INDEX

Abel transform, 235
aerosols. See measurements of van der Waals interactions
anisotropy. See dielectric response, polarizability, torque
atomic beams. See measurements of van der Waals interactions
bilayers. See measurement of van der Waals interactions
birefringent. See dielectric response, anisotropic materials
Bjerknes force, 31
Bjerrum length as measure of separation, 93
definition, 92
in ionic screening constant, 94, 227
blackbody radiation, 9
Bohr, N., 9
Boltzmann constant in discrete sampling frequencies, 48
in ideal gas law, 2
numerical values, 51
Boltzmann distribution charges in potential field, 314
dipole in electric field, 222
Boyle, R., 2
Boyle's Law, 2
bubble–bubble attraction
Bjerknes, 31
van der Waals, 26
bug cubic, 21
spherically symmetric, 22
capacitor
dielectric response, 43, 107, 235, 246
Casimir effect, 11
suggested in sonoluminescence, 34
Casimir force, 12
seen between conducting surfaces, 31
Casimir pressure, 187
Casimir, H. B. G., 9
retarded interaction between point particles, 10
Casimir–Polder interaction from Lifshitz formula, 87, 216
causality condition on dielectric response, 242, 251
in memory function, 243, 245
CGS-MKS unit conversions. See units, cgs-mks
characteristic frequency. See sampling frequency, 51, 52
Clausius–Mossotti relation, 211, 220
Cole–Cole form for dipolar relaxation, 256, 257
colloids. See measurement of van der Waals interactions
complex frequency, 46, 51, 104, 245, 251, 290
computation attitude, 241
contribution spectrum accumulated fluctuations vs. frequency, 55
c ompared to absorption spectrum, 51
number density of sampling frequencies, 49
cylinder–cylinder interaction, 95
additivity conditions, 97, 235
by Derjaguin transform, 14, 207, 208
from interaction of anisotropic half-spaces,
232, 236, 238
in Hamaker form, 95
ionic fluctuation forces, 97, 236
thin cylinders, 96, 97, 232, 236
thin cylinders in salt solution, 97
thin cylinders, extraction from Lifshitz result, 233
torque, 96, 97, 235
units, 14
De Boer, J. H., 7
Debye dipolar relaxation, imaginary frequencies, 108, 222
dipolar relaxation, in computer program, 273
dipolar relaxation, real frequencies, 254, 256
dipolar units, 88, 163
screening constant, definition, 225
screening constant, in composite media, 226
screening length, 89
Debye interaction early definition, 6
from Lifshitz formula, 86, 87, 223
tabulated, 163
Debye–Hückel theory
form of ionic distribution, 226
depth of interaction, 226
Derjaguin approximation. See Derjaguin transform
Derjaguin transform
applied to Lifshitz half-space formula, 204
applied to measurement, 31
Derjaguin, B. V., 13
dielectric displacement, 106, 107, 218, 244, 315
dielectric permittivity, 242. See dielectric response
dielectric response
anisotropic materials, 59, 232, 318
as complex function, 83, 244, 245, 248
as complex refractive index, 83, 249
Clausius–Mossotti and Lorentz–Lorenz form, 255
conducting materials, 313
connection to causality, 243
continuum approximation, 44
determining modes of field fluctuation, 283
dielectric constant, 25, 40, 43
differences create interaction, 24, 43, 65
electron oscillator model, 251
elementary definitions, 242
from capacitance, 43, 246, 247, 313
from electron energy loss spectra, 250
from reflection, transmission, absorption of light, 44, 249
general properties, 241
in Hamaker coefficient, 45, 211
in language of frequency, 243
in retardation screening, 52
in simple computer program, 273
inescapable properties, 249
Kramers–Kronig relations, 246, 263
material–structure correction, 260
metals, conductors, 254
noncontinuous media, 259
nonlocal, 259
numerical storage of data, 250
of gases and suspensions, 80, 81, 83, 86, 108, 211, 214, 218, 219, 220, 224, 225, 237, 254
of ionic double layers, 313, 316, 323
of point particles, 81, 85, 86, 93, 218, 219
on complex-frequency plane, 245
