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1

Basic probability concepts

1.1 Random experiments and probabilities

An experiment is random if its outcome cannot be predicted with certainty. A simple example
is the throwing of a die. This experiment can result in any of six unpredictable outcomes 1,

2, 3, 4, 5, 6 which we list in what is usually called a sample space � = {1, 2, 3, 4, 5, 6} �=
{ω1, ω2, ω3, ω4, ω5, ω6}. Another example is the amount of yearly rainfall in each of the
next 10 years in Auckland. Each outcome here is an ordered set containing ten nonnegative
real numbers (a vector in IR10

+ ); however, one has to wait 10 years before observing the
outcome ω.

Another example is the following.
Let Xt be the water level of a dam at time t . If we are interested in the behavior of Xt

during an interval of time [t0, t1] say, then it is necessary to consider simultaneously an
uncountable family of Xts, that is,

� = {0 ≤ Xt < ∞, t0 ≤ t ≤ t1}.

The “smallest” observable outcome ω of an experiment is called simple.
The set {1} containing 1 resulting from a throw of a die is simple. The outcome “odd

number” is not simple and it occurs if and only if the throw results in any of the three simple
outcomes 1, 3, 5. If the throw results in a 5, say, then the same throw results also in “a
number larger than 3” or “odd number.” Sets containing outcomes are called events. The
events “odd number” and “a number larger than 3” are not mutually exclusive, that is, both
can happen simultaneously, so that we can define the event “odd number and a number
larger than 3.”

The event “odd number and even number” is clearly impossible or empty. It is called
the impossible event and is denoted, in analogy with the empty set in set theory, by ∅. The
event “odd number or even number” occurs no matter what is the event ω. It is � itself and
is called the certain event.

In fact possible events of the experiment can be combined naturally using the set opera-
tions union, intersection, and complementation. This leads to the concept of field or algebra
(σ -field (sigma-field) or σ -algebra, respectively) which is of fundamental importance in the
theory of probability.
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4 Basic probability concepts

A nonempty class F of subsets of a nonempty set � is called a field or algebra if

1. � ∈ F ,
2. F is closed under finite unions (or finite intersections),
3. F is closed under complementation.

It is a σ -field or (σ -algebra) if the stronger condition

2.′ F is closed under countable unions (or countable intersections)

holds.
If {F} is a σ -field the pair (�,F) is called ameasurable space. The sets B ∈ F are called

events and are said to be measurable sets.
For instance, the collection of finite unions of the half open intervals (a, b], (−∞ <

a < b ≤ +∞) in IR plus the empty set is a field but not a σ -field because it is not closed
under infinite countable unions. The open interval (0, 1) = ⋃∞

n=1(0, 1 − 1/n] is not in this
collection despite the fact it contains each interval (0, 1 − 1/n]. Neither does it contain the
singletons {x}, even though {x} = ⋂∞

n=1(x − 1/n, x] and it does not contain many other
useful sets. This suggests that the notion of σ -field is indeed needed. There exists a minimal
σ -field denoted B(IR) containing all half open intervals (a, b]. This is the Borel σ -field on
the real line and it is the smallest σ -field containing the collection of open intervals and
hence all intervals. It contains also:

1. all singletons {x} since {x} = ⋂∞
n=1

(
x − 1

n
, x + 1

n

)
,

2. the set Q of all rational numbers because it is a countable union: Q = ⋃
r∈Q{r},

3. the complement of Q, which is the set of all irrational numbers,
4. all open sets since any open set O = ⋃

n In , where {In} are disjoint intervals. To see
this recall that since O is open, then for any x ∈ O there exits a maximal interval Ix
containing x and contained in O and Ix = O if O is itself an interval. If O is not an
interval then there is a collection of disjoint maximal intervals contained in O, one for
each x ∈ O. Moreover, each of these intervals contains a rational number because of the
density of Q. Let {rn : n = 1, 2, . . . } be an enumeration of these rationals. Consequently,
there is only at most a countable number of these intervals I1, I2, . . .. Therefore, since
each of these intervals is contained in O, their union

⋃
n In ⊂ O. Conversely, for each

x ∈ O there exits a maximal interval In(x) containing x and contained in
⋃
n In , that is,

O ⊂ ⋃
n In . Consequently O = ⋃

n In .

