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Overview and introduction

Since the dramatic discovery of Bose–Einstein condensation (BEC) in trap-
ped atomic gases in 1995 (Anderson et al., 1995), there has been an explosion
of theoretical and experimental research on the properties of Bose-condensed
dilute gases. The first phase of this research was discussed in the influential
review article by Dalfovo et al. (1999) and in the proceedings of the 1998
Varenna Summer School on BEC (Inguscio et al., 1999). More recently,
this research has been well documented in two monographs, by Pethick and
Smith (2008, second edition)1 and by Pitaevskii and Stringari (2003). Most
of this research, both experimental and theoretical, has concentrated on
the case of low temperatures (well below the BEC transition temperature,
TBEC), where one is effectively dealing with a pure Bose condensate. The
total fraction of noncondensate atoms in such experiments can be as small as
10% of the total number of atoms and, equally importantly, this low-density
cloud of thermally excited atoms is spread over a much larger spatial region
compared with the high-density condensate, which is localized at the cen-
tre of the trapping potential. Thus most studies of Bose-condensed gases
at low temperatures have concentrated entirely on the condensate degree
of freedom and its response to various perturbations. This region is well
described by the famous Gross–Pitaevskii (GP) equation of motion for the
condensate order parameter Φ(r, t). As shown by research since 1995, this
pure condensate domain is very rich in physics.

The main goal of the present book, in contrast, is to describe the dy-
namics of dilute trapped atomic gases at finite temperatures such that the
noncondensate atoms also play an important role. This means that we shall
be concerned with a trapped Bose gas composed of two distinct components,

1 The first edition of the Pethick and Smith book was published in 2002. We give page references
to the expanded second edition, published in 2008. The first 13 chapters in both editions cover
similar material.
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2 Overview and introduction

the condensate and the noncondensate. These two components satisfy quite
different equations of motion but can be strongly coupled to each other and
hence can modify each other significantly. The coupled dynamics of a two-
component superfluid Bose gas brings in a whole new class of phenomena.
At a theoretical level, one clearly has to deal with a “generalized” GP equa-
tion for Φ(r, t) which now includes the effect of the mean fields and collisions
associated with the noncondensate atoms. Broadly speaking, the thermal
cloud atoms will be described by a kinetic equation for a normal gas of
atoms, such as the well-known Boltzmann equation for a classical gas. The
major difference is that in a trapped Bose-condensed gas the thermal atoms
are coupled to the condensate component via mean fields and collisions.

The theory of Bose-condensed gases has been an active research topic
since the ground-breaking work of Bogoliubov in 1947. The present book
is built on the rich body of research carried out in the period 1957–67 by
Lee and Yang, Beliaev, Pitaevskii, Hugenholtz and Pines, Hohenberg and
Martin, Gavoret and Nozières, Kane and Kadanoff and many others. More
specifically, what we shall call the Zaremba–Nikuni–Griffin (ZNG) approxi-
mation (see the preface and Chapter 3) is very much an extension for trapped
gases of the pioneering studies by Kirkpatrick and Dorfman (1983, 1985a,b).
These authors derived a kinetic equation for the thermal atoms in a uniform
Bose-condensed gas and used it to give an explicit derivation of the Landau
two-fluid equations that account for transport coefficients. However, when
their papers were published in 1985, research interest in BEC in gases was
very low and their work had little impact.

Looking back, it is perhaps surprising that in the early work on Bose-
condensed gases there was almost no explicit discussion of a time-dependent
equation of motion for the condensate. It was only after the discovery of
BEC in trapped ultracold atomic gases in 1995 that the time-dependent
Gross–Pitaevskii equation and its extensions became central in theoretical
discussions, even though this equation had been developed in 1961. The
ZNG theory “stitches” together a generalized GP equation for the Bose
condensate (which includes the coupling to the thermal cloud atoms) and a
kinetic equation for the thermal cloud atoms. The ZNG approximation is
thus the offspring of a “civil union” between Gross–Pitaevskii and Bogoli-
ubov on the one hand and Boltzmann on the other.

