QUANTUM FINANCE

Path Integrals and Hamiltonians for Options and Interest Rates

This book applies the mathematics and concepts of quantum mechanics and quantum field theory to the modelling of interest rates and the theory of options. Particular emphasis is placed on path integrals and Hamiltonians.

Financial mathematics at present is almost completely dominated by stochastic calculus. This book is unique in that it offers a formulation that is completely independent of that approach. As such many new results emerge from the ideas developed by the author.

This pioneering work will be of interest to physicists and mathematicians working in the field of finance, to quantitative analysts in banks and finance firms, and to practitioners in the field of fixed income securities and foreign exchange. The book can also be used as a graduate text for courses in financial physics and financial mathematics.

BELAL E. BAAQUIE earned his B.Sc. from Caltech and Ph.D. in theoretical physics from Cornell University. He has published over 50 papers in leading international journals on quantum field theory and related topics, and since 1997 has regularly published papers on applying quantum field theory to both the theoretical and empirical aspects of finance. He helped to launch the International Journal of Theoretical and Applied Finance in 1998 and continues to be one of the editors.
QUANTUM FINANCE
Path Integrals and Hamiltonians for Options and Interest Rates

BELAL E. BAAQUIE
National University of Singapore
This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2004

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 11/14 pt

System ΛπX2e [TB]

A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication data

Baaquie, B. E.
Quantum finance: path integrals and Hamiltonians for options and interest rates/Belal E. Baaquie.
p. cm.
Includes bibliographical references and index.
ISBN 0 521 84045 7
1. Stock options -- Mathematical models. 2. Interest rates -- Mathematical models. I. Title.
HG6042.B33 2004
332.63'2283015159 -- dc22 2004045816

ISBN 0 521 84045 7 hardback

The publisher has used its best endeavors to ensure that the URLs for external websites referred to in this book are correct and active at the time of going to press. However, the publisher has no responsibility for the websites and can make no guarantee that a site will remain live or that the content is or will remain appropriate.
I dedicate this book to my father Mohammad Abdul Baaquie and to the memory of my mother Begum Ajmeri Roanaq Ara Baaquie, for their precious lifelong support and encouragement.
Contents

Foreword xi
Preface xiii
Acknowledgments xv

Part I Fundamental concepts of finance 1
2 Introduction to finance 7
 2.1 Efficient market: random evolution of securities 9
 2.2 Financial markets 11
 2.3 Risk and return 13
 2.4 Time value of money 15
 2.5 No arbitrage, martingales and risk-neutral measure 16
 2.6 Hedging 18
 2.7 Forward interest rates: fixed-income securities 20
 2.8 Summary 23

3 Derivative securities 25
 3.1 Forward and futures contracts 25
 3.2 Options 27
 3.3 Stochastic differential equation 30
 3.4 Ito calculus 31
 3.5 Black–Scholes equation: hedged portfolio 34
 3.6 Stock price with stochastic volatility 38
 3.7 Merton–Garman equation 39
 3.8 Summary 41
 3.9 Appendix: Solution for stochastic volatility with $\rho = 0$ 41

Part II Systems with finite number of degrees of freedom
4 Hamiltonians and stock options 45
 4.1 Essentials of quantum mechanics 45
 4.2 State space: completeness equation 47
Contents

4.3 Operators: Hamiltonian 49
4.4 Black–Scholes and Merton–Garman Hamiltonians 52
4.5 Pricing kernel for options 54
4.6 Eigenfunction solution of the pricing kernel 55
4.7 Hamiltonian formulation of the martingale condition 59
4.8 Potentials in option pricing 60
4.9 Hamiltonian and barrier options 62
4.10 Summary 66
4.11 Appendix: Two-state quantum system (qubit) 66
4.12 Appendix: Hamiltonian in quantum mechanics 68
4.13 Appendix: Down-and-out barrier option’s pricing kernel 69
4.14 Appendix: Double-knock-out barrier option’s pricing kernel 73
4.15 Appendix: Schrodinger and Black–Scholes equations 76