Sets in B(IR) are called Borel sets. Note that a topological space, unlike a measure space, is
not closed under complementation. A word of caution here: even σ -fields are not in general
closed under uncountable unions.

The largest possible σ -field on any set � is the power class 2� containing all the subsets
of �. However this σ -field is in general “too big” to be of any use in probability theory. At
the other extreme we have the smallest σ -field consisting of � and the empty set ∅.

Given any collection C of subsets of �, the σ -field generated by C , denoted by σ {C}, is
made up of the class of all countable unions, all countable intersections and all complements
of the subsets in C and all countable unions, intersections and complements of these sets,
and so on. For instance, if C contains one subset, F say, then σ {F} consists of the subset
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1.1 Random experiments and probabilities 5

F itself, its complement F̄ (also denoted Fc), their union F ∪ F̄ (which is always �) and
their intersection F ∩ F̄ (which is always ∅).

The σ -field σ {C} generated by a class of subsets C contains by definition C itself (as
a subset); however, there are other σ -fields also containing C , one of them being 2� (the
largest one). The point here is that σ {C} is the smallest σ -field containingC . In the set theory
context “smallest” means that σ {C} is in the intersection of all the σ -fields containing C .
In summary:

C ⊂ σ {C} ⊂ {any σ -field containing C}.
It is left as an exercise to show that any σ -field is either finite or uncountably infinite.
Fields, or σ -fields, are convenient mathematical objects that express how much we know

about the outcome ω of a random experiment. For instance, if � = {1, 2, 3, 4, 5, 6} we may
not be able to observe ω but we may observe a “larger” event like “odd number”= {(1, 3, 5)},
so that our “observed” σ -field is smaller than the one generated by �. In fact it is equal to
{(1, 3, 5), (2, 4, 6), �, ∅}, which does not contain events like {(1, 3)} or {6}.

When the sample space � is finite, it is enough to represent information through partitions
of � into atoms, which are the smallest observable events. Since a field is just a collection
of finite unions and complements of these atoms, it represents the same information as the
partition. This is not true on infinite sample spaces as partitions and fields are not big enough
to represent information in all practical situations.

Suppose that when the experiment of throwing a die is performed, an indirect observer of
the outcome ω can only learn that the event {1, 2} did or did not occur. So for this observer
the (smallest) decidable events, or atoms, are in the field

F1 = σ {{1, 2}, {3, 4, 5, 6}} = {∅, {1, 2, 3, 4, 5, 6}, {1, 2}, {3, 4, 5, 6}}.
Another observer with a better access to information might be able to observe the richer
field

F2 = σ {{1, 2}, {3, 4}, {5, 6}},
which contains more atoms. The point here is that, given a set of outcomes �, it is possible
to define many fields, or σ -fields, ranging from the coarsest (containing only � and the
empty set ∅), to the finest (containing all the subsets of �).

A natural question is: what extra conditions will make a field into a σ -field? We have the
following useful result.

A field is a σ -field if and only if it is closed under monotonic sequences of events, that
is, it contains the limit of every monotonically increasing or decreasing sequence of events.
(A sequence of events Ai , i ∈ IN, is monotonic increasing if A1 ⊂ A2 ⊂ A3 . . . ).

Let the index parameter t be either a nonnegative integer or a nonnegative real number.
To keep track, to record, and to benefit from the flow of information accumulating in time

and to give a mathematical meaning to the notions of past, present and future the concept
of filtration is introduced. This is done by equipping the measurable space (�,F) with
a nondecreasing family {Ft , t ≥ 0} of “observable” sub-σ -fields of F such that Ft ⊂ Ft ′
whenever t ≤ t ′. That is, as time flows, our information structures or σ -fields are becoming
finer and finer.