oscillator forms, 251, 253, 255, 256, 272
permanent dipoles, 88, 108, 222, 254
spatially varying, 72, 73, 74, 79, 202, 303 vs. imaginary frequency, 47, 48, 61
x-ray limit, 253
dielectric susceptibility. See dielectric response
dilute condition
for gases and suspensions, 225, 255
for suspensions in salt solution, 224, 228, 235
dipolar interactions
from reduction of Lifshitz result, 214
dipolar relaxation
Cole–Cole form, 256
dipole moment
definition, 86, 221
units, 163
dispersion
forces and light, 6
dispersion relation
for electromagnetic modes, 286, 294, 295, 298, 300, 301, 307, 315, 320, 323
for electronic oscillator, 253
DUVO theory, 8
Dzyaloshinskii, I. E., 11
effective power law for interaction between half spaces, 56
eigenfrequency. See sampling frequency
at room temperature, 273
at zero-frequency limit, continuum limit, 184
in free energy summation, 182
sampling on negative-frequency axis, 257
electron volt
conversion to radial frequency, 274
numerical value, 31, 52
electrostatic repulsion
competition with electrodynamic attraction, 8
excess. See ionic excess
fluctuation frequencies and lifetimes, 25, 27, 40, 42, 44, 51, 61, 83
fluctuation–dissipation theorem
in charge fluctuations, 4
in dielectric response, 242
force
by Derjaguin transform, 75, 205, 206, 207, 208
spatial derivative of free energy, 23
force microscopy. See measurement of van der Waals interactions
forces from absorption spectra. See dielectric response
free energy
as physical work, 40
between solid bodies, 14
derivative pressure within black body, 9, 12, 45
form in pairwise-summation approximation, 15
from ionic fluctuations, 90
from torque between anisotropic materials, 60
heat capacity of black body, 9, 11
in thickening of adsorbed film, 59
Lifshitz-theory summation over eigenfrequencies, 182
magnitude compared to thermal energy, 20
of single harmonic oscillator, 284
planes vs. spheres, near contact, 76
preferential attraction between like materials, 38, 81, 211
reference-point zero at infinite separation, 43
repulsion between unlike bodies, 28
summation of harmonic oscillations, 283, 287, 290
work vs. separation, 5
INDEX

fuzzy spheres. See sphere–sphere interaction, radially varying dielectric response

Gaussian
boundary conditions, 284
integration, 261
spatial variation in dielectric response, 74, 135, 304
gincinns. See measurement of van der Waals interactions
glass surfaces. See measurements of van der Waals interactions
gravity vs. van der Waals interactions in thickening of adsorbed film, 59

half-space
defined, 14
half-space interaction
anisotropic materials, 237, 318
as between large planar bodies, 41
finite-temperature, fully retarded limit, 183
ideal conductors, 186
ideal conductors, zero-temperature Casimir limit, 187
in Hamaker form, 45
in Hamaker pairwise-summation approximation, 208
in Lifshitz formulation, 41, 43, 182, 283
ionic-fluctuation forces, 237, 313, 321
layered surfaces, 65, 66, 67, 71, 190, 194, 199, 292, 294, 296, 297, 300
low-temperature limit, 184
magnitude at room temperature, 64
nonretarded limit, 183
retardation in equal-light-velocities approximation, 187, 189
retardation screening, 187
retardation with small differences in dielectric response, 189, 190
spatially varying dielectric response, 72, 73, 74, 202, 203, 303
with slab, 193
half-space interaction pressure spatially varying dielectric response, 203
Hamaker coefficient
ey definition, 8
hydrocarbon across water, 64
in free energy between half-spaces, 24, 45, 182
in hybrid of Hamaker and Lifshitz theories, 208
in layered systems, 71
in model computer program, 275
Lifshitz form, to first approximation, 45
like vs. unlike materials, 26
negative, 26
script notation convention, 65
virtual frequency, 19, 64, 265
with retardation screening, 54, 55
Hamaker pairwise summation. See pairwise summation, 7, 208
