
1
Interactions of particles and radiation

with matter

When the intervals, passages, connections, weights, impulses, collisions,
movement, order, and position of the atoms interchange, so also must

the things formed by them change.

Lucretius

Particles and radiation can be detected only through their interactions
with matter. There are specific interactions for charged particles which
are different from those of neutral particles, e.g. of photons. One can say
that every interaction process can be used as a basis for a detector concept.
The variety of these processes is quite rich and, as a consequence, a large
number of detection devices for particles and radiation exist. In addition,
for one and the same particle, different interaction processes at different
energies may be relevant.

In this chapter, the main interaction mechanisms will be presented in
a comprehensive fashion. Special effects will be dealt with when the indi-
vidual detectors are being presented. The interaction processes and their
cross sections will not be derived from basic principles but are presented
only in their results, as they are used for particle detectors.

The main interactions of charged particles with matter are ionisation
and excitation. For relativistic particles, bremsstrahlung energy losses must
also be considered. Neutral particles must produce charged particles in
an interaction that are then detected via their characteristic interaction
processes. In the case of photons, these processes are the photoelectric
effect, Compton scattering and pair production of electrons. The elec-
trons produced in these photon interactions can be observed through their
ionisation in the sensitive volume of the detector.
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2 1 Interactions of particles and radiation with matter

1.1 Interactions of charged particles

Charged particles passing through matter lose kinetic energy by excitation
of bound electrons and by ionisation. Excitation processes like

e− + atom → atom∗ + e− (1.1)
↪→ atom + γ

lead to low-energy photons and are therefore useful for particle detectors
which can record this luminescence. Of greater importance are pure scat-
tering processes in which incident particles transfer a certain amount of
their energy to atomic electrons so that they are liberated from the atom.

The maximum transferable kinetic energy to an electron depends on
the mass m0 and the momentum of the incident particle. Given the
momentum of the incident particle

p = γm0βc , (1.2)

where γ is the Lorentz factor (= E/m0c
2), βc = v the velocity, and m0 the

rest mass, the maximum energy that may be transferred to an electron
(mass me) is given by [1] (see also Problem 1.6)

Emax
kin =

2mec
2β2γ2

1 + 2γme/m0 + (me/m0)2
=

2mep
2

m2
0 + m2

e + 2meE/c2 . (1.3)

In this case, it makes sense to give the kinetic energy, rather than
total energy, since the electron is already there and does not have to
be produced. The kinetic energy Ekin is related to the total energy E
according to

Ekin = E − m0c
2 = c

√
p2 + m2

0c
2 − m0c

2 . (1.4)

For low energies

2γme/m0 � 1 (1.5)

and under the assumption that the incident particles are heavier than
electrons (m0 > me) Eq. (1.3) can be approximated by

Emax
kin ≈ 2mec

2β2γ2 . (1.6)

A particle (e.g. a muon, mµc2 = 106 MeV) with a Lorentz factor of γ =
E/m0c

2 = 10 corresponding to E = 1.06 GeV can transfer approximately
100 MeV to an electron (mass mec

2 = 0.511 MeV).
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1.1 Interactions of charged particles 3

If one neglects the quadratic term in the denominator of Eq. (1.3),
(me/m0)2 � 1, which is a good assumption for all incident particles
except for electrons, it follows that

Emax
kin =

p2

γm0 + m2
0/2me

. (1.7)

For relativistic particles Ekin ≈ E and pc ≈ E holds. Consequently, the
maximum transferable energy is

Emax ≈ E2

E + m2
0c

2/2me
(1.8)

which for muons gives

Emax =
E2

E + 11 GeV
. (1.9)

In the extreme relativistic case
(
E � m2

0c
2/2me

)
, the total energy can

be transferred to the electron.
If the incident particle is an electron, these approximations are no longer

valid. In this case, one gets, compare Eq. (1.3),

Emax
kin =

p2

me + E/c2 =
E2 − m2

ec
4

E + mec2 = E − mec
2 , (1.10)

which is also expected in classical non-relativistic kinematics for particles
of equal mass for a central collision.