We define F∞ = σ (
⋃
t≥0 Ft )

�= ∨
t≥0 Ft where the symbol

�= stands for “by definition.”
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6 Basic probability concepts

Example 1.1.1 Let � = {ω1, ω2, ω3, ω4, ω5, ω6}. The σ -fields

F0 = σ {�, ∅},
F1 = σ {{ω1, ω2, ω3}, {ω4, ω5, ω6}},
F2 = σ {{ω1, ω2}, {ω3}, {ω4, ω5, ω6}},
F3 = σ {{ω1}, {ω2}, {ω3}, {ω4, ω5, ω6}},

form a filtration since F0 ⊂ F1 ⊂ F2 ⊂ F3. However, the σ -fields

F0 = σ {�, ∅},
F1 = σ {{ω1, ω2, ω3}, {ω4, ω5, ω6}},
F2 = σ {{ω1, ω4}, {ω2, ω5}, {ω3, ω6}},
F3 = σ {{ω1}, {ω2}, {ω3, ω4}, {ω5, ω6}},

do not form a filtration since, for instance, F1 �⊂ F2. �

Example 1.1.2 Suppose � is the unit interval (0, 1] and consider the following σ -fields:

F0 = σ {�, ∅},
F1 = σ {(0, 1

2 ], ( 1
2 , 3

4 ], ( 3
4 , 1]},

F2 = σ {(0, 1
4 ], ( 1

4 , 1
2 ], ( 1

2 , 3
4 ], ( 3

4 , 1]},
F3 = σ {(0, 1

8 ], ( 1
8 , 2

8 ], . . . , ( 7
8 , 1]}.

These form a filtration since F0 ⊂ F1 ⊂ F2 ⊂ F3. �

When the time index t ∈ IR+ we are led naturally to introduce the concepts of right-
continuity and left-continuity of a filtration as a function of t .

A filtration {Ft , t ≥ 0} is right-continuous if Ft contains events immediately after t , that
is Ft = ⋂

ε>0 Ft+ε . We may also say that a filtration {Ft , t ≥ 0} is right-continuous if new
information at time t arrives precisely at time t and not an instant after t .

It is left-continuous if {Ft } contains events strictly prior to t , that is Ft = ∨
s<t Fs .

Probability measures

Given a measurable space (�,F) a probability measure P is a countably additive function
defined on events in F with values in [0, 1]. More precisely:

A set function P: F → [0, 1], where F is either a field or a σ -field, is called a probability
measure if

1. P(�) = 1;
2. If Bk is a countable sequence of pairwise disjoint events inF , then P(

⋃
Bk) = ∑

P(Bk).
This is termed σ -additivity of P .

Of course, (1) and (2) imply that P(∅) = 0. Also, if A is an event such that P(A) = 0 and
B is any event contained in A then P(B) = 0.

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521838037 - Measure Theory and Filtering: Introduction and Applications - Lakhdar Aggoun and Robert
J. Elliott
Excerpt
More information

http://www.cambridge.org/0521838037
http://www.cambridge.org
http://www.cambridge.org


1.1 Random experiments and probabilities 7

It is easily seen that if � is finite we need only specify P on atoms of F .
The triple (�,F, P) is called a probability space.
Nonempty events which are unlikely to occur and to which a zero probability is assigned

are called negligible events or null events.
A σ -field F is P-complete if all subsets of null events are also events. Of course, their

probability is zero.
A filtration is complete if F0 is complete, i.e. all the null events are known at the initial

time.
The mathematical object (�,F,Ft , P), where the filtration {Ft , t ≥ 0} is right-

continuous and complete, is sometimes called a stochastic basis or a filtered probability
space .

The filtration {Ft , t ≥ 0} is said to satisfy the “usual conditions” if it is right-continuous
and complete.