So far, the study of the dynamics of a trapped Bose-condensed gas at
finite temperatures has not been a topic of systematic experimental studies.
Part of the reason for this, we believe, has been the implicit belief that the
presence of a thermal cloud of noncondensate atoms just complicates the
behaviour of a pure T = 0 condensate and is not the source of any interesting
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Overview and introduction 3

“new physics”. A theme of this book is that this attitude is not justified. The
coupling of the condensate and noncondensate degrees of freedom at finite
temperatures leads to a two-component system in which both components
can exhibit coherent collective behaviour, resulting in many new phenomena.
Indeed, under certain conditions, a trapped Bose gas at finite temperatures
can exhibit two-fluid phenomena that are precisely analogous to the well-
known macroscopic quantum behaviour in superfluid 4He (For details, see
Chapters 15 and 17).

The present book is devoted first (Chapters 3–7) to deriving coupled equa-
tions for a two-component superfluid Bose gas within a simple but realistic
microscopic approximation for each component. The second major goal
(Chapters 8–19) is to solve these approximate equations for the dynamics
of a trapped Bose gas at finite temperatures in two different regions, the
collisionless (or mean-field dominated) domain and the hydrodynamic (or
collision-dominated) domain. In the collisionless region, for which there are
considerable experimental data, our coupled equations give results that are
in quantitative agreement with the observed temperature-dependent fre-
quency and damping of the many kinds of collective modes that can be
excited in ultracold Bose gases.

In the quite different hydrodynamic region, collisions bring the system into
a state of local thermodynamic equilibrium. We prove that our approximate
model equations lead to the well-known two-fluid hydrodynamical descrip-
tion first derived (Landau, 1941; Khalatnikov, 1965) for superfluid 4He. This
connection allows one to make a very detailed comparison between the hy-
drodynamics of a trapped Bose-condensed gas and that of liquid 4He and
emphasizes the key role of the Bose broken symmetry (Hohenberg and Mar-
tin, 1965; Anderson, 1966, 1994; Bogoliubov, 1970). Strangely enough, the
hydrodynamics of a dilute Bose-condensed gas can be even more complex
than that of superfluid 4He. The reason, as we discuss in Chapter 15, is that
in a trapped gas the condensate and noncondensate can be out of diffusive
local equilibrium with each other.

Discussions that start with the dynamics of a pure condensate at T = 0
can give the impression that a trapped Bose-condensed gas is some com-
pletely new phase of matter, unconnected with other interacting many body
systems. The point of view of the present book is quite different, in that
we start with the normal phase. That is, a Bose superfluid (gas or liquid)
is viewed as a normal fluid in which, as a result of a second-order phase
transition, an extra new degree of freedom emerges, namely, a condensate
described by the macroscopic wavefunction Φ(r,t). A crucial question is how
this new “superfluid” degree of freedom couples into and modifies the “nor-
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4 Overview and introduction

mal fluid” degrees of freedom. Answering this question leads, in our opinion,
to a deeper insight into the dynamics of a two-component Bose superfluid.
This approach allows one to put the two extreme limits, a pure condensate
(T � TBEC) and a pure thermal cloud (T > TBEC) into a broader con-
text. It also sets the stage for developing a two-fluid description in trapped
gases similar to that used to describe the low-frequency hydrodynamics of
superfluid 4He.

The theory of interacting Bose-condensed fluids is most usefully discussed
using quantum field operators. This approach was initiated by Bogoliubov
(1947) in a simple model calculation, formalized in a systematic way by
Beliaev (1958a), and then developed by Gavoret and Nozières (1964), Ho-
henberg and Martin (1965), Bogoliubov (1970) and many others in the early
1960s. This many body formalism is discussed in detail in the well-known
texts Abrikosov et al. (1963) and Fetter and Walecka (1971). We recall that

the operator ψ̂†(r) creates an atom at r;
the operator ψ̂(r) destroys an atom at r.

