

INTERNAL GRAVITY WAVES

The study of internal gravity waves provides many challenges: they move along interfaces as well as in fully three-dimensional space, and they do so at relatively fast temporal and small spatial scales – making them difficult to observe and resolve in weather and climate models. The equations describing their evolution are well established but their solution poses various mathematical challenges associated with singular boundary value problems and large amplitude dynamics.

This book provides the first comprehensive treatment of the theory for small- and large-amplitude internal gravity waves, whether existing as interfacial waves in a layered fluid or as internal waves in continuously stratified fluid. Over 120 schematics, numerical simulations and images from laboratory experiments illustrate the theory and mathematical techniques, while the 130 exercises allow the reader to test their understanding of the theory and its applications. This is an invaluable single resource for academic researchers and graduate students studying the motion of waves within the atmosphere and oceans, and more generally for mathematicians, physicists and engineers interested in the peculiar properties of propagating, growing and breaking waves.

Bruce R. Sutherland holds a B.Math. from the University of Waterloo and a Ph.D. in Physics from the University of Toronto where, under the supervision of W.R. Peltier, he ran numerical simulations of internal waves generated by shear instability. As a Research Associate working with P.F. Linden at the University of Cambridge, he helped develop the laboratory method known as the synthetic schlieren technique, which was applied to the examination of internal waves generated by turbulence. Now a Professor in the departments of Physics and of Earth and Atmospheric Sciences, and an Adjunct Professor in Mathematical and Statistical Sciences, at the University of Alberta, he continues to develop theories and to run laboratory experiments and numerical simulations that examine the generation, propagation and breaking of internal gravity waves.

INTERNAL GRAVITY WAVES

B. R. SUTHERLAND

Departments of Physics and of Earth & Atmospheric Sciences University of Alberta

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,
São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521839150

© Bruce R. Sutherland 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-83915-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Brendan, Cameron and Samantha

Contents

Preface	2		<i>page</i> xiii
1 Stra	Stratified fluids and waves		1
1.1	1.1 Introduction		
1.2	Stratifi	ed fluids	1
	1.2.1	Stratified liquids and the ocean	2
	1.2.2	Stratified gases and the atmosphere	4
1.3	Interna	al gravity waves	6
1.4	Co-orc	linate systems	7
1.5	5 Lagrangian and Eulerian frames of reference		8
1.6	Equati	ons of state	11
	1.6.1	Equations of state for air	11
	1.6.2	Equations of state for sea water	12
1.7	Conse	rvation of internal energy	13
	1.7.1	Thermodynamics of dry air	13
	1.7.2	Potential temperature of a gas	15
	1.7.3	Thermodynamics of sea water	18
1.8	Conse	19	
1.9	Incom	21	
1.1	0 Conse	23	
	1.10.1	The buoyancy force	24
	1.10.2	The pressure gradient force	25
	1.10.3	The Coriolis force	25
	1.10.4	The viscous damping force	29
1.1	1 Hydro	30	
1.1	1.12 The Boussinesq and anelastic approximations		
	1.12.1	The speed of sound	34
	1.12.2	Boussinesq liquids	34
	1.12.3	Non-Boussinesq liquids	38

viii			Contents	
		1.12.4	Anelastic gases	39
		1.12.5	Boussinesq gases	41
	1.13	Conser	vation of angular momentum	43
		1.13.1	Vorticity in uniform-density fluid	43
		1.13.2	Vorticity in stratified fluid	45
		1.13.3	Potential vorticity	46
	1.14	Conser	vation of mechanical energy	48
		1.14.1	Kinetic and potential energy	48
		1.14.2	Available potential energy	50
		1.14.3	The Bernoulli equation	51
	1.15	1.15 Wave theory		52
		1.15.1	Representation of plane waves	53
		1.15.2	The dispersion relation	56
		1.15.3	Phase velocity	56
		1.15.4	Group velocity	58
		1.15.5	Representation of wavepackets	60
		1.15.6	Plane wave and wavepacket evolution equations	62
		1.15.7	Wave modes	65
		1.15.8	Cross-correlations	66
2	Interfacial waves		74	
	2.1	.1 Introduction		
	2.2	Surface waves		
		2.2.1	Finite-amplitude equations	75
		2.2.2	Small-amplitude approximation	77
		2.2.3	Dispersion relation, phase and group speeds	79
		2.2.4	Polarization relations	80
		2.2.5	Fluid parcel motion	84
		2.2.6	Energy transport	84
		2.2.7	Momentum deposition	88
		2.2.8	The Stokes drift	90
		2.2.9	Momentum transport	92
		2.2.10	Shallow water equations	96
	2.3	Interfac	cial waves in a two-layer fluid	97
		2.3.1	Equations of motion	98
		2.3.2	Interfacial waves in infinite-depth fluid	100
		2.3.3	Interfacial waves in finite-depth fluid	102
		2.3.4	Shallow interfacial waves	104

