. (1.5)–(1.7)

" ¼ "0ð1 þ �eÞ
or "r ¼ "

"0
¼ 1 þ �e;

(1:8)

where "r is the relative dielectric constant (non-dimensional) and "0 is the

dielectric constant of free space, see Appendix B1.

At the microscopic level, the polarization vector P is composed of a number

N of elemental dipole moments p which are in turn considered to be propor-

tional to the net local field Et in the sphere, i.e.,

P ¼ Np ¼ N�Et; (1:9)

where � is the polarizability. From Eqs. (1.1), (1.4), and (1.9), we have

Et ¼ Eþ P

3"0

¼ EþN�Et

3"0
: (1:10)

Equation (1.10) provides the relation between Et and E,

Et ¼ E

1�N�
3"0

� � ; (1:11)

which can be rewritten in terms of "r by using Eqs. (1.7), (1.8) and (1.10):
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Et ¼ ð"r þ 2Þ
3

E: (1:12)

Equating the right-hand side of Eq. (1.11) to that of Eq. (1.12) and using

Eq. (1.8), we obtain

�e ¼
N�

"0

1 � N�

3"0

� � (1:13a)

and

"r ¼
1 þ 2

N�

3"0

� �

1 � N�

3"0

� � : (1:13b)

Equations (1.13) provide the relation between polarizability � and relative

dielectric constant "r:

� ¼ 3"0

N

ð"r � 1Þ
ð"r þ 2Þ : (1:14)

The above formulation, established by the four pioneering physicists named

above, is known as the ‘‘Clausius–Mossotti’’ formula or ‘‘Lorentz–Lorenz’’

formula. Among these physicists, Lorentz summarized the formulae of his

predecessors, and the model of Fig. 1.1 is called the ‘‘Lorentz sphere.’’

1.2.2 Other models for dielectric constants

Let us extend the case of Fig.1.1 to that of a filler material with dielectric

constant "2 embedded as spheres in a matrix material with constant "1, Fig. 1.2.

The effective dielectric constant "c of the composite is given by modifying

Eq. (1.13b):

"c

"1
¼

1 þ 2N�

3"1

1 � N�

3"1

; (1:15)

where the polarizability � is now replaced by
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� ¼ 3"1ð"2 � "1Þ
ð"2 þ 2"1Þ V (1:16)

and V is the total volume of filler material in a sphere. If the spheres occupy a

volume fraction f and N is interpreted as the number of the spheres per unit

volume,

f ¼ NV : (1:17)

Note that NV ¼ 1 in Eq. (1.14) where, effectively, the spheres occupied the

entire space.

After substituting Eqs. (1.16) and (1.17) into Eq. (1.15), the composite

dielectric constant "c is obtained as

"c ¼ "1

1 þ 2f
ð"2 � "1Þ
ð"2 þ 2"1Þ

1 � f
ð"2 � "1Þ
ð"2 þ 2"1Þ

(1:18)

which can be rewritten as

ð"c � "1Þ
ð"c þ 2"1Þ ¼ f

ð"2 � "1Þ
ð"2 þ 2"1Þ : (1:19)

The formula Eq. (1.18) was first derived by Maxwell (1904), who considered

the case of concentric spheres where an inner sphere with electric conductivity

ε1

ε2

ε2

ε2

ε2

Fig. 1.2 Filler with dielectric constant "2 embedded in a matrix with
constant "1.
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�1 is embedded in an outer sphere with conductivity �2. By replacing "i by �i in

Eq. (1.18), one can obtain a formula to predict the electric conductivity �c of a

composite, which is called the ‘‘Maxwell–Garnett mixing formula.’’ In Eqs.

(1.18) and (1.19), one can recover special cases, i.e., if f ¼ 0, "c ¼ "1 (matrix

dielectric constant) and, if f ¼ 1, "c ¼ "2 (filler dielectric constant). Even

though the Maxwell–Garnett mixing formula appears to cover the entire

range 0 � f � 1, the model is based on the assumption of a small volume

fraction.