For monotonic sequences of events we have the following result on continuity of proba-
bility measures.

Theorem 1.1.3 Let (�,F, P) be a probability space. If {An} is an increasing sequence of
events with limit A, then

P(An) ↑ P(A),

and if {Bn} is a decreasing sequence of events with limit B, then
P(Bn) ↓ P(B).

Proof To prove the first statement, visualize the sequence {An} as a sequence of increasing
concentric disks and then define the sequence of disjoint rings {Rn} (except for R1 which
is the disk A1):

R1 = A1, R2 = A2 − A1, . . . , Rn = An − An−1.

Note that

Ak = ∪kn=1Rn, A = ∪∞
n=1An = ∪∞

n=1Rn,

so that by σ -additivity
P(A) = ∑∞

n=1 P(Rn) = limk
∑k

n=1 P(Rn) = limk P(∪kn=1Rn) = limk P(Ak).
The proof of the second statement follows by considering the sequence of complementary

events {B̄n} which is increasing with limit B̄, so that

1 − P(An) ↑ 1 − P(A) =⇒ P(An) ↓ P(A).

Example 1.1.4 Consider the experiment of tossing a fair coin infinitely many times and
“observing” the outcomes of all tosses. Here each ω ∈ � = (H, T )∞ is a countably infinite
sequence of “Heads” and “Tails”. If we denote “Heads” and “Tails” by 0 and 1, each ω is a
sequence of 0s and 1s and it can be shown that there are as many ωs as there are points in
the interval [0, 1)!
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8 Basic probability concepts

Suppose we wish to estimate the probability of the event consisting of those ωs for which
the proportion of heads converges to 1/2. The so-called Strong Law of Large Numbers
says that this probability is equal to one, i.e. the ωs for which the convergence to 1/2
does not hold form a negligible set. However, this negligible set is rather huge, as can be
imagined! �

Example 1.1.5 In Example 1.1.4 let Fn,S be the collection of infinite sequences of Hs and
T s with some restriction S put on the first n tosses. For instance, if n = 3,

S = {HHT . . . , HT H . . . , T HH . . . } ⊂ (H, T )3,

F3,S is the collection of infinite sequences of Hs and T s for which the first three entries
contain exactly two Hs.

It is left as an exercise to show that the class
F = {Fn,S, S ⊂ (H, T )n, n ∈ IN} is a field. �

We now quote without proof from [4] the following result on extending a function P defined
on sets in a field.

Theorem 1.1.6 ([4]) If P is a probability measure on a field A, then it can be extended
uniquely to the σ -field F = σ {A} generated by A, i.e. the restriction of the extension
measure to the field A is P itself and by tradition they are both denoted by P.

Let us return to the coin-tossing situation of Example 1.1.5.
Using the extension theorem (Theorem 1.1.6) one can construct a (unique) probability

measure P called product probability measure on the space ((H, T )∞,F), starting from an
initial probability (p(H ), p(T )) = (1/2, 1/2) by setting

P(Fn,S) =
∑
S

(
1

2

)n
= (number of infinite sequences in S) ×

(
1

2

)n
.

It is left as an exercise to show that P does not depend on the representations of sets in F
and that it is countably additive. (See [4]).

An immediate generalization of the coin tossing experiment in Example 1.1.5 is to con-
sider an infinite sequence of independent experiments, to which corresponds an infinite
sequence of probability spaces (�1,F1, P1), (�2,F2, P2), . . . . We are interested in the
space �(∞) = �1 × �2 × . . . of all infinite sequences ω = (ω1, ω2, . . . ). Events of inter-
est are again cylinder sets, i.e. infinite sequences with restrictions put on the first n outcomes.
The collection of all these cylinders form a field which generates a σ -field F , often denoted
F1 ⊗ F2 ⊗ . . . . A probability measure P can be defined on cylinder sets then extended
uniquely to F using the Extension Theorem 1.1.6.