(1.1)

These quantum field operators satisfy the usual Bose commutation relation[
ψ̂(r), ψ̂†(r′)

]
= δ(r − r′). (1.2)

All observables can be written in terms of these operators; for example, the
density n̂(r) = ψ̂†(r)ψ̂(r) and the interaction energy is given by

V̂ = 1
2

∫
dr

∫
dr′ ψ̂†(r′)ψ̂†(r)v(r − r′)ψ̂(r′)ψ̂(r), (1.3)

where v(r) is the interatomic potential.
The crucial idea, due to Bogoliubov (1947) and later generalized by Beli-

aev (1958a,b), is to separate out the condensate component of the quantum
field operators, setting

ψ̂(r) = 〈ψ̂(r)〉 + ψ̃(r), (1.4)

where

〈ψ̂(r)〉 ≡ Φ(r) (1.5)

is the Bose macroscopic wavefunction. This quantity plays the role of the
“order parameter” for the Bose superfluid phase transition:

Φ(r) =
{

0, if T > TBEC,
�= 0, if T < TBEC.

(1.6)

We note that Φ(r) =
√

nce
iθ is a two-component order parameter in that it
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Overview and introduction 5

has both amplitude and phase. Clearly, Φ(r) is not simply related to many-
particle wavefunctions Ψ(r1, r2, . . . , rN ). The thermal average in 〈ψ̂(r)〉 in-
volves introducing a small symmetry-breaking perturbation that allows Φ(r)
to be finite,

ĤSB = lim
η→0

∫
dr

[
η(r)ψ̂†(r) + η∗(r)ψ̂(r)

]
. (1.7)

The philosophy behind the concept of symmetry-breaking and its use in a va-
riety of condensed matter systems was extensively discussed by Bogoliubov
(1970) in a beautiful and convincing article which is highly recommended
to all readers. Since the early 1960s, the concept of a broken-symmetry
order parameter has increasingly become the basis of all modern treatments
of different phases of matter in all branches of physics. A lucid systematic
account of this approach as a basis for statistical mechanics is developed in
recent monographs by Mazenko (2000, 2003).

The Beliaev (1958a) decomposition (1.4) of the quantum field operator
implies that the single-particle density matrix has the property

lim
|r−r′|→∞

ρ1(r, r′) ≡ 〈ψ̂(r)ψ̂†(r′)〉 = Φ(r)Φ∗(r′). (1.8)

Penrose (1951) and Penrose and Onsager (1956) first gave a formal defini-
tion of what BEC is in an interacting Bose gas in terms of the asymptotic
property given in (1.8). Specifically, they defined the wavefunction of the
Bose condensate as the eigenstate of ρ1(r, r′) which is macroscopically oc-
cupied. The Penrose–Onsager approach is nicely summarized in Section 2.1
of Pitaevskii and Stringari (2003) and Section 2.1 of Leggett (2006).

The later, independent, formulation of Beliaev (1958a), based on separat-
ing the condensate part of the quantum field operator ψ̂(r) as in (1.4), ex-
tended the powerful field theoretic techniques for dealing with the dynamics
of many body systems to include Bose condensation. The Beliaev Green’s
function approach allows one to avoid working directly with many body
wavefunctions (as in the original approach of Penrose and Onsager, 1956)
and instead work with equations of motion for Green’s functions. The Beli-
aev formulation involves defining the Bose condensate as a broken-symmetry
order parameter (1.5), which can be time dependent. This extends the orig-
inal Penrose–Onsager formulation, which was based on number conserving
eigenstates. The usefulness of working with number nonconserving states
and anomalous Green’s functions was clarified by Anderson in a classic ar-
ticle written in 1965 (reprinted in Anderson, 1994, p. 229). See also Section
2.2 of Pitaevskii and Stringari (2003).

To avoid any misunderstanding about the use of number nonconserving
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6 Overview and introduction

states, we emphasize that all conservation laws (including the continuity
equation for density fluctuations) can be satisfied in theories based on a
broken-symmetry order parameter. As is well understood (see for example
Griffin, 1993), conservation laws play a crucial role in Bose superfluids.