1.1.1 Energy loss by ionisation and excitation

The treatment of the maximum transferable energy has already shown
that incident electrons, in contrast to heavy particles (m0 � me), play a
special rôle. Therefore, to begin with, we give the energy loss for ‘heavy’
particles. Following Bethe and Bloch [2–8]∗, the average energy loss dE
per length dx is given by

−dE

dx
= 4πNAr2

emec
2z2 Z

A

1
β2

(
ln

2mec
2γ2β2

I
− β2 − δ

2

)
, (1.11)

∗ For the following considerations and formulae, not only the original literature but also
secondary literature was used, mainly [1, 4–12] and references therein.
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4 1 Interactions of particles and radiation with matter

where

z – charge of the incident particle in units of the elementary charge

Z, A – atomic number and atomic weight of the absorber

me – electron mass

re – classical electron radius (re = 1
4πε0

· e2

mec2 with ε0 – permittivity
of free space)

NA – Avogadro number (= number of atoms per gram atom) = 6.022·
1023 mol−1

I – mean excitation energy, characteristic of the absorber material,
which can be approximated by

I = 16 Z0.9 eV for Z > 1 .

To a certain extent, I also depends on the molecular state of
the absorber atoms, e.g. I = 15 eV for atomic and 19.2 eV for
molecular hydrogen. For liquid hydrogen, I is 21.8 eV.

δ – is a parameter which describes how much the extended trans-
verse electric field of incident relativistic particles is screened
by the charge density of the atomic electrons. In this way,
the energy loss is reduced (density effect, ‘Fermi plateau’ of
the energy loss). As already indicated by the name, this den-
sity effect is important in dense absorber materials. For gases
under normal pressure and for not too high energies, it can be
neglected.
For energetic particles, δ can be approximated by

δ = 2 ln γ + ζ ,

where ζ is a material-dependent constant.
Various approximations for δ and material dependences for
parameters, which describe the density effect, are discussed
extensively in the literature [9]. At very high energies

δ/2 = ln(�ωp/I) + lnβγ − 1/2 ,

where �ωp =
√

4πNer3
e mec

2/α = 28.8
√

� 〈Z/A〉 eV is the
plasma energy (� in g/cm3), Ne the electron density, and α the
fine-structure constant.
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1.1 Interactions of charged particles 5

A useful constant appearing in Eq. (1.11) is

4πNAr2
emec

2 = 0.3071
MeV
g/cm2 . (1.12)

In the logarithmic term of Eq. (1.11), the quantity 2mec
2γ2β2 occurs in

the numerator, which, according to Eq. (1.6), is identical to the maximum
transferable energy. The average energy of electrons produced in the ion-
isation process in gases equals approximately the ionisation energy [2, 3].

If one uses the approximation for the maximum transferable energy,
Eq. (1.6), and the shorthand

κ = 2πNAr2
emec

2z2 · Z

A
· 1
β2 , (1.13)

the Bethe–Bloch formula can be written as

−dE

dx
= 2κ

(
ln

Emax
kin

I
− β2 − δ

2

)
. (1.14)

The energy loss −dE/dx is usually given in units of MeV/(g/cm2). The
length unit dx (in g/cm2) is commonly used, because the energy loss per
area density

dx = � · ds (1.15)

with � density (in g/cm3) and ds length (in cm) is largely independent of
the properties of the material. This length unit dx consequently gives the
area density of the material.

Equation (1.11) represents only an approximation for the energy loss
of charged particles by ionisation and excitation in matter which is, how-
ever, precise at the level of a few per cent up to energies of several hundred
GeV. However, Eq. (1.11) cannot be used for slow particles, i.e., for parti-
cles which move with velocities which are comparable to those of atomic
electrons or slower. For these velocities (αz � β ≥ 10−3, α = e2

4πε0�c :
fine-structure constant) the energy loss is proportional to β. The energy
loss of slow protons, e.g. in silicon, can be described by [10–12]

−dE

dx
= 61.2 β

GeV
g/cm2 , β < 5 · 10−3 . (1.16)

Equation (1.11) is valid for all velocities

β � αz . (1.17)
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6 1 Interactions of particles and radiation with matter

Table 1.1. Average energy loss of minimum-ionising particles in various
materials [10–12]; gases for standard pressure and temperature