			Contents	ix
	2.4	Interfa	icial waves in multi-layer fluids	107
	2.5	Latera	lly bounded interfacial waves	112
	2.6	Shear flows		115
		2.6.1	Derivation of equations	115
		2.6.2	Rayleigh waves	118
		2.6.3	Shear layer instability in uniform-density fluid	120
		2.6.4	Shear instability of interfacial waves	122
	2.7	Interfa	icial waves influenced by rotation	129
		2.7.1	Small-amplitude wave equations	131
		2.7.2	Inertial waves	132
		2.7.3	Energetics of inertial waves	135
3	Inter	nal wav	ves in uniformly stratified fluid	141
	3.1	Introd	uction	141
	3.2	The bu	loyancy frequency	141
		3.2.1	Vertical oscillations of a liquid	142
		3.2.2	Vertical oscillations of an ideal gas	144
		3.2.3	Stable, neutral and uniform stratification	148
		3.2.4	Diagonal oscillations of a liquid	149
	3.3	Boussinesq internal waves		151
		3.3.1	Equations of motion in a liquid	151
		3.3.2	Equations of motion in a Boussinesq gas	153
		3.3.3	Dispersion relation	155
		3.3.4	Phase and group velocity	157
		3.3.5	Polarization relations	159
		3.3.6	Hydrostatic and nonhydrostatic waves	161
		3.3.7	Evanescent disturbances	163
	3.4	Transp	port by Boussinesq internal waves	164
		3.4.1	Zero mass/internal energy transport	165
		3.4.2		166
		3.4.3	Wave action and pseudoenergy	170
		3.4.4	Momentum transport	172
		3.4.5	Wave-induced mean flow	173
	3.5	Bound	led internal waves	177
		3.5.1	Modes in rectangular box	178
		3.5.2	Modes in non-uniform stratification	179
		3.5.3	Internal waves near slopes	182
	3.6		niformly stratified shear flows	184
		3.6.1	Equations of motion	184
		3.6.2	Singularities	186
		3.6.3	Stability criteria	188

X			Contents	
		3.6.4	Piecewise-linear theory	189
		3.6.5	•	191
		3.6.6	Trapped internal gravity waves	191
		3.6.7		194
	3.7	Non-B	oussinesq internal waves	197
		3.7.1	Non-Boussinesq waves in a liquid	197
		3.7.2	Anelastic waves in a gas	201
	3.8	Interna	al waves influenced by rotation	206
4	Non	linear co	onsiderations	213
	4.1	4.1 Introduction		
	4.2	Weakly	y nonlinear theory	213
		4.2.1	The nonlinear pendulum	214
		4.2.2	Weakly nonlinear theory for partial differential equations	216
		4.2.3	The nonlinear Schrödinger equation	218
		4.2.4	Modulational stability theory	220
	4.3	Weakly	y nonlinear interfacial waves	222
		4.3.1	Theory for interfacial waves in infinitely deep fluid	222
		4.3.2	Deep water waves	226
		4.3.3	Deep interfacial plane waves	228
		4.3.4	Deep interfacial wavepackets	229
		4.3.5	Interfacial waves in finite-depth fluid	230
	4.4	Solitar	y waves	232
		4.4.1	Nonlinear shallow water equations	233
		4.4.2	Moderately long weakly nonlinear interfacial waves	237
	4.5	5 Weakly nonlinear internal waves		240
		4.5.1	Perturbation theory	241
		4.5.2	Modulational stability	244
	4.6	Breako	lown of internal waves into turbulence	248
		4.6.1	Parametric subharmonic instability	248
		4.6.2	Overturning instabilities	253
		4.6.3	Shear instabilities	254
		4.6.4	Overturning driven by self-acceleration	257
5	Gen	Generation mechanisms		
	5.1	Introduction		
	5.2	Oscilla	ating bodies	262
		5.2.1	Oscillating cylinder in inviscid fluid	263
		5.2.2	Oscillating cylinder in viscous fluid	270
		5.2.3	Oscillating sphere	274
	5.3		nd two-layer flow over topography	281
		5.3.1	Equations of motion for a one-layer fluid	281