We note that Beliaev’s name is attached to two papers on interacting Bose
systems which have quite different goals. In the first paper, Beliaev (1958a)
set up a general formalism to deal with an interacting Bose-condensed sys-
tem using diagrammatic methods incorporating the presence of a Bose order
parameter Φ(r). In a companion paper, Beliaev (1958b) used this formalism
to calculate the excitation spectrum of the single-particle Green’s functions
G̃αβ(q, ω) to second order in the interaction. This is the famous Beliaev
second-order approximation, generalizing the first-order Bogoliubov approx-
imation.

The condensate wavefunction Φ(r, t) is a coherent state, with a “clamped”
value of the phase, rather than a Fock state of fixed N with no well-defined
phase. The order parameter Φ(r, t) acts like a classical field, since quan-
tum fluctuations are negligible when the number of atoms Nc in the single-
particle condensate wavefunction is large. As noted above, Anderson (1966,
1994) deserves great credit for understanding (in the period 1958–1963) the
new physics involved in working with a broken-symmetry state Φ(r, t) with
a well-defined phase, both in BCS superconductors and in superfluid 4He.
This broken-symmetry state nicely captures the physics of the Josephson ef-
fect and superfluidity. The external symmetry-breaking perturbation (1.7)
allows the system to set up off-diagonal symmetry-breaking fields internally,
which persist even when the external perturbation is set to zero at the end
of the calculation (η → 0).

The same sort of physics is the basis of the well-known Bardeen–Cooper–
Schrieffer (BCS) theory of superconductors, based on the formation of bound
pairs of fermions called Cooper pairs, which are bosons and hence can Bose-
condense. Indeed, it is interesting to recall that before the BCS theory
appeared in 1957, Bogoliubov’s pioneering paper, published in 1947, was
largely unknown or ignored. After the physics of the BCS theory was refor-
mulated in a simple fashion involving symmetry-breaking mean fields related
to a Cooper-pair condensate (Gor’kov, 1958), theorists quickly realized that
the Bogoliubov theory of Bose-condensed gases involved a similar kind of
“off-diagonal” mean field. Since the 1960s, in condensed matter physics our
understanding of superconductors has gone hand-in-hand with our under-
standing of superfluid 4He. In particular, the BCS theory has played an
important role as an example of how a broken-symmetry theory captures
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Overview and introduction 7

the physics of superfluid motion, and it has the advantage of not working
with a number-conserving approximation.

One of the stunning developments in ultracold gases is the experimental
realization of the BCS–BEC crossover in a two-component Fermi gas (for an
introduction, see Chapter 17 of Pethick and Smith, 2008). Using a Feshbach
resonance to tune the magnitude and sign of the s-wave scattering length a

between Fermi atoms in different hyperfine states, one can go in a smooth
fashion from a BCS phase with Cooper pairs immersed in a gas of fermion
BCS quasiparticles to a Bose condensate phase in which all the fermion
excitations have paired up to form Bose molecules. This BEC of molecules is
a very promising new “Bose gas”, since molecules made up of two fermions
are very stable against three-body decay in a two-component Fermi gas,
because of the Pauli exclusion principle. Moreover, the molecular scattering
length is proportional to a and hence can be very large (Petrov et al., 2004,
2005) near the Feshbach resonance (where |a| → ∞). As a final bonus, the
creation of bosonic molecules via the destruction of two fermions is a concrete
illustration of a physical process that does not conserve the total number of
bosons and thus can be thought of as a symmetry-breaking perturbation of
the type (1.7).

One can formulate the Gross–Pitaevskii and Bogoliubov approximations
directly in terms of variational many-particle wavefunctions. However, such
formulations are usually limited to simple mean-field approximations at T =
0. The explicit introduction of the broken-symmetry order parameter Φ(r, t)
gives a more systematic way (Beliaev, 1958a; Hohenberg and Martin, 1965;
Bogoliubov, 1970; Nozières and Pines, 1990) of isolating the role of the Bose
condensate within a general treatment of an interacting Bose-condensed fluid
at finite temperatures. This approach was developed in order to understand
the characteristic properties of a Bose superfluid such as liquid 4He, in spite
of the fact that one could not do quantitative calculations on such a strongly
interacting system. A major goal of this book is to show that the resulting
formalism allows one to treat, in an easy and natural manner, questions
related to damping as well as superfluidity at finite temperatures in both
the collisionless and hydrodynamic regions.

