RNA INTERFERENCE TECHNOLOGY

RNA Interference (RNAi) technology has rapidly become one of the key methods used in functional genomics. RNAi is used to block the expression of genes and create phenotypes that can potentially yield clues about the function of these genes. In the postgenomic era, the elucidation of the physiological function of genes has become the rate-limiting step in the quest to develop "gene-based drugs" and RNAi could potentially play a pivotal role in the validation of such novel drugs. In this cutting-edge overview, the basic concepts of RNAi biology are discussed, as well as the current and potential applications. Leading experts from both academia and industry have contributed to this invaluable reference for graduate students, post-docs, and researchers from academia wanting to initiate RNAi research in their own labs, as well as for those working in research and development in biotech and pharmaceutical companies who need to understand this emerging technology.

Krishnarao Appasani is the Founder and Chief Executive Officer of Gene-Expression Systems, a gene discovery company focusing on functional genomics in cancer research.
RNA Interference Technology

FROM BASIC SCIENCE TO DRUG DEVELOPMENT

Edited by

Krishnarao Appasani
GeneExpression Systems, Inc.

Forewords by

Andrew Fire
Stanford University, co-discoverer of RNAi

and

Marshall Nirenberg
National Institutes of Health
Winner of the Nobel Prize in Physiology or Medicine, 1968
In memory of my parents

For my teachers, family members

and especially my wife Shyamala and sons Raakish and Raghu
Contents

Foreword by Andrew Fire xi
Foreword by Marshall Nirenberg xiii
List of Contributors xv

Introduction 1
Krishnarao Appasani

Section one. Basic RNAi, siRNA, microRNAs and gene-silencing mechanisms

1 RNAi beginnings. Overview of the pathway in C. elegans 17
 Alla Grishok
2 Dicer in RNAi: Its roles in vivo and utility in vitro 29
 Jason W. Myers and James E. Ferrell, Jr.
3 Genes required for RNA interference 55
 Nathaniel R. Dudley, Ahmad Z. Amin, and Bob Goldstein
4 MicroRNAs: A small contribution from worms 69
 Amy E. Pasquinelli
5 miRNAs in the brain and the application of RNAi to neurons 84
 Anna M. Krichevsky, Shih-Chu Kao, Li-Huei Tsai, and Kenneth S. Kosik

Section two. Design, synthesis of siRNAs

6 Design and synthesis of small interfering RNA (siRNA) 103
 Queta Boese, William S. Marshall, and Anastasia Khvorova
7 Automated design and high throughput chemical synthesis of siRNA 118
 Yerramilli V. B. K. Subrahmanyam and Eric Lader
8 Rational design of siRNAs with the Sfold software 129
 Ye Ding and Charles E. Lawrence
9 Enzymatic production of small interfering RNAs 139
 Muhammad Sohail and Graeme Doran
Contents

Section three. Vector development and in vivo, in vitro and in ovo delivery methods

10 Six methods of inducing RNAi in mammalian cells 147
Kathy Latham, Vinse Pallotta, Lance Ford, Mike Byrom, Mehdi Banan, Po-Tsun Ku, and David Brown

11 Viral delivery of shRNA 161
Ying Mao, Chris Mello, Laurence Lamarcaq, Brad Scherer, Thomas Quinn, Patty Wong, and Andrew Farmer

12 siRNA delivery by lentiviral vectors: Design and applications 174
Oded Singer, Gustavo Tiscornia, and Inder Verma

13 Liposomal delivery of siRNAs in mice 186
Mouldy Sioud and Dag R. Sørensen

14 Chemical modifications to achieve increased stability and sensitive detection of siRNA 194
Philipp Hadwiger and Hans-Peter Vornlocher

15 RNA interference in postimplantation mouse embryos 207
Frank Buchholz, Federico Calegari, Ralf Kittler, and Wieland B. Huttner

16 In ovo RNAi opens new possibilities for functional genomics in vertebrates 220
Dimitris Bourikas, Thomas Baeriswyl, Rejina Sadhu, and Esther T. Stoeckli

Section four. Gene silencing in model organisms

17 Practical applications of RNAi in C. elegans 235
Karen E. Stephens, Olivier Zugasti, Nigel J. O’Neil, and Patricia E. Kuwabara