We can further extend our reasoning to the case of two materials ("1, "2)

embedded in a composite matrix material ("c), Fig 1.3. Then, in the back-

ground composite material ("c), each phase ("1, "2) can be viewed as an

inclusion having an electric dipole moment with its polarizability (�1, �2).

The polarization P created by these two different dielectric phases is given by

P ¼ ðN1�1 þN2�2ÞEt: (1:20)

If P is integrated over the entire composite domain, it vanishes because the

electric field in the background composite material is the same as the local total

field Et. This requires

N1�1 þN2�2 ¼ 0; (1:21)

where�i is the polarizability of the ith dielectric material ("i) with respect to the

composite medium ("c). Thus, from Eq. (1.16), �i ði ¼ 1, 2Þ are given by

ε1

ε1

ε1

ε1

ε2

ε2

εc

ε2

ε2

Fig. 1.3 Materials with dielectric constants "1 and "2 embedded in a back-
ground composite with constant "c.
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�1 ¼ "c
3ð"1 � "cÞ
ð"1 þ 2"cÞV1; (1:22a)

�2 ¼ "c
3ð"2 � "cÞ
ð"2 þ 2"cÞV2 (1:22b)

and Ni, the number of spheres of the ith dielectric material, is related to the

volume fraction fi of the ith material, by

N1V1 ¼ f1; (1:23a)

N2V2 ¼ f2: (1:23b)

Vi in the above equations is the volume of each sphere of the ith dielectric

material. Upon substituting Eqs. (1.22) and (1.23) into (1.21), and canceling a

common factor "c, we obtain the formula

f1
ð"1 � "cÞ
ð"1 þ 2"cÞ þ f2

ð"2 � "cÞ
ð"2 þ 2"cÞ ¼ 0: (1:24)

This formula is called ‘‘Bruggeman’s symmetric formula’’ (Bruggeman, 1935)

since the interchange of dielectric materials 1 and 2 gives the same formula.

We can consider a simpler model than those of Figs. 1.2 and 1.3, i.e., one

which we call the ‘‘law of mixtures,’’ having two cases: (1) the parallel model,

Fig. 1.4(a), and (2) the series model, Fig. 1.4(b).

In the parallel model, Fig. 1.4(a), a composite is composed of material 1

with "1 and material 2 with "2 which are aligned in a parallel manner, and the

  

E

D

D

D1 D2

E1

E

E2

(a) (b)

ε1
ε1

ε2

ε2

Fig. 1.4 Law-of-mixtures model: (a) parallel, (b) series.
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electric field E is applied to the top and bottom surfaces of the composite in

such a way that it is common to the two materials, i.e.,

D1 ¼ "1E; (1:25a)

D2 ¼ "2E: (1:25b)

The total electric flux density Dc of the composite is the volume-averaged

sum of the electric flux density in each material.

Dc ¼ ð1 � f ÞD1 þ fD2; (1:26)

where f is the volume fraction of material 2 which is treated as ‘‘filler’’ here.

The composite must obey the following constitutive equation:

Dc ¼ "cE: (1:27a)

A substitution of Eqs. (1.25) into Eq. (1.26), which is then substituted into

Eq. (1.27a), gives the law-of-mixtures formula based on the parallel model,

"c ¼ ð1 � f Þ"1 þ f"2: (1:27b)

If the composite of Fig. 1.4(a) is subjected to an applied electric field E in the

transverse direction, then one can create the series model, Fig. 1.4(b). In this

case the electric flux density is continuous through materials 1 and 2; thus in

the two materials

Dc ¼ "1E1; (1:28a)

Dc ¼ "2E2: (1:28b)

The applied electric field E is the volume-averaged sum of materials 1 and 2,

E ¼ ð1�f ÞE1 þ fE2: (1:29)

From Eqs. (1.27) – (1.29), one can derive the law-of-mixtures formula based

on the series model,

1

"c
¼ ð1 � f Þ

"1
þ f

"2
: (1:30)

The law-of-mixtures formulae of Eqs. (1.27) and (1.30) are interpreted as the

longitudinal and transverse dielectric constants, respectively, of a continuous

fiber composite.
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