5 Path integrals and stock options 78
5.1 Lagrangian and action for the pricing kernel 78
5.2 Black–Scholes Lagrangian 80
5.3 Path integrals for path-dependent options 85
5.4 Action for option-pricing Hamiltonian 86
5.5 Path integral for the simple harmonic oscillator 86
5.6 Lagrangian for stock price with stochastic volatility 90
5.7 Pricing kernel for stock price with stochastic volatility 93
5.8 Summary 96
5.9 Appendix: Path-integral quantum mechanics 96
5.10 Appendix: Heisenberg’s uncertainty principle in finance 99
5.11 Appendix: Path integration over stock price 101
5.12 Appendix: Generating function for stochastic volatility 103
5.13 Appendix: Moments of stock price and stochastic volatility 105
5.14 Appendix: Lagrangian for arbitrary α 107
5.15 Appendix: Path integration over stock price for arbitrary α 108
5.16 Appendix: Monte Carlo algorithm for stochastic volatility 111
5.17 Appendix: Merton’s theorem for stochastic volatility 115

6 Stochastic interest rates’ Hamiltonians and path integrals 117
6.1 Spot interest rate Hamiltonian and Lagrangian 117
6.2 Vasicek model’s path integral 120
6.3 Heath–Jarrow–Morton (HJM) model’s path integral 123
6.4 Martingale condition in the HJM model 126
6.5 Pricing of Treasury Bond futures in the HJM model 130
6.6 Pricing of Treasury Bond option in the HJM model 131
6.7 Summary 133
6.8 Appendix: Spot interest rate Fokker–Planck Hamiltonian 134
Contents

6.9 Appendix: Affine spot interest rate models 138
6.10 Appendix: Black–Karasinski spot rate model 139
6.11 Appendix: Black–Karasinski spot rate Hamiltonian 140
6.12 Appendix: Quantum mechanical spot rate models 143

Part III Quantum field theory of interest rates models

7 Quantum field theory of forward interest rates 147
 7.1 Quantum field theory 148
 7.2 Forward interest rates’ action 151
 7.3 Field theory action for linear forward rates 153
 7.4 Forward interest rates’ velocity quantum field $A(t, x)$ 156
 7.5 Propagator for linear forward rates 157
 7.6 Martingale condition and risk-neutral measure 161
 7.7 Change of numeraire 162
 7.8 Nonlinear forward interest rates 164
 7.9 Lagrangian for nonlinear forward rates 165
 7.10 Stochastic volatility: function of the forward rates 168
 7.11 Stochastic volatility: an independent quantum field 169
 7.12 Summary 172
 7.13 Appendix: HJM limit of the field theory 173
 7.14 Appendix: Variants of the rigid propagator 174
 7.15 Appendix: Stiff propagator 176
 7.16 Appendix: Psychological future time 180
 7.17 Appendix: Generating functional for forward rates 182
 7.18 Appendix: Lattice field theory of forward rates 183
 7.19 Appendix: Action S_α for change of numeraire 188

8 Empirical forward interest rates and field theory models 191
 8.1 Eurodollar market 192
 8.2 Market data and assumptions used for the study 194
 8.3 Correlation functions of the forward rates models 196
 8.4 Empirical correlation structure of the forward rates 197
 8.5 Empirical properties of the forward rates 201
 8.6 Constant rigidity field theory model and its variants 205
 8.7 Stiff field theory model 209
 8.8 Summary 214
 8.9 Appendix: Curvature for stiff correlator 215

9 Field theory of Treasury Bonds’ derivatives and hedging 217
 9.1 Futures for Treasury Bonds 217
 9.2 Option pricing for Treasury Bonds 218
 9.3 ‘Greek’ for the European bond option 220
 9.4 Pricing an interest rate cap 222
Contents