18 Inducible RNAi as a forward genetic tool in Trypanosoma brucei 247
Mark E. Drew, Shawn A. Motyka, James C. Morris, Zefeng Wang, and Paul T. Englund

19 RNA-mediated gene silencing in fission yeast 257
Greg M. Arndt

20 RNA silencing in filamentous fungi: Mucor circinelloides as a model organism 270
Rosa M. Ruiz-Vázque

21 RNAi and gene silencing phenomena mediated by viral suppressors in plants 280
Ramachandran Vanitharani, Padmanabhan Chellapappan, and Claude M. Fauquet

Section five. Drug target validation

22 Delivering siRNA in vivo for functional genomics and novel therapeutics 303
Patrick Y. Lu and Martin C. Woodle

23 The role of RNA interference in drug target validation: Application to Hepatitis C 318
Antje Ostareck-Lederer, Sandra Clauder-Münster, Rolf Thermann, Maria Polycarpou-Schwarz, Marc Gentzel, Matthias Wilm, and Joe D. Lewis

24 RNAi in the drug discovery process 331
Steven A. Haney, Peter Lapan, Jeff Aalfs, Chris Childs, Paul Yaworsky, and Chris Miller
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25 RNA interference technology in the discovery and validation of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>druggable targets</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>Section six. Therapeutic and drug development</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>RNAi-mediated silencing of viral gene expression and replication</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>Derek M. Dykxhoorn</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>RNAi in drug development: Practical considerations</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>Dmitry Samarsky, Margaret Taylor, Mark A. Kay, and Anton F. McCaffrey</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>RNA interference studies in liver failure</td>
<td>396</td>
</tr>
<tr>
<td></td>
<td>Lars Zender, Michael F. Manns, and Stefan Kubicka</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>RNAi applications in living animal systems</td>
<td>406</td>
</tr>
<tr>
<td></td>
<td>Lisa Scherer and John J. Rossi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section seven. High-throughput genome-wide RNAi analysis</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>High-throughput RNAi by soaking in Caenorhabtis elegans</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>Asako Sugimoto</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Tools for integrative genomics: Genome-wide RNAi and expression</td>
<td>433</td>
</tr>
<tr>
<td></td>
<td>profiling in Drosophila</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Michael Boutros and Marc Hild</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Microarray analysis and RNA silencing to determine genes</td>
<td>447</td>
</tr>
<tr>
<td></td>
<td>functionally important in mesothelioma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maria E. Ramos-Nino and Brooke T. Mossman</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>High-throughput RNA interference</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>Howard Y. Chang, Nancy N. Wang, and Jen-Tsan Chi</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Generation of highly specific vector-based shRNA libraries</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>directed against the entire human genome</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Makoto Miyagishi, Sahohime Matsumoto, Takashi Futami, Hideo Akashi, Krishnarao Appasani, Yasuomi Takagi, Shizuyo Sotou, Takashi Kadowaki, Ryozo Nagai, and Kazunari Taira</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>497</td>
</tr>
</tbody>
</table>
Foreword

Andrew Fire

It has been a privilege to watch the growth of RNA interference technology over the last ten years. Starting with a mixture of curiosity and chagrin, the field has grown into a substantial enterprise which impacts (and utilizes resources from) virtually every field of biomedical research. Research in RNAi derives from a set of apparently unconnected observations: strange pigment patterns in plants, unexpected failures and successes in antisense and overexpression studies, small regulatory RNAs in bacteria. If there is an underlying and recurring scientific lesson, it has been: “Pursue the unexpected.” Basic and applied research each advance as a consequence of this pursuit; certainly this has been no better illustrated than in the last ten years of RNAi.

The work of hundreds of researchers in different fields that is reported in this book should provide the reader with both solid information (needed for experimental design and evaluation) and a lively and hopeful scientific story (needed to keep us all going through the long haul of scientific research). Our knowledge of the realm of genetic regulation by small RNAs has grown with remarkable speed. Starting in 1981 with a single known example of a modulatory short RNA (regulating copy number of the ColE1 plasmid), small RNAs are now known to regulate genetic activity at virtually every level: DNA and chromosome structure, transcription, RNA structure and stability, translation, and protein stability. Likewise, our ability to experimentally alter cells using this system has advanced at an unprecedented rate. As recently as 1990, the known examples of experimentally-induced silencing were a few unusual and accidental plant pigmentation patterns; now there are extensive menus of silencing-based methods as part of the “standard” molecular biology toolkit.

