Contents

Foreword by Andrew Fire
Foreword by Marshall Nirenberg
List of Contributors

<table>
<thead>
<tr>
<th>Section one.</th>
<th>Basic RNAi, siRNA, microRNAs and gene-silencing mechanisms</th>
</tr>
</thead>
</table>
| 1 | RNAI beginnings. Overview of the pathway in *C. elegans*
 Alla Grishok |
| 2 | Dicer in RNAI: Its roles *in vivo* and utility *in vitro*
 Jason W. Myers and James E. Ferrell, Jr. |
| 3 | Genes required for RNA interference
 Nathaniel R. Dudley, Ahmad Z. Amin, and Bob Goldstein |
| 4 | MicroRNAs: A small contribution from worms
 Amy E. Pasquinelli |
| 5 | miRNAs in the brain and the application of RNAi to neurons
 Anna M. Krichievsky, Shih-Chu Kao, Li-Huei Tsai, and Kenneth S. Kosik |

<table>
<thead>
<tr>
<th>Section two.</th>
<th>Design, synthesis of siRNAs</th>
</tr>
</thead>
</table>
| 6 | Design and synthesis of small interfering RNA (siRNA)
 Queta Boese, William S. Marshall, and Anastasia Khvorova |
| 7 | Automated design and high throughput chemical synthesis of siRNA
 Yerramilli V. B. K. Subrahmanyam and Eric Lader |
| 8 | Rational design of siRNAs with the Sfold software
 Ye Ding and Charles E. Lawrence |
| 9 | Enzymatic production of small interfering RNAs
 Muhammad Sohail and Graeme Doran |

© Cambridge University Press
www.cambridge.org
Contents

Section three. Vector development and *in vivo, in vitro* and *in ovo* delivery methods

10 **Six methods of inducing RNAi in mammalian cells**
 Kathy Latham, Vince Pallotta, Lance Ford, Mike Byrom, Mehdi Banan, Po-Tsan Ku, and David Brown
 147

11 **Viral delivery of shRNA**
 Ying Mao, Chris Mello, Laurence Lamarq, Brad Scherer, Thomas Quinn, Patty Wong, and Andrew Farmer
 161

12 **siRNA delivery by lentiviral vectors: Design and applications**
 Oded Singer, Gustavo Tiscornia, and Inder Verma
 174

13 **Liposomal delivery of siRNAs in mice**
 Mouldy Sioud and Dag R. Sørensen
 186

14 **Chemical modifications to achieve increased stability and sensitive detection of siRNA**
 Philipp Hadwiger and Hans-Peter Vornlocher
 194

15 **RNA interference in postimplantation mouse embryos**
 Frank Buchholz, Federico Calegari, Ralf Kittler, and Wieland B. Huttner
 207

16 **In ovo RNAi opens new possibilities for functional genomics in vertebrates**
 Dimitris Bourikas, Thomas Baertswyl, Rejina Sadhu, and Esther T. Stoeckli
 220

Section four. Gene silencing in model organisms

17 **Practical applications of RNAi in *C. elegans***
 Karen E. Stephens, Olivier Zugasti, Nigel J. O’Neil, and Patricia E. Kuwabara
 235

18 **Inducible RNAi as a forward genetic tool in *Trypanosoma brucei***
 Mark E. Drew, Shawn A. Motyka, James C. Morris, Zefeng Wang, and Paul T. Englund
 247

19 **RNA-mediated gene silencing in fission yeast**
 Greg M. Arndt
 257

20 **RNA silencing in filamentous fungi: *Mucor ciccinelloides* as a model organism**
 Rosa M. Ruiz-Vázquez
 270

21 **RNAi and gene silencing phenomena mediated by viral suppressors in plants**
 Ramachandran Vanitharani, Padmanabhan Chellappan, and Claude M. Fauquet
 280

Section five. Drug target validation

22 **Delivering siRNA *in vivo* for functional genomics and novel therapeutics**
 Patrick Y. Lu and Martin C. Woodle
 303

23 **The role of RNA interference in drug target validation: Application to Hepatitis C**
 Antje Ostareck-Lederer, Sandra Clauer-Münster, Rolf Thermann, Maria Polycarpou-Schwarz, Marc Gentzel, Matthias Wilms, and Joe D. Lewis
 318

24 **RNAi in the drug discovery process**
 Steven A. Haney, Peter Lapan, Jeff Aalfs, Chris Childs, Paul Yaworsky, and Chris Miller
 331
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>RNA interference technology in the discovery and validation of druggable targets</td>
<td>347</td>
</tr>
<tr>
<td>Section six</td>
<td>Therapeutic and drug development</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>RNAi-mediated silencing of viral gene expression and replication</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>Derek M. Dykxhoorn</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>RNAi in drug development: Practical considerations</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>Dmitry Samarsky, Margaret Taylor, Mark A. Kay, and Anton P. McCaffrey</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>RNA interference studies in liver failure</td>
<td>396</td>
</tr>
<tr>
<td></td>
<td>Lars Zender, Michael F. Manns, and Stefan Kubicka</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>RNAi applications in living animal systems</td>
<td>406</td>
</tr>
<tr>
<td></td>
<td>Lisa Scherer and John J. Rossi</td>
<td></td>
</tr>
<tr>
<td>Section seven</td>
<td>High-throughput genome-wide RNAi analysis</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>High-throughput RNAi by soaking in Caenorhabditis elegans</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>Asako Sugimoto</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Tools for integrative genomics: Genome-wide RNAi and expression profiling in Drosophila</td>
<td>433</td>
</tr>
<tr>
<td></td>
<td>Michael Boutros and Marc Hild</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Microarray analysis and RNA silencing to determine genes functionally important in mesothelioma</td>
<td>447</td>
</tr>
<tr>
<td></td>
<td>Maria E. Ramos-Nino and Brooke T. Mossman</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>High-throughput RNA interference</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>Howard Y. Chang, Nancy N. Wang, and Jen-Tsan Chi</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Generation of highly specific vector-based shRNA libraries directed against the entire human genome</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>Makoto Miyagishi, Sahohime Matsumoto, Takashi Futami, Hideo Akashi, Krishnaraao Appasani, Yasuomi Takagi, Shizuyo Sutou, Takashi Kadowaki, Ryozo Nagai, and Kazunari Taira</td>
<td></td>
</tr>
</tbody>
</table>

Index 497