In the coin-tossing experiment, an example of an event which is in F is the event F that
a “Head” will occur. Clearly, F = ⋃∞

k=1 Fk , where Fk is the event that a “Head” occurs on
the k-th trial and not before. Since each Fk is a cylinder set, P(Fk) is well defined for each
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1.2 Conditional probabilities and independence 9

k ≥ 1. Moreover the Fks are pairwise disjoint, hence

P(F) =
∞∑
k=1

P(Fk) =
∞∑
k=1

1

2k
= 1.

Note that this probability is still 1 regardless of the size of the probability of occurrence of
a “Head”, (as long as it is not 0).

Modeling with infinite sample spaces is not a mathematical fantasy. In many very simple
minded problems infinite sequences of outcomes cannot be avoided. For example, “the first
time a Head occurs” event cannot be described in a finite sample space model because the
number of trials before it occurs cannot be bounded in advance.

In general, it is impossible to define a probability measure on all the subsets of an infinite
sample space; that is, one cannot say any subset is an event. However, consider the following
case.

Example 1.1.7 Suppose that � is countable and let F be the σ -field 2�. Then it is not
difficult to define a probability measure on F . Choose P such that

0 ≤ P({ω}) ≤ 1 and P({�}) =
∑
ω∈�

P(ω) = 1,

and for any F ∈ F , define P(F) = ∑
ω∈F P(ω).

Let {Fn}n∈IN be a sequence of disjoint sets in F and let ωn, denote the simple events in
Fn . Since we have an infinite series of nonnegative numbers,

P(
⋃
n

Fn) =
∑
n,m

P(ωn,m) =
∑
n

∑
m

P(ωn,m) =
∑
n

P(Fn).

�

1.2 Conditional probabilities and independence

Given a probability space (�,F, P) and some event B with P(B) �= 0, we define a new
posterior probability measure as follows. If A is any event we define the probability of A
given B as

P(A | B) = P(A and B)

P(B)
= P(A ∩ B)

P(B)
,

provided P(B) > 0. Otherwise P(A | B) is left undefined.
What we mean by “given event B” is that we know that event B has occurred, that is we

know that ω ∈ B, so that we no longer assign the same probabilities given by P to events
but assign new, or updated, probabilities given by the probability measure P(. | B). Any
event which is mutually exclusive with B has probability zero under P(. | B) and the new
probability space is now (B,F ∩ B, P(. | B)).

If our observation is limited to knowing whether event B has occurred or not we may as
well define P(. | B), where B is the complement of B within �. Prior to knowing where
the outcome ω is we define the, now random, quantity:

P(. | B or B)(ω) = P(. | σ {B})(ω)
�= P(. | B)IB(ω) + P(. | B)IB(ω).
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10 Basic probability concepts

This definition extends in an obvious way to a σ -field G generated by a finite or countable
partition {B1, B2, . . . } of � and the random variable P(. | G)(ω) is called the conditional
probability given G. The random function P(. | G)(ω) whose values on the atoms Bi are

ordinary conditional probabilities P(. | Bi ) = P(. ∩ Bi )
P(BI )

is not defined if P(Bi ) = 0. In

this case we have a family of functions P(. | G)(ω), one for each possible arbitrary value
assigned to the undefined P(. | Bi ). Usually, one version is chosen and different versions
differ only on a set of probability 0.

Example 1.2.1 Phone calls arrive at a switchboard between 8:00 a.m. and 12:00 p.m.
according to the following probability distribution:

1. P(k calls within an interval of length l) = e−l
lk

k!
;

2. If I1 and I2 are disjoint intervals,

P((k1 calls within I1) ∩ (k2 calls within I2))
= P(k1 calls within I1)P(k2 calls within I2),

that is, events occurring within disjoint time intervals are independent.