Work in this field is by no means finished. We still don’t understand all of the modalities of RNA-triggered genetic regulation, why these modalities exist, and how they interact with each other. We don’t have a clear picture the full extent of RNA-based regulation. As these questions are further investigated and understood, and as the underlying mechanisms are understood in detail, it will become possible to carry out more and more sophisticated experimental manipulations of genetic function. More questions: How do some organisms encapsulate
RNA triggers to produce a systemic response? How are long term RNAi effects perpetuated? What is the link between RNAi and immunity? What biological effects will come from the selective or global inactivation or augmentation of the RNAi pathway? How can we best use RNAi to discover the most sensitive and critical targets for biological investigation and drug development? Can we cure diseases by specifically triggering the RNAi pathway to attack errant genes? Can we treat other diseases by up- or down-regulating components of the RNAi machinery itself in specific cell types? How will cells and organisms respond in the long term to continuous modulation or use of the RNAi machinery?

We’ll all be busy for quite a while in addressing these questions. Based on the first years of the field, one thing that can certainly be expected is a few more surprises.

Stanford, California, USA
August 2, 2004
Foreword

Marshall Nirenberg

RNA interference is a powerful tool that has been used to inhibit gene function either by increasing the destruction of mRNA corresponding to the gene, or in some cases, by inhibiting the transcription of the gene or the translation of mRNA to the corresponding protein. Exploring gene function by the classical approach of generating mutants of a gene often is much more laborious and time consuming than silencing gene function by RNAi using double-stranded RNA or double-stranded oligoribonucleotides about twenty two nucleotide residues in length. This book edited by Krishnarao Appasani is a timely and comprehensive compendium of information on RNAi and will be useful to experts on RNAi as well as investigators in many fields of research who may be interested in using RNAi to explore problems they are studying.

The RNAi field is only six years old. Research on RNAi has been expanding at an extraordinarily rapid rate, yet the field is in its infancy. There is great interest in using RNAi as a means of exploring gene function during embryonic development and in the adult in many organisms. Many aspects of RNAi remain to be explored. For example, the reactions and the molecules required for RNAi targeted destruction of mRNA are incompletely known. Similarly, the mechanisms of RNAi targeted modification of DNA, which regulates, transcription of DNA, as well as RNA targeted inhibition of mRNA translation are only partially known. Also, the functions of most micro RNA genes have not yet been explored. Since RNAi also can be used to regulate gene expression in specific cell types, the possibility that RNAi can be used therapeutically to treat diseases or certain viral infections by targeted gene silencing is an exciting, challenging possibility. However, difficult problems have to be overcome such as the problem of delivery of appropriate double-stranded oligoribonucleotides into cells, the stability, concentration, and toxicity of the oligoribonucleotides, and the length of time the oligoribonucleotides remain in the cells. These are challenging research problems. Nevertheless, the use of oligoribonucleotides as therapeutic agents to silence gene expression has great potential for the future. Libraries of small interfering RNAs (siRNAs) or short hairpin RNAs (shRNA) have been constructed and have been screened in cultured cells. In addition, methods have been devised for high
throughput screening of siRNA or shRNA libraries. RNAi has been used to inhibit replication of viruses in cultured cells such as HIV, hepatitis C virus, and hepatitis B virus. The oncogenic fusion protein p210 in chronic myelogenous leukemia cells promotes cell division in these cells. Both siRNA and a lentivirus vector containing shRNA have been shown to reduce the levels of p210 protein in cell lines and thereby inhibit cell division. In addition, RNAi has been used in intact mice to reduce the function of a mutant gene which results in the movement disorder, spinocerebellar ataxia type one. Treatment of mice by RNAi resulted in improved motor coordination and the cellular changes in the brain characteristic of the disease were no longer visible. RNAi also is being investigated as a therapy for ocular diseases.