As already noted, this book deals with the Bose condensate by means
of the approach formalized and developed by Beliaev (1958a,b), which is
based on separating out the Bose-condensate degree of freedom as an or-
der parameter related to a broken symmetry. The finite value of the con-
densate order parameter leads to new correlations in space and time be-
tween the noncondensate atoms. As a result, besides using the ordinary
single-particle Green’s functions, it is natural to introduce anomalous (“off-
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8 Overview and introduction

diagonal”) single-particle Green’s functions to describe the new condensate-
induced correlations between the atoms outside the condensate. In the early
1960s, it was realized that one could give a compact version of many body
perturbation theory for Bose superfluids by working with a 2 × 2 matrix
single-particle Green’s function G̃αβ describing the noncondensate atoms.
A similar scheme for BCS superconductors grew out of the related work of
Gor’kov (1958). For over five decades, these Green’s function techniques
have been used with great success in dealing with both Bose and Fermi
superfluids.

By the 1960s, it was realized that there are three paradigms for quantum
fluids:

(1) Bose superfluids (associated with a Bose condensate wavefunction Φ);
(2) normal Fermi fluids (associated with the key role of a Fermi surface);
(3) Fermi superfluids (associated with Cooper pairs that form a Bose

condensate).

The first two kinds of quantum fluid were magnificently described in two
books by Nozières and Pines written in the early 1960s, although the book
on superfluid Bose liquids (Nozières and Pines, 1990) was only published
decades later. One of the clearest discussions of the connection between the
order parameter Φ(r, t) and superfluidity in Bose fluids is given in Chapters
4 and 5 of Nozières and Pines (1990). The classic account formulating the
various levels of theory for Bose superfluids is the monumental paper by Ho-
henberg and Martin (1965). This paper shows the central unifying role of the
broken-symmetry order parameter Φ(r, t), summarizes the physics involved
in both the collisionless and hydrodynamic domains and gives criteria for
developing and judging various microscopic approximation schemes for cor-
relation functions, using thermal Green’s function techniques. The general
philosophy and approach of the present book has been strongly influenced
by Hohenberg and Martin’s seminal paper.

The introductory review article by Leggett (2001) and his recent book on
quantum liquids (Leggett, 2006) give a thoughtful account of many basic
assumptions used in current theories on ultracold gases. However, we do
not share Leggett’s reservations about the usefulness of the concept of a
Bose order parameter arising from a broken symmetry. Treating the con-
densate as a new degree of freedom becomes especially convenient when one
is attempting to deal with the dynamics of a trapped Bose-condensed gas
at finite temperatures, as we hope to illustrate in the present book.

We have emphasized that our approach to nonequilibrium problems in
Bose gases involves separating out the condensate right at the beginning,
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1.1 Historical overview of Bose superfluids 9

following the classic Bogoliubov–Beliaev approach. This means that the
condensate and noncondensate dynamics are treated in quite different ways,
Φ(r, t) playing the role of the order parameter. There is an alternative
approach used in the current literature in which the equations of motion for
all low-energy bosonic modes (for which the occupation numbers Ni 	 1)
are treated classically. This “classical field” approach had its origins in the
theory of lasers and quantum optics. It leads to what are called stochastic
GP equations, in which an analogue of Φ(r, t) describes both the condensate
mode and low-energy excitations on an equal basis. We note that such
stochastic GP equations have a basis completely different from that of the
condensate generalized GP equation we introduce in Chapter 3. For reviews,
applications and further references to such equations, see Sinatra, Lobo and
Castin (2001); Davis, Morgan and Burnett (2001); Gardiner, Anglin and
Fudge (2002); Bradley, Blakie and Gardiner (2004); and Brewczyk, Gajda,
and Rzazewski (2007). While having advantages in certain problems, the
classical field approach has not yet been extensively implemented in the
study of collective modes in trapped Bose gases. Indeed, it is not clear how
this approach could be used to discuss the collisional hydrodynamic region.