Absorber dE
dx

∣∣
min [ MeV

g/cm2 ] dE
dx

∣∣
min [MeV

cm ]

Hydrogen (H2) 4.10 0.37 · 10−3

Helium 1.94 0.35 · 10−3

Lithium 1.64 0.87
Beryllium 1.59 2.94
Carbon (Graphite) 1.75 3.96
Nitrogen 1.82 2.28 · 10−3

Oxygen 1.80 2.57 · 10−3

Air 1.82 2.35 · 10−3

Carbon dioxide 1.82 3.60 · 10−3

Neon 1.73 1.56 · 10−3

Aluminium 1.62 4.37
Silicon 1.66 3.87
Argon 1.52 2.71 · 10−3

Titanium 1.48 6.72
Iron 1.45 11.41
Copper 1.40 12.54
Germanium 1.37 7.29
Tin 1.26 9.21
Xenon 1.25 7.32 · 10−3

Tungsten 1.15 22.20
Platinum 1.13 24.24
Lead 1.13 12.83
Uranium 1.09 20.66
Water 1.99 1.99
Lucite 1.95 2.30
Shielding concrete 1.70 4.25
Quartz (SiO2) 1.70 3.74

Given this condition, the energy loss decreases like 1/β2 in the low-energy
domain and reaches a broad minimum of ionisation near βγ ≈ 4. Rela-
tivistic particles (β ≈ 1), which have an energy loss corresponding to this
minimum, are called minimum-ionising particles (MIPs). In light absorber
materials, where the ratio Z/A ≈ 0.5, the energy loss of minimum-ionising
particles can be roughly represented by

− dE

dx

∣∣∣∣
min

≈ 2
MeV
g/cm2 . (1.18)

In Table 1.1, the energy losses of minimum-ionising particles in different
materials are given; for further values, see [10–12].
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1.1 Interactions of charged particles 7

The energy loss increases again for γ > 4 (logarithmic rise or relativistic
rise) because of the logarithmic term in the bracket of Eq. (1.11). The
increase follows approximately a dependence like 2 ln γ.

The decrease of the energy loss at the ionisation minimum with increas-
ing atomic number of the absorber originates mainly from the Z/A term
in Eq. (1.11). A large fraction of the logarithmic rise relates to large
energy transfers to few electrons in the medium (δ rays or knock-on elec-
trons). Because of the density effect, the logarithmic rise of the energy
loss saturates at high energies.

For heavy projectiles (e.g. like copper nuclei), the energy loss of slow
particles is modified because, while being slowed down, electrons get
attached to the incident nuclei, thereby decreasing their effective charge.

The energy loss by ionisation and excitation for muons in iron is shown
in Fig. 1.1 [10, 11, 13].

The energy loss according to Eq. (1.11) describes only energy losses
due to ionisation and excitation. At high energies, radiation losses become
more and more important (see Sect. 1.1.5).

Figure 1.2 shows the ionisation energy loss for electrons, muons, pions,
protons, deuterons and α particles in air [14].

Equation (1.11) gives only the average energy loss of charged particles
by ionisation and excitation. For thin absorbers (in the sense of Eq. (1.15),
average energy loss 〈∆E〉 � Emax), in particular, strong fluctuations
around the average energy loss exist. The energy-loss distribution for thin
absorbers is strongly asymmetric [2, 3].
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Fig. 1.1. Energy loss by ionisation and excitation for muons in iron and its
dependence on the muon momentum.
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8 1 Interactions of particles and radiation with matter
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Fig. 1.2. Energy loss for electrons, muons, pions, protons, deuterons and α
particles in air [14].

This behaviour can be parametrised by a Landau distribution. The
Landau distribution is described by the inverse Laplace transform of
the function ss [15–18]. A reasonable approximation of the Landau
distribution is given by [19–21]

L(λ) =
1√
2π

· exp
[
−1

2
(λ + e−λ)

]
, (1.19)

where λ characterises the deviation from the most probable energy loss,

λ =
∆E − ∆EW

ξ
, (1.20)

∆E – actual energy loss in a layer of thickness x,
∆EW – most probable energy loss in a layer of thickness x,

ξ = 2πNAr2
emec

2z2 Z

A
· 1
β2 �x = κ�x (1.21)

(� − density in g/cm3, x − absorber thickness in cm).