It is too early to say how successful RNAi therapy will be. However, it is clear that RNAi is a powerful tool that has revolutionized basic research and that the ability of RNAi to down-regulate almost any gene affords remarkable opportunities to explore the use of duplex oligoribonucleotides as therapeutic agents for many diseases.

Laboratory of Biochemical Genetics
National Heart, Lung, and Blood Institute
National Institutes of Health
Bethesda, MD
Contributors

Jeff Aalfs
Wyeth Research
35 Cambridge Park Drive
Cambridge, MA 02140
USA

Hideo Akashi
Department of Chemistry and Biotechnology
School of Engineering
The University of Tokyo
Hongo, Tokyo 113-8656
Japan

Ahmad Z. Amin
Biology Department
616 Fordham Hall, CB#3280
University of North Carolina
Chapel Hill, NC 27599-3280
USA

Krishnarao Appasani, PhD., MBA
GeneExpression Systems, Inc.
P.O. Box 540170
Waltham, Massachusetts 02454-0170
USA
E-mail: DrAppasani@expressgenes.com

Greg Arndt, PhD.
Johnson & Johnson Research
Level 4, 1 Central Avenue
Eveleigh, NSW 1430
Sydney, Australia
E-mail: garndt@medau.jnj.com
Contributors

Thomas Baeriswyl
University of Zurich, Institute of Zoology
Winterthurerstrasse 190, CH-8057
Zurich, Switzerland

Mehdi Banan
Ambion, Inc.
2130 Woodward Street
Austin, Texas 78744
USA

John E. Bisi
Cellular Genomics
GlaxoSmithKline R&D
Stevenage, Herts
UK

Peter Blume-Jensen, PhD.
Department of Molecular Oncology
Serono Reproductive Biology Institute
One Technology Place
Rockland, MA 02370
USA

Queta Boese, PhD.
Dharmacon, Inc.
2650 Crescent Dr, Suite #100
Lafayette, CO 80026
USA
E-mail: boese.q@dharmacon.com

Dimitris Bourikas
University of Zurich, Institute of Zoology
Winterthurerstrasse 190, CH-8057
Zurich, Switzerland

Michael Boutros, PhD.
German Cancer Research Center (DKFZ/B110)
Im Neuenheimer Feld 580
69120 Heidelberg
Germany
E-mail: m.boutros@dkfz.de

David Brown, PhD.
Ambion, Inc.
2130 Woodward Street
Austin, Texas 78744
USA
E-mail: dbrown@ambion.com
Contributors

Frank Buchholz
Max Plank Institute of Molecular Cell Biology and Genetics
Pfotenhauer Strasse 108 Dresden
Germany
E-mail: buchholz@mpi-cbg.de

Mike Byrom
Ambion, Inc.
2130 Woodward Street
Austin, Texas 78744
USA

Federico Calegari
Max Plank Institute of Molecular Cell Biology and Genetics
Pfotenhauer Strasse 108 Dresden
Germany
E-mail: Calegari@mpi-cbg.de

Howard Y. Chang
Departments of Biochemistry and Dermatology
Stanford University School of Medicine
Stanford, CA 94305
USA

Padmanabhan Chellappan, PhD.
International Laboratory for Tropical Agricultural Biotechnology
Donald Danforth Plant Science Center
975 N. Warson Rd.
St Louis, MO 63132
USA
E-mail: iltab@danforthcenter.org

Jen-Tsan Chi
Departments of Biochemistry and Dermatology
Stanford University School of Medicine
Stanford, CA 94305
USA
E-mail: chi@pmgm2.stanford.edu

Chris Childs
Wyeth Research
35 Cambridge Park Drive
Cambridge, MA 02140
USA
Contributors

Neil J. Clarke, PhD.
Cellular Genomics
GlaxoSmithKline R&D
Stevenage, Herts
UK
E-mail: neil.j.clarke@gsk.com

Sandra Clauder-Müster
Anadys Pharmaceuticals Europe GmbH
Meyerhofstr.1
69117 Heidelberg
Germany

Caretha L. Creasy
Cellular Genomics
GlaxoSmithKline R&D
Stevenage, Herts