for interaction of half-space and finite slab, 212
for interaction of half-spaces, 208
for interaction of two finite slabs, 213
hybridization to modern theory, 208, 212
relation to modern theory, 210
sphere–sphere interaction, 155
Hamaker, H. C., 7
Heisenberg, W., 9
helium liquid films. See measurements of van der Waals interactions
Hertz, H., 5
hydrocarbon across water
model calculation, 61, 63
spectrum of contributions, 61
ice. See measurement of van der Waals interactions
imaginary frequency for exponential variation, 25, 40, 46, 47, 51, 242
from absorption spectrum, 48, 61
in Debye dipolar response, 108, 222
in discrete sampling frequencies, 48, 289
indexed in summation, 263, 274, 288, 290
on complex-frequency plane, 256, 287, 289
index of refraction. See refractive index
inhomogeneous media. See dielectric response, spatially varying
integration algorithms, 261
condition on limits of integration, 263
conversion of sampling-frequency-summation to integration, 262
Laguerre integration, 261, 262
Simpson's Rule, 261
interfacial energies and energies of cohesion, 35
ionic constant, 237
ionic excess around cylinder, 97, 175
around sphere, 91, 164, 225
definition, for suspension, 92
in ionic strength of suspension, 236
in thin-cylinder interactions, 97
ionic fluctuations
in dielectric response, 313
in wave equation, 315
ionic screening of zero-frequency fluctuations, 89
ionic screening constant, 164, 321, 322. See Debye screening length, 114
ionic screening of low-frequency fluctuations
between anisotropic planar surfaces, 323
between planar surfaces, 90, 316, 317
between point particles, 92, 93, 227
between thin cylinders, 97, 238, 239
ionic strength, 89, 236
of suspension, 92, 224, 226, 237
Keesom interaction
early definition, 6
from Lifshitz formula, 86, 87, 223
magnitude, 88
tabulated, 163
Kirkwood–Shumaker attraction
as ionic fluctuations, 93
Kramers–Kronig relations, 245
kT
as measure of attraction, 8, 19, 20, 58, 64,
78, 80, 84, 85, 88, 231
as measure of Hamaker coefficient, 19, 20,
64, 70
as measure of photon energy, 48, 52, 223,
230, 248, 257
as vigor of motion, 2, 34, 42
driving ionic fluctuations, 92
in Debye screening constant, 225, 236,
257
in definition of Bjerrum length, 92
in free energy of oscillator, 284, 289
magnitude at room temperature, 51, 64
Laguerre
integration, 261
layered surfaces. See half-space interaction
Lebedev
early insight, 5
Lebedev, P. N., 5
Lifshitz, E. M., 11
London interaction
early definition, 6
from Lifshitz formula, 86, 87, 216, 217,
223
magnitude, 88
tabulated, 163
Lorentz–Lorenz relation, 284, 289
magnetism
importance at low frequency, 187
in difference-over-sum functions, 182, 183,
191, 192, 193, 195, 198, 286, 293
material–structure correction
to Lifshitz continuum result, 260
material–structure correction
to dielectric response function, 260
Maxwell wave equations
homogeneous media, 284
inhomogeneous media, 318
with ionic source charges, 314
Maxwell, J. C., 5
measurement of van der Waals interactions
aerosols, 34
atomic beams, 19, 31
bilayers, 33
bilayers on mica, 33
colloids, 33, 34
force microscopy, 31
gcko feet, 35
glass surfaces, 31
gold-coated surfaces, 31
helium liquid films, 28, 59
lipid bilayers on mica, 23
INDEX
liquid films on substrates, 55
mica, 32
nanoparticles, 31
quartz, 12, 31
validation of theory, 30
van der Waals gas, 2
water across bilayers, 32
mechanical strength, 21
memory function
as statement of causality, 243
in dielectric permittivity, 245
in polarization, 243
mica. See measurement of van der Waals
interactions
MKS–CGS unit conversions. See units,
cgs–mks, 107
monopolar interactions
reduction of Lifshitz result, 223
multilayers, 297, 300, 302
nanoparticles. See measurement of van der
Waals interactions
noncontinuous media, 259
notation and symbols
comparison of cgs and mks notation,
106