The general formula for the most probable energy loss is [12]

∆EW = ξ

[
ln

(
2mec

2γ2β2

I

)
+ ln

ξ

I
+ 0.2 − β2 − δ(βγ)

]
. (1.22)
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1.1 Interactions of charged particles 9

For example, for argon and electrons of energies up to 3.54 MeV from a
106Rh source the most probable energy loss is [19]

∆EW = ξ

[
ln

(
2mec

2γ2β2

I2 ξ

)
− β2 + 0.423

]
. (1.23)

The most probable energy loss for minimum-ionising particles (βγ = 4)
in 1 cm argon is ∆EW = 1.2 keV, which is significantly smaller than the
average energy loss of 2.71 keV [2, 3, 19, 22]. Figure 1.3 shows the energy-
loss distribution of 3 GeV electrons in a thin-gap drift chamber filled with
Ar/CH4 (80:20) [23].

Experimentally, one finds that the actual energy-loss distribution is
frequently broader than represented by the Landau distribution.

For thick absorber layers, the tail of the Landau distribution origi-
nating from high energy transfers, however, is reduced [24]. For very
thick absorbers

(dE
dx · x � 2mec

2β2γ2
)
, the energy-loss distribution can

be approximated by a Gaussian distribution.
The energy loss dE/dx in a compound of various elements i is given by

dE

dx
≈

∑
i

fi
dE

dx

∣∣∣∣
i

, (1.24)
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Fig. 1.3. Energy-loss distribution of 3 GeV electrons in a thin-gap drift chamber
filled with Ar/CH4 (80:20) [23].
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10 1 Interactions of particles and radiation with matter

where fi is the mass fraction of the ith element and dE
dx

∣∣
i
, the average

energy loss in this element. Corrections to this relation because of the
dependence of the ionisation constant on the molecular structure can be
safely neglected.

The energy transfers to ionisation electrons can be so large that these
electrons can cause further ionisation. These electrons are called δ rays or
knock-on electrons. The energy spectrum of knock-on electrons is given
by [1, 10–12, 25]

dN

dEkin
= ξ · F

E2
kin

(1.25)

for I � Ekin ≤ Emax
kin .

F is a spin-dependent factor of order unity, if Ekin � Emax
kin [12]. Of

course, the energy spectrum of knock-on electrons falls to zero if the
maximum transferable energy is reached. This kinematic limit also con-
strains the factor F [1, 25]. The spin dependence of the spectrum of the
knock-on electrons only manifests itself close to the maximum transferable
energy [1, 25].

The strong fluctuations of the energy loss in thin absorber layers are
quite frequently not observed by a detector. Detectors only measure the
energy which is actually deposited in their sensitive volume, and this
energy may not be the same as the energy lost by the particle. For exam-
ple, the energy which is transferred to knock-on electrons may only be
partially deposited in the detector because the knock-on electrons can
leave the sensitive volume of the detector.

Therefore, quite frequently it is of practical interest to consider only
that part of the energy loss with energy transfers E smaller than a given
cut value Ecut. This truncated energy loss is given by [10–12, 26]

−dE

dx

∣∣∣∣
≤Ecut

= κ

(
ln

2mec
2β2γ2Ecut

I2 − β2 − δ

)
, (1.26)

where κ is defined by Eq. (1.13). Equation (1.26) is similar, but not iden-
tical, to Eq. (1.11). Distributions of the truncated energy loss do not show
a pronounced Landau tail as the distributions (1.19) for the mean value
(1.11). Because of the density effect – expressed by δ in Eqs. (1.11) or
(1.26), respectively – the truncated energy loss approaches a constant at
high energies, which is given by the Fermi plateau.

So far, the energy loss by ionisation and excitation has been described
for heavy particles. Electrons as incident particles, however, play a spe-
cial rôle in the treatment of the energy loss. On the one hand, the total
energy loss of electrons even at low energies (MeV range) is influenced by
bremsstrahlung processes. On the other hand, the ionisation loss requires
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