			Contents	X
		5.3.2	One-layer small-amplitude hydrostatic flow	282
		5.3.3	One-layer small-amplitude nonhydrostatic flow	285
		5.3.4	Two-layer flow	287
	5.4	Steady	stratified flow over topography	290
		5.4.1	Froude and long numbers	290
		5.4.2	Flow over small-amplitude periodic hills	291
		5.4.3	Internal waves over small-amplitude localized hills	299
		5.4.4	Internal waves over large-amplitude localized hills	301
		5.4.5	Internal waves over localized two-dimensional hills	305
		5.4.6	Downslope windstorms	306
	5.5	Tidal f	low over topography	309
		5.5.1	Barotropic tides	309
		5.5.2	Inertia gravity wave beams	310
6	Wav	e propag	gation and spectra	315
	6.1	Introdu	action	315
	6.2	Extrins	sic and intrinsic frequencies	316
	6.3	Ray the		317
		6.3.1	General theory	317
		6.3.2	Ray theory for waves in two dimensions	320
	6.4	Ray the	eory for interfacial waves	321
		6.4.1	•	321
		6.4.2	Interfacial waves approaching a slope	324
	6.5	Ray the	eory for internal waves	326
		6.5.1	Internal waves in two dimensions	326
		6.5.2	Critical levels	328
		6.5.3	Reflection levels	333
		6.5.4	Caustics	336
	6.6	Eckart	resonance and tunnelling	338
			Eckart resonance	339
		6.6.2	Transmission and reflection of incident plane waves	342
	6.7	Interna	ıl wave spectra	346
		6.7.1	Oceanic internal waves	347
		6.7.2	Atmospheric internal waves	352
A	Sugg	gestions	for further reading	357
	A.1	Textbo	-	357
	A.2	Review articles		
			l articles	357 358
		A.3.1	Anelastic and other non-Boussinesq equations	358
		A.3.2		358
			Stratified shear flow stability	359

xii	Contents		
	A.3.4	Internal waves at sloping boundaries and attractors	359
	A.3.5	Evolution of finite-amplitude internal gravity waves	359
	A.3.6	Evolution of internal solitary waves	360
	A.3.7	Parametric subharmonic instability of internal	
		gravity waves	360
	A.3.8	Internal wave interaction with its induced mean flow	361
	A.3.9	Interaction between internal wave beams	361
	A.3.10	Internal wave breakdown	361
	A.3.11	Internal wave generation by oscillating bodies	361
	A.3.12	Internal wave generation by steady flow over	
		topography	362
	A.3.13	Internal solitary wave generation by flow over	
		topography	362
	A.3.14	Inertia gravity wave generation by tidal flow	363
	A.3.15	Internal waves at critical and reflection levels	363
	A.3.16	Internal wave ducting and tunnelling	364
	A.3.17	Internal waves in transient and veering flows	364
	A.3.18	Oceanic internal wave spectra	365
	A.3.19	Atmospheric internal wave spectra	365
	A.3.20	Drag parameterization in general circulation models	366
Index			367

Preface

Why write a book on internal gravity waves when so many other books cover the subject already? The textbooks listed in the appendix include at least some discussion of internal gravity waves. Some focus upon interfacial waves, which are internal gravity waves at interfaces; some focus upon internal waves, which exist in continuously stratified fluid. Different books emphasize different dynamics such as mechanisms for generation, propagation in non-uniform media, nonlinear evolution and stability. Textbooks on geophysical fluid dynamics (e.g. Gill (1982), Vallis (2006)) understandably devote only a chapter to the subject because, although internal waves are non-negligible in their influence upon global weather and ocean circulation patterns, they are by no means dominant. Internal waves are noise, if sometimes irritatingly loud. Textbooks on the theory of waves and instability (e.g. Whitham (1974), Lighthill (1978), Drazin and Reid (1981), Craik (1985)) examine how non-uniform media and nonlinearity affect the evolution of interfacial and internal waves. But these books can be daunting to graduate students lacking strong mathematical backgrounds. Textbooks on stratified fluid dynamics (e.g. Turner (1973), Baines (1995)) help to provide physical insight into the dynamics of internal gravity waves through a combination of theory and laboratory experiments, though sometimes without providing the mathematical details. Some textbooks are devoted to the subject of internal gravity waves (e.g. Miropol'sky (2001), Nappo (2002), Vlasenko et al. (2005)), but these focus either on atmospheric or oceanic waves.

