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The phenomenon: complex motion,
unusual geometry
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Chapter 1

Chaotic motion

1.1 What is chaos?
Certain long-lasting, sustained motion repeats itself exactly, periodically.
Examples from everyday life are the swinging of a pendulum clock or
the Earth orbiting the Sun. According to the view suggested by conven-
tional education, sustained motion is always regular, i.e. periodic (or at
most superposition of periodic motion with different periods). Important
characteristics of a periodic motion are: (1) it repeats itself; (2) its later
state is accurately predictable (this is precisely why a pendulum clock
is suitable for measuring time); (3) it always returns to a specific posi-
tion with exactly the same velocity, i.e. a single point characterises the
dynamics when the return velocity is plotted against the position.

Regular motion, however, forms only a small part of all possible
sustained motion. It has become widely recognised that long-lasting
motion, even of simple systems, is often irregular and does not repeat
itself. The motion of a body fastened to the end of a rubber thread is a
good example: for large amplitudes it is much more complex than the
simple superposition of swinging and oscillation. No regularity of any
sort can be recognised in the dynamics.

The irregular motion of simple systems, i.e. systems containing only
a few components, is called chaotic. As will be seen later, the exis-
tence of such motion is due to the fact that even simple equations can
have very complicated solutions. Contrary to the previously generally
accepted view, the simplicity of the equations of motion does not deter-
mine whether or not the motion will be regular.

Understanding chaotic motion requires a non-traditional approach
and specific tools. Traditional methods are unsuitable for the description
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4 The phenomenon: complex motion, unusual geometry

Table 1.1. Comparison of regular and chaotic motion.

Regular motion Chaotic motion

self-repeating irregular

predictable unpredictable

of simple geometry of complicated geometry

of such motion, and the discovery of the ubiquity of chaotic dynamics
has become possible through computer-based experimentation. Detailed
observations have led to the result that chaotic motion is characterised
by the opposite of the three properties mentioned above: (1) it does
not repeat itself, (2) it is unpredictable because of its sensitivity to the
initial conditions that are never exactly known, (3) the return rule is
complicated: a complex but regular structure appears in the position
vs. velocity representation. The differences between the two types of
dynamics are summarised in Table 1.1.

The properties of chaotic systems are unusual, either taken indi-
vidually or together; the most efficient way to understand them is by
considering particular cases. In the following, we present the chaotic
motion of very simple systems on the basis of numerical simulations,
which are unavoidable when studying chaos. It should be emphasised
that all of our examples are discussed for a unique set of parameters, and
that slightly different choices of the parameters could result in substan-
tially different behaviour. These examples also serve to classify different
types of chaos and help in developing the new concepts necessary for a
detailed understanding of chaotic dynamics.

Fig. 1.1. Model of driven
oscillations: a body of finite
mass is fixed to one end of a
weightless spring and the
other end of the spring is
moved sinusoidally with time.

1.2 Examples of chaotic motion
1.2.1 Irregular oscillations, driven pendulum – the
chaotic attractor

Objects mounted on spring suspensions (for example car wheels and
spin-dryers) oscillate. Because of the losses that are always present due
to friction or air drag, these oscillations, when left alone, are damped
and ultimately vanish. Sustained motion can only develop if energy is
supplied from an external source. The supplied energy can be a more or
less periodic shaking, i.e. the application of a driving force (caused by
interactions with pot-holes in the case of the car wheel and by the uneven
distribution of clothes in the spin-dryer), as indicated schematically in
Fig. 1.1.

As long as the displacement is small, the spring obeys a linear force
law to a good approximation: the magnitude of the restoring force is
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1 Chaotic motion 5
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Fig. 1.2. Irregular sustained oscillations of a point mass fixed to the end of a
stiffening spring (a driven non-linear oscillator), driven sinusoidally in the
presence of friction.

proportional to the elongation. In this case the sustained motion is reg-
ular: it adopts the period of the driving force. If the natural period of
the spring is close to that of the driving force, then the amplitude may
become very large and the well known phenomenon of resonance devel-
ops. For large amplitudes, however, the force of the spring is usually no
longer proportional to the elongation; i.e., the force law is non-linear.
Resonance is therefore a characteristic example for the appearance of
non-linearity.

For non-linear force laws, the restoring force increases more rapidly
or more slowly than it would in linear proportion to the elongation: we can
speak of stiffening or softening springs, respectively. Whichever type of
non-linearity is involved, the sustained state of the driven oscillation may
be chaotic. A qualitative explanation is that the spring is not able to adopt
exactly the sinusoidal, harmonic motion of the forcing apparatus, since
its own periodic behaviour is no longer harmonic. Thus, the sustained
dynamics follows the driving force in an averaged sense only, but always
differs from it in detail (instead of the uniform hum of the car or the
spin-dryer, an irregular sound can be heard in such situations). Neither
the amplitude nor the frequency is uniform: the sustained motion does
not repeat itself regularly; it is chaotic.