differences-over-sums for material
properties, 105
force and energy, 102
geometric quantities, 101
Hamaker coefficient, 105
material properties, 102
variables to specify point positions, 104
variables used for integration and
summation, 104
notation used in Level 3 derivations, 280
number density fluctuation correlation
mnemonic for monopolar attraction, 92,
227
numerical conversion of full spectra into
forces, 263
Nyquist noise theorem, 249
oscillator free energy
form, 283
poles at sampling frequencies, 289
Ostwald, W., 7
Overbeek, J. Th. G., 8
pairwise nonadditivity
early recognition, 5
pairwise summation
as reduction of Lifshitz theory, 211
atomic picture, 209
cylinder–cylinder interaction, 172
dilute-gas criterion, 18
disk–rod, 179, 180
cylindrical geometry, 17, 214
in Hamaker theory, 7
in hybrid of Hamaker and Lifshitz theories,
212
in three-particle interaction, 17
sphere–cylinder, 180
spin–orbit interaction, 255
to extract particle–particle interactions in
suspensions, 81, 215
Lifshitz, E. M., 11
London interaction
early definition, 6
from Lifshitz formula, 86, 87, 216, 217,
223
magnitude, 88
tabulated, 163
Lorentz–Lorenz relation, 284, 289
magnetism
importance at low frequency, 187
in difference-over-sum functions, 182, 183,
191, 192, 193, 195, 198, 286, 293
material–structure correction
to Lifshitz continuum result, 260
material–structure correction
to dielectric response function, 260
Maxwell wave equations
homogeneous media, 284
inhomogeneous media, 318
with ionic source charges, 314
Maxwell, J. C., 5
measurement of van der Waals interactions
aerosols, 34
atomic beams, 19, 31
bilayers, 33
bilayers on mica, 33
colloids, 33, 34
force microscopy, 31
gcko feet, 35
glass surfaces, 31
gold-coated surfaces, 31
helium liquid films, 28, 59
lipid bilayers on mica, 23
Cambridge University Press
0521839068 - Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists
V. Adrian Parsegian
Index
More information
parallel slabs
in a medium, 67
in a medium vs. on a substrate, 67, 70
on a substrate, 68
permittivity. See dielectric response, magnetic response
perturbation
in charge motion, mediated by electromagnetic field, 42
in ionic charge fluctuation, 92, 227
in orientation, Keesom force, 6
in surface modes, 183
in water-wave analogy, 10
second-order, 7
weak limit for Hamaker form, 212
photon energy
at UV frequency, 89
at zero absolute temperature, 34
in current fluctuations, 248
multiple of thermal energy, 25, 50
of sampling frequency at room temperature, 48
Pitaevskii, L. P., 11
Pitaevskii strategy
to extract line-particle interactions, 236
Planck constant
in discrete sampling frequencies, 48
in photon energy, 9
numerical values, 51
Planck, M., 9
point–particle interaction. See London, Debye, Keesom interactions
from reduction of Lifshitz result, 80, 81, 86, 214, 216, 217, 219, 222
in dilute gas, 86
magnitude, 88
mnemonic, 6
point–particle interaction, 79
point–particle interaction with substrate, 85, 228
extraction from Lifshitz theory, 228, 229, 230, 231
fully retarded, zero-temperature limit, 231
in atomic beam measurement, 20
limiting forms, 85
nonretarded limit, 230
polarizability
anisotropic materials, 59
breakdown of pairwise additivity, 235
differences and spreading of liquids, 35
differences create forces, 28
effect of salt, 91
of conducting materials, 313
of conducting spheres, 88
of nonpolar particle, 222
of small bodies, 86
of space between bodies, 9
of spheres or small particles in suspensions, 80
relation to polarizability coefficient, 243
vapors dilute and nondilute, 254
polarization
as part of dielectric response, 242
change with density of dilute suspension, 218
connection to causality, 243
coupled to vacuum, 10
from orientation of permanent dipoles, 221
in dielectric response, 107
in nonlocal dielectric response, 259
of colloidal sphere, 93
Polder, D.