9.5 Field theory hedging of Treasury Bonds 225
9.6 Stochastic delta hedging of Treasury Bonds 226
9.7 Stochastic hedging of Treasury Bonds: minimizing variance 228
9.8 Empirical analysis of instantaneous hedging 231
9.9 Finite time hedging 235
9.10 Empirical results for finite time hedging 237
9.11 Summary 240
9.12 Appendix: Conditional probabilities 240
9.13 Appendix: Conditional probability of Treasury Bonds 242
9.14 Appendix: HJM limit of hedging functions 244
9.15 Appendix: Stochastic hedging with Treasury Bonds 245
9.16 Appendix: Stochastic hedging with futures contracts 248
9.17 Appendix: HJM limit of the hedge parameters 249

10 Field theory Hamiltonian of forward interest rates 251
10.1 Forward interest rates’ Hamiltonian 252
10.2 State space for the forward interest rates 253
10.3 Treasury Bond state vectors 260
10.4 Hamiltonian for linear and nonlinear forward rates 260
10.5 Hamiltonian for forward rates with stochastic volatility 263
10.6 Hamiltonian formulation of the martingale condition 265
10.7 Martingale condition: linear and nonlinear forward rates 268
10.8 Martingale condition: forward rates with stochastic volatility 271
10.9 Nonlinear change of numeraire 272
10.10 Summary 274
10.11 Appendix: Propagator for stochastic volatility 275
10.12 Appendix: Effective linear Hamiltonian 276
10.13 Appendix: Hamiltonian derivation of European bond option 277

11 Conclusions 282

A Mathematical background 284
A.1 Probability distribution 284
A.2 Dirac Delta function 286
A.3 Gaussian integration 288
A.4 White noise 292
A.5 The Langevin Equation 293
A.6 Fundamental theorem of finance 296
A.7 Evaluation of the propagator 298

Brief glossary of financial terms 301
Brief glossary of physics terms 303
List of main symbols 305
References 310
Index 315
Foreword

After a few early isolated cases in the 1980s, since the mid-1990s hundreds of papers dealing with economics and finance have invaded the physics preprint server xxx.lanl.gov/cond-mat, initially devoted to condensed matter physics, and now covering subjects as different as computer science, biology or probability theory. The flow of paper posted on this server is still increasing – roughly one per day – addressing a range of problems, from financial data analysis to analytical option-pricing methods, agent-based models of financial markets and statistical models of wealth distribution or company growth. Some papers are genuinely beautiful, others are rediscoveries of results known by economists, and unfortunately some are simply crazy.

A natural temptation is to apply the tools one masters to other fields. In the case of physics and finance, this temptation is extremely strong. The sophisticated tools developed in the last 50 years to deal with statistical mechanics and quantum mechanics problems are often of immediate interest in finance and in economics. Perturbation theory, path integral (Feynman–Kac) methods, random matrix and spin-glass theory are useful for option pricing, portfolio optimization and game theoretical situations, and many new insights have followed from such transfers of knowledge.

Within theoretical physics, quantum field theory has a special status and is regarded by many as the queen of disciplines, that has allowed one to unravel the most intimate intricacies of nature, from quantum electrodynamics to critical phenomena. In the present book, Belal Baaquie tells us how these methods can be applied to finance problems, and in particular to the modelling of interest rates. The interest rate curve can be seen as a string of numbers, one for each maturity, fluctuating in time. The ‘one-dimensional’ nature of these randomly fluctuating rates imposes subtle correlations between different maturities, that are most naturally described using quantum field theory, which was indeed created to deal with nontrivial correlations between fluctuating fields. The level of complexity of the
Foreword

bond market (reflecting the structure of the interest rate curve) and its derivatives (swaps, caps, floors, swaptions) requires a set of efficient and adapted techniques. My feeling is that the methods of quantum field theory, which naturally grasp complex structures, are particularly well suited for this type of problems. Belal Baaquie’s book, based on his original work on the subject, is particularly useful for those who want to learn techniques which will become, in a few years, unavoidable. Many new ideas and results improving our understanding of interest rate markets will undoubtedly follow from an in-depth exploration of the paths suggested in this fascinating (albeit sometimes demanding) opus.