Figure 1.2 shows the motion of a body fixed to the end of a stiffening
spring and driven sinusoidally.1 It can clearly be seen that there is no
repetition in the displacement vs. time curve; i.e., the motion is irregular.

Slightly different initial conditions result in significant differences
in the displacement after only a short time (Fig. 1.3): the dynamics is
unpredictable. This figure also shows that the long-term behaviour is
of a similar nature in both cases: the two motions are equivalent in a
statistical sense.

1 The precise equations of motion of the examples in this section can be found in

Sections 5.6.2 and 5.6.3.
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6 The phenomenon: complex motion, unusual geometry
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Fig. 1.3. Two sets of motion
which started from nearly
identical positions. The small
initial difference increases
rapidly: the motion is sensitive
to the initial conditions and
therefore it is unpredictable.
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Fig. 1.4. Pattern resulting
from a sustained non-linear
oscillation in the velocity vs.
position representation, using
samples taken at time intervals
corresponding to the period
of the driving force. The
position and velocity
co-ordinates of the nth sample
are xn and vn, respectively.

An interesting structure reveals itself when we do not follow the mo-
tion continuously, but only ‘take samples’ of it at equal time intervals.
Figure 1.4 and Plate I have been generated by plotting the position and
velocity co-ordinates (xn, vn) of the sustained motion at integer multi-
ples, n, of the period of the driving force, through several thousands of
periods.

It is surprising that there are numerous values of xn to which many
(according to detailed examinations, an infinite number of) different
velocity values belong. Furthermore, the possible velocity values corre-
sponding to a single position co-ordinate xn do not form a continuous
interval anywhere. The whole picture has a thready, filamentary pattern,
indicating that chaos is associated with a definite structure. This pattern
is much more complicated than those of traditional plane-geometrical
objects: it is a structure called a fractal (a detailed definition of fractals
will be given in Chapter 2). Remember that a single point would cor-
respond to a periodic motion in this representation. Chaotic motion is
therefore infinitely more complicated than periodic motion.
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1 Chaotic motion 7
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Fig. 1.6. Motion of a driven pendulum. (a) The pendulum a few moments after
starting from a hanging state (over the first half period). (b) The path of the
end-point of the pendulum for a longer time: the pendulum swings irregularly
and often turns over. The horizontal bar indicates the interval over which the
suspension point moves.

Another example is the behaviour of a driven pendulum (Fig. 1.5).
The large-amplitude swinging of a traditional simple pendulum is non-
linear, since the restoring force is not proportional to the deflection angle
but to the sine of this angle. Without any driving force, the swinging
ceases because of friction or air drag: sustained motion is impossible.
The pendulum can be driven in different ways. We examine the case when
the point of suspension is moved horizontally, sinusoidally in time. In
order to avoid the problem of the folding of the thread, the point mass is
considered to be fixed to a very light, thin rod. With a sufficiently strong
driving force, the motion may become chaotic. Figure 1.6 shows the path
of the pendulum in the vertical plane.

Fig. 1.5. Driven pendulum:
the pendulum is driven by the
periodic movement of its
point of suspension in the
horizontal plane.

Note that the pendulum turns over several times in the course of its
motion. The ‘upside down’ state is especially unstable, just like that of
a pencil standing on its point. Two paths of the pendulum starting from
nearby initial positions remain close to each other only until an unstable
state, an ‘upside down’ state, separates them. Then one of them turns
over, while the other one falls back to the side it came from (Fig. 1.7).
The reason for the unpredictability is that the motion passes through a
series of unstable states.

The structure underlying the irregular motion can again be demon-
strated by following the motion initiated in Fig. 1.6 for a long time and
taking samples from it by plotting the position (angular deflection) and
velocity (angular velocity) co-ordinates (xn, vn) at intervals correspond-
ing to the period of the driving force (Fig. 1.8 and Plate II).

In a frictional (dissipative) system, sustained motion can only de-
velop if some external energy supply (driving) is present. Regardless of
the initial state, the dynamics converges to some sustained behaviour
that will therefore be called an attracting object, or an attractor (for the
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8 The phenomenon: complex motion, unusual geometry

Fig. 1.7. Separation of the
paths of two identical driven
pendulums starting from
nearby points while passing an
unstable state. The notation is
the same as in Fig. 1.6. The
arrows show the direction in
which the end-points of the
pendulums move.
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Fig. 1.8. Pattern resulting
from a chaotic driven
pendulum (chaotic attractor)
obtained by plotting the state
of the pendulum in the
position–velocity co-ordinates
at integer multiples of the
driving period.

exact definition, see Section 3.1.2). Simple attractors correspond either

Fig. 1.9. The magnetic
pendulum: magnets are fixed
to the table and a point mass
attracted by the magnets is
fixed to the end of the thread.
The pendulum ultimately
settles in an equilibrium state
pointing towards one of the
magnets, but only after some
irregular, chaotic motion.

to regular or to ceasing motion. A sufficiently large supply of energy
inevitably brings about the non-linearity of the system; the sustained dy-
namics is then usually irregular, i.e. chaotic. This is accompanied by the
presence of a chaotic attractor, also called a strange attractor because
of its peculiar structure. Figures 1.4 and 1.8 display examples of chaotic
attractors.