retarded interaction between point particles, 10
pressure
between ideally conducting walls, 187
between walls of black body, 9
hydrostatic, in Gibbs free energy, 40
in pairwise-summation approximation, 210
positive in van der Waals repulsion, 58
preferential attraction between like materials, 58
sign convention, 57
spatial derivative of free energy, 23, 45, 57, 73, 210
van der Waals gas, 2, 19
problem sets
Level 1, 332
Level 2, 337
Prelude, 325
proteins, magnitude of attraction, 83
proximity force theorem. See Derjaguin transform, 14
radial frequency
current fluctuations, 248
definition, 46, 243
modes in electromagnetic fluctuations, 283
photon energy, 52
refractive index
in dielectric response, 83, 85, 185
retardation. See retardation screening
retardation screening
as observed in force vs. separation, 31
between ideally conducting surfaces, 187
between layered surfaces, 66
between planar surfaces, 11, 24, 53, 190, 274
between point particle and planar substrate, 230, 231
between point particles, 11, 87, 217
differential action on fluctuation spectrum, 54, 56, 61
dwell time of charge fluctuation, 28, 53, 54
expansion of Lifshitz formula, 187
formal similarity to ionic screening, 315
from finite velocity of light, 27, 51
in equal-light velocities approximation, 190
in limit of low temperature, 184, 185
suppression of Hamaker coefficient, 55
rough-water analogy to electromagnetic fluctuations, 10
sample computation program
annotated, 273
hydrocarbon in water, 272
sample computation programs, 271
sampling frequency. See characteristic frequency
See eigenfrequency
discrete form, 48, 61
dwell time of charge fluctuation, 27, 53
finite period in retardation, 28
logarithmic density in spectrum, 49
source in Lifshitz theory, 289
sampling frequency (cont.)
sampling, 25
summation in computation, 25, 27, 46, 55, 262, 273, 290
scaling of size and energy, 14
semi-infinite media. See half-spaces
slabs. See half-space interaction, layered
surfaces
small differences in dielectric response
at ultraviolet frequencies, 50
Hamaker coefficient, 212
inhomogeneous media, 202
interactions between layered surfaces, 65, 71, 186, 191, 192, 194, 196, 197, 198, 199, 200, 296, 297
interactions between spheres, 75, 77, 78
pairwise-summation form, 14, 17
point–particle interaction with substrate, 230, 231
reconciliation of large- and small-particle
language, 82
retardation in half-space interaction, 189
simplified form of half-space interaction, 45, 46, 183, 185
size/separation scaling of interaction free
energy, 78
spreading of liquids, 35
smoothly varying response. See dielectric
response, half-space interaction, sphere–sphere interaction
solution vs. pure solvent, 71
sonoluminescence
as Casimir effect. See specificity, preferential attraction, 24, 26, 58, 81, 210
sphere–plane interaction
by Derjaguin transform, 76
in Hamaker form, 77, 78
sphere–sphere interaction, 75
by Derjaguin transform, 13, 75, 205
in Hamaker form, 7, 76, 77, 78
ionic-fluctuation forces, 91, 93
large-particle vs. small-particle language, 82
radially varying dielectric response, 79
strength compared to kT, 20, 64, 80, 82
with retardation, 219
swing analogy to resonance, 44, 47
Table of idealized power-law forms of
interaction free energy in various geometries, 15
Table of language, units, and constants, 51
Table of the frequency spectrum, 51
Table of typical Hamaker coefficients, 64, 265
three-body attraction
correction to pairwise summation, 18
scheme, 17
torque, 59, 60, 95, 96, 235, 318
uncertainty principle, 9, 25, 45, 284
units
dipole moment, 221
dipole moment, Debye, 88, 163
energy, 51
frequency, 46, 49, 51, 273
interaction energy, 14
kT, 8, 18, 34
molar, 89
polarization, 218
zeptojoules, 19
van der Waals
nonideal gas equation, 2
van der Waals repulsion, 38
van der Waals, J. D., 2
Verwey, E. J. W., 8
wave vector
in dielectric response, 260
units, 287
x-ray diffraction
as example of nonlocal dielectric response, 239
zeptojoules, 19
zero-frequency-fluctuation forces. See ionic
fluctuation forces
at first sampling frequency, 25, 49, 90
between cylinders, 97, 236
between point particles, 217, 223
finite-temperature, fully retarded limit, 57, 183
from conductance, 12, 42
from dipolar rotation, 42, 86, 89, 257
from ionic fluctuations, 89, 92, 223, 236, 237, 238, 317
from magnetic response, 184
in computation, 275
magnitude in protein–protein interaction, 84
screening in ionic solution, 89, 91, 97, 227, 237, 240, 275, 316, 317