Jean-Philippe Bouchaud
Capital Fund Management and CEA-Saclay
Preface

Financial markets have undergone tremendous growth and dramatic changes in the past two decades, with the volume of daily trading in currency markets hitting over a trillion US dollars and hundreds of billions of dollars in bond and stock markets. Deregulation and globalization have led to large-scale capital flows; this has raised new problems for finance as well as has further spurred competition among banks and financial institutions.

The resulting booms, bubbles and busts of the global financial markets now directly affect the lives of hundreds of millions of people, as was witnessed during the 1998 East Asian financial crisis.

The principles of banking and finance are fairly well established [16, 76, 87] and the challenge is to apply these principles in an increasingly complicated environment. The immense growth of financial markets, the existence of vast quantities of financial data and the growing complexity of the market, both in volume and sophistication, has made the use of powerful mathematical and computational tools in finance a necessity. In order to meet the needs of customers, complex financial instruments have been created; these instruments demand advanced valuation and risk assessment models and systems that quantify the returns and risks for investors and financial institutions [63, 100].

The widespread use in finance of stochastic calculus and of partial differential equations reflects the traditional presence of probabilists and applied mathematicians in this field. The last few years has seen an increasing interest of theoretical physicists in the problems of applied and theoretical finance. In addition to the vast corpus of literature on the application of stochastic calculus to finance, concepts from theoretical physics have been finding increasing application in both theoretical and applied finance. The influx of ideas from theoretical physics, as expressed for example in [18] and [69], has added a whole collection of new mathematical and computational techniques to finance, from the methods of classical and quantum physics to the use of path integration, statistical mechanics and so
Preface

This book is part of the on-going process of applying ideas from physics to finance.

The long-term goal of this book is to contribute to a quantum theory of finance; towards this end the theoretical tools of quantum physics are applied to problems in finance. The larger question of applying the formalism and insights of (quantum) physics to economics, and which forms a part of the larger subject of econophysics [88,89], is left for future research.

The mathematical background required of the readership is the following:

- A good grasp of calculus
- Familiarity with linear algebra
- Working knowledge of probability theory

The material covered in this book is primarily meant for physicists and mathematicians conducting research in the field of finance, as well as professional theorists working in the finance industry. Specialists working in the field of derivative instruments, corporate and Treasury Bonds and foreign currencies will hopefully find that the theoretical tools and mathematical ideas introduced in this book broaden their repertoire of quantitative approaches to finance.

This book could also be of interest to researchers from the theoretical sciences who are thinking of pursuing research in the field of finance as well as graduates students with the required mathematical training. An earlier draft of this book was taught as an advanced graduate course to a group of students from financial engineering, physics and mathematics.

Given the diverse nature of the potential audience, fundamental concepts of finance have been reviewed to motivate readers new to the field. The chapters on ‘Introduction to finance’ and on ‘Derivative securities’ are meant for physicists and mathematicians unfamiliar with concepts of finance. On the other hand, discussions on quantum mechanics and quantum field theory are meant to introduce specialists working in finance and in mathematics to concepts from quantum theory.
Acknowledgments

I am deeply grateful to Lawrence Ma for introducing me to the subject of theoretical finance; most of my initial interest in mathematical finance is a result of the patient explanations of Lawrence.

I thank Jean-Philippe Bouchaud for instructive and enjoyable discussions, and for making valuable suggestions that have shaped my thinking on finance; the insights that Jean-Philippe brings to the interface of physics and finance have been particularly enlightening.

I would like to thank Toh Choon Peng, Sanjiv Das, George Chacko, Mitch Warachka, Omar Foda, Srikanth Marakani, Claudio Coriano, Michael Spalinski, Bertrand Roehner, Bertrand Delamotte, Cui Liang and Frederick Willeboordsse for many helpful and stimulating interactions.

I thank the Department of Physics, the Faculty of Science and the National University of Singapore for their steady and unwavering support and Research Grants that were indispensable for sustaining my trans-disciplinary research in physics and finance.

I thank Science and Finance for kindly providing data on Eurodollar futures, and the Laboratoire de Physique Théorique et Hautes Energies, Universités Paris 6 et 7, and in particular François Martin, for their kind hospitality during the completion of this book.