1.2.2 Magnetic and driven pendulums, fractal basin
boundary – transient chaos

Consider a pendulum, the end-point of which is a small magnetic
body, moving above three identical magnets placed at the vertices of a
horizontal equilateral triangle (Fig. 1.9). When the force between the
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1 Chaotic motion 9
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Fig. 1.10. Basin of
attraction of the three
equilibrium states of the
magnetic pendulum (one
white and two black dots).
Each point on the
horizontal plane is shaded
according to the magnet in
whose neighbourhood the
pendulum comes to a rest
when starting above that
point with zero initial
velocity.

end of the pendulum and the magnets is attracting, the pendulum can
come to a halt, pointing towards any of the magnets. Thus there are
three simple attractors in the system. Starting above any point of the
plane, we can use a computer to calculate which magnet the pendulum
will be closest to after coming to rest.2 By assigning three different
colours to the three attractors, and to the corresponding initial posi-
tions that converge towards them, the whole plane can be coloured.
Each identically coloured area is a basin of attraction. Surprisingly,
the basin boundaries are interwoven and entangled in a complicated
manner (see Fig. 1.10 and Plates III–VI); these simple attractors have
fractal basin boundaries. (Naturally, the close vicinity of each attractor
appears in one colour only: the boundaries do not come close to the
attractors.)

Motion starting near the fractal boundary remains irregular for a
while, exhibiting transient chaos, i.e. chaos lasting for a finite period of
time (Fig. 1.11), but ultimately it ends up on one of the attractors.

A driven pendulum (Fig. 1.5) may also exhibit transient chaos. When
the friction is sufficiently large, the pendulum can exhibit regular sus-
tained motion only. There are two options for the given parameters (see
Fig. 1.12, which depicts the paths corresponding to these two simple at-
tractors in the vertical plane). An overall view of the basins of attraction
can again be obtained by representing the starting point in the position

2 The equations of motion of the magnetic pendulum can be found in Section 6.8.3.
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10 The phenomenon: complex motion, unusual geometry
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Fig. 1.11. Path of the
end-point of the magnetic
pendulum viewed from
above. The motion is irregular
before reaching one of the
rest positions: it is transiently
chaotic. (The fixed magnets
are represented by solid black
dots.)

(a) (b)

Fig. 1.12. Simple periodic attractors of the driven pendulum: for sufficiently
strong friction only these two types of sustained motion exist. All the different
initial conditions lead to one of these motions, corresponding to a simple
attractor each.

(angular deflection) – velocity (angular velocity) plane in the colour of
the attractor which the motion ultimately converges to (Fig. 1.13 and
Plate VII).

Motion starting close to the boundary is similar initially to that seen
in the case of the chaotic attractor, but it ultimately converges to one
of the simple attractors. Irregular dynamics has a finite duration; it is
transient. There exist, however, very exceptional initial conditions from
which the dynamics never reaches any of the attractors, and is chaotic for
any length of time. There exists an infinity of such motion (Fig. 1.14),
but the initial conditions that describe these state do not form a compact
domain in the plane, but rather a fractal cloud of isolated points called a
chaotic saddle.
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1 Chaotic motion 11
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Fig. 1.13. Basins of
attraction in the driven
pendulum on the plane of
initial conditions. The two
simple attractors in Fig.
1.12 appear here as points
(white and black dots),
and the initial states
converging towards them
are marked in black and
white, respectively.
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Fig. 1.14. Initial states of
the driven pendulum of
Fig. 1.13 that never reach
either simple attractor: all
points shown here are on
the basin boundary and, if
followed in time, they keep
moving between
themselves after every
period of the driving force.
This chaotic saddle is
responsible for chaotic
dynamics of transient type.

Thus, chaotic dynamics can also occur if the sustained forms of
motion are regular, but there are many possible transient routes (chaotic
transients) leading to them. In such cases several simple attractors co-
exist, each with its own basin of attraction defined by the set of initial
conditions which converges to the given attractor. The basins of attraction
often penetrate each other, and their boundaries can also be filamentary
fractal curves. The motion starting from the vicinity of these fractal basin
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