For a comparison of various formalisms for dealing with trapped Bose-
condensed gases at finite temperatures, we refer to the proceedings of a
recent workshop on this topic2.

1.1 Historical overview of Bose superfluids

To put the coupled equations for the condensate and thermal cloud into
context, we now briefly review some features of the theory of superfluidity
in liquid 4He. In later chapters, we often make connections between the
properties of superfluid Bose gases at finite temperatures and superfluid
4He.

The original discovery of superfluidity in liquid 4He was announced in
the famous papers by Kapitza (1938) working in Moscow and by Allen and
Misener (1938) based in Cambridge. These and subsequent experiments in
the following years (for a review see Wilks, 1967) showed that, in comparison
with classical fluids, superfluid 4He could exhibit very bizarre behaviour.
The attempt to understand this behaviour led to the development of a two-
fluid theory of the hydrodynamic behaviour of liquid 4He by Landau (1941).
An earlier but less complete two-fluid theory based on a dilute Bose gas

2 Proc. Workshop on Nonequilibrium Behaviour in Superfluid Gases at Finite Temperatures,
Sandbjerg, Denmark June 10–13, 2007 ( http://www.phys.au.dk/nonequilibrium/Home.html).
See also the long tutorial review by Proukakis and Jackson (2008).
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10 Overview and introduction

was developed by Tisza in the period 1938–40. For further discussion of the
history of BEC and superfluids, see Griffin (1999a) and Balibar (2007).

In this early work, superfluidity (the term was coined in 1938 by Kapitza)
was entirely associated with the relative motion of the normal and superfluid
components under a variety of conditions (Khalatnikov, 1965; Wilks, 1967).
The main conclusion of this early research was that while the normal fluid
exhibited the finite viscosity and thermal conductivity typical of an ordinary
fluid, the superfluid component (which exhibited only irrotational flow) did
not. In more recent times, an aspect of superfluidity that has been empha-
sized as most central (for example, see Chapter 4 of Nozières and Pines,
1990; Leggett, 2001, 2006) is that the superfluid velocity is associated with
the gradient of the phase of the macroscopic wavefunction Φ(r, t). However,
an equally important property to understand is why superfluidity persists
even in the presence of a dissipative normal fluid. This question can best
be addressed by studying the local equilibrium region induced by strong
collisions, a region described by the two-fluid hydrodynamic equations.

In essence, Landau developed his generic two-fluid hydrodynamics by gen-
eralizing the standard theory of classical hydrodynamics (see, for example,
Huang, 1987) to include the equations of motion for a new “superfluid” de-
gree of freedom. We recall that classical fluid dynamics was developed well
before the existence of atoms had been demonstrated. Since the work of
Maxwell and Boltzmann in the 1880s, it has been known that a “coarse-
grained” hydrodynamic description of a fluid, in terms of just a few quan-
tities such as the local density n(r, t) and the local velocity v(r, t), is only
valid when the collisions between atoms are strong enough to produce “lo-
cal equilibrium”. As a result, hydrodynamics describes only low-frequency
phenomena, for which the fluid is in local equilibrium. This is defined by
the condition ωτ � 1, where ω is the frequency of the collective mode and
τ is the collisional relaxation time to reach local equilibrium.

The description of a fluid in terms of a few hydrodynamic local variables
was developed by Bernoulli, Euler and others in the eighteenth century.
In work which led to a microscopic basis for these hydrodynamic theories,
Boltzmann introduced the key concept of a kinetic equation to describe the
nonequilibrium behaviour of atoms in a dilute classical gas. He developed
the idea that such a gas would approach thermal equilibrium in several
distinct stages. Initially the dynamical behaviour is very complex. However,
the system eventually reaches the so-called “kinetic” stage, which can be
described by a single-particle distribution function f(p, r, t). The latter is
given by the solution of a kinetic equation, the structure of which (even
when we generalize it to deal with a Bose-condensed gas) is usefully written
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