Suppose that the operator wants to know the probability that 0 calls arrive between 8:00
and 9:00 given that the total number of calls from 8:00 a.m. to 12:00 p.m., N8−12, is known.
From past experience, the operator assumes that this number is near 30 calls, say. Hence

P(0 calls within [8, 9) | 30 calls within [8, 12])

= P((0 calls within [8, 9))
⋂

(30 calls within [9, 12]))

P(30 calls within [8, 12])

= P(0 calls within [8, 9))P(30 calls within [9, 12])

P(30 calls within [8, 12])
=

(
3

4

)30

,

which can be written as

P(0 calls within [8, 9) | N8−12 = N ) =
(

3

4

)N

. (1.2.1)

�
Remarks 1.2.2 Consider again Example 1.2.1.

1. The events Fi = {ω : N8−12(ω) = i}, i = 0, 1, . . . form a partition of � and are atoms
of the σ -field generated by observing only N8−12, so we may write:

P(0 calls within [8, 9) | Fi , i ∈ IN)(ω)

= P(0 calls within [8, 9) | σ {Fi , i ∈ IN})(ω)

=
∞∑
i

(
3

4

)i
IFi (ω).

2. Observe that since each event F ∈ σ {Fi , i ∈ IN} is a union of some Fi1 , Fi2 , . . . , and
since we know, at the end of the experiment, which Fj contains ω, then we know

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521838037 - Measure Theory and Filtering: Introduction and Applications - Lakhdar Aggoun and Robert
J. Elliott
Excerpt
More information

http://www.cambridge.org/0521838037
http://www.cambridge.org
http://www.cambridge.org


1.2 Conditional probabilities and independence 11

whether or not ω lies in F , that is whether F or the complement of F has occurred. In
this sense, σ {Fi , i ∈ IN} is indeed allwe can answer about the experiment from what we
know. �

The likelihood of occurrence of any event A could be affected by the realization of B.
Roughly speaking if the “proportion” of A within B is the same as the “proportion” of A
within � then it is intuitively clear that P(A | B) = P(A | �) = P(A). Knowing that B
has occurred does not change the prior probability P(A). In that case we say that events
A and B are independent. Therefore two events A and B are independent if and only if
P(A ∩ B) = P(A)P(B).

Two σ -fields F1 and F2 are independent if and only if P(A1 ∩ A2) = P(A1)P(A2) for
all A1 ∈ F1, A2 ∈ F2.

If events A and B are independent so are σ {A} and σ {B} because the impossible event
∅ is independent of everything else including itself, and so is �. Also A and Bc, Ac and
B, Ac and Bc are independent. We can say a bit more, if P(E) = 0 or P(E) = 1 then the
event E is independent of any other event including E itself, which seems intuitively clear.

Mutually exclusive events with positive probabilities provide a good example of depen-
dent events.

Example 1.2.3 In the die throwing experiment the σ -fields

F1 = σ {{1, 2}, {3, 4, 5, 6}},
and

F2 = σ {{1, 2}, {3, 4}, {5, 6}},
are not independent since if we know, for instance, that ω has landed in {5, 6} (or equivalently
{5, 6} has occurred) in F2 then we also know that the event {3, 4, 5, 6} in F1 has occurred.
This fact can be checked by direct calculation using the definition. However, the σ -fields

F3 = σ {{1, 2, 3}, {4, 5, 6}},
and

F4 = σ {{1, 4}, {2, 5}, {3, 6}},
are independent. The occurrence of any event in any of F3 or F4 does not provide any
nontrivial information about the occurrence of any (nontrivial) event in the other field. �

Another fundamental concept of probability theory is conditional independence. Events A
and C are said to be conditionally independent given event B if P(A ∩ C | B) = P(A |
B)P(C | B), P(B) > 0.

The following example shows that it is not always easy to decide, under a probability
measure, if conditional independence holds or not between events.

Example 1.2.4 Consider the following two events:

A1=“person 1 is going to watch a football game next weekend,”
A2=“person 2, with no relation at all with person 1, is going to watch a football game next

weekend.”
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