The approach taken here is to provide the physics and mathematics describing internal gravity waves in a way that is accessible to students who have been exposed to multivariable calculus and ordinary differential equations. An understanding of partial differential equations, though useful, is not necessary. A background in atmosphere—ocean science and fluid dynamics is not assumed. Chapter 1 covers this material at an introductory level, presenting only those details that are necessary

xiv Preface

for modelling internal gravity waves and the environment in which they exist. This chapter also introduces the mathematical description of waves and their properties.

Chapter 2 describes the structure and evolution of periodic, small-amplitude interfacial waves, beginning with a detailed description of surface waves. Although surface waves are not internal gravity waves, they are part of everyone's common experience thus making it easier to draw the link between mathematical theory and reality. We will find that surface waves are a special case of internal gravity waves at the interface between two fluids. They occur in the limit where the upper layer density (that of air) is much smaller than the lower layer density (that of water). The discussion goes on to describe waves at the interface between fresh and salty water or between hot and cold fluid, whether a gas or liquid. In the presence of shear an otherwise flat interface may become unstable to undular disturbances. The influence of interfacial waves upon the growth and structure of the instability is also discussed in this chapter.

Whereas interfacial waves occur where the density decreases rapidly with height over a negligibly small distance, internal waves move vertically through a fluid whose (effective) density decreases continuously with height. The rate of this decrease determines a fundamental quantity used in the description of internal waves known as the buoyancy frequency. This is derived for liquids and gases at the start of Chapter 3. Thereafter, the equations for periodic, small-amplitude internal waves in uniformly stratified fluid are derived and solved. This chapter includes a discussion of the peculiar behaviour of internal waves near sloping boundaries and describes how their structure is affected by rotation and relatively rapid density changes with height.

Chapter 4 introduces the mathematics necessary to model waves of non-negligibly small amplitude. The changes in frequency and structure of finite-amplitude interfacial and internal waves are examined. Special attention is drawn to the case of finite-amplitude interfacial waves in shallow water which can take the form of hump-shaped, solitary waves. The chapter also describes the various forms of instability associated with waves including modulational instability, parametric subharmonic instability, overturning and shear instability.

Internal gravity waves are generated by flow over topography, convective storms, imbalance of large-scale circulations, thunderstorm outflows, river plumes and so on. Of these, the first generation mechanism is best understood theoretically and is the focus of Chapter 5. This begins with the classic problem of internal waves generated by an oscillating cylinder. The mathematics of this section is more advanced than elsewhere but is included in part to illustrate how this conceptually simple problem is challenging to model mathematically in a way that gives meaningful physical results. The rest of the chapter discusses the generation of interfacial and internal waves by steady and oscillatory (tidal) flow over hills. The generation of

Preface xv

internal waves by non-rigid sources such as plumes, gravity currents and turbulence is becoming better understood as a result of high-resolution numerical simulations and laboratory experiments. But it is beyond the scope of this book to discuss such recent and on-going research.

In Chapter 6 the propagation of waves in non-uniform media is described. This includes the description of interfacial waves approaching a slope and of internal waves in non-uniformly stratified shear flows. In parts of the ocean and atmosphere, internal waves exhibit a somewhat universal relationship between their amplitude, frequency and spatial scale. The chapter closes with an empirical description of these waves.

Although references are not included in the text, the appendix lists other text-books and articles that the reader can use to follow-up on various topics. The journal articles are organized by subject matter, more or less following the order of presentation in the book. It is hoped that this style will help the reader follow the history of research into each subject up until the time of writing. In some cases, this organization also serves to emphasize links between the theory of internal gravity waves in both layered and continuously stratified fluids.

Many colleagues have helped guide the structure and content of this book. In particular, I would like to thank Joan Alexander, Eric D'Asaro, Oliver Buhler, Colm-cille Caulfield, Kathleen Dohan, Morris Flynn, David Fritts, Jody Klymak, Eric Kunze, Jennifer MacKinnon and Rob Pinkel for their illuminating insights and stimulating discussions. I am particularly grateful to Joseph Ansong, Geoffrey Brown, Heather Clark, Hayley Dosser, Kate Gregory, Amber Holdsworth, Justine McMillan, James Munroe and Joshua Nault for their constructive criticism and support. Finally, I wish to acknowledge the hard work and ingenuity of undergraduate students Kyle Holland and Cara Kozack who helped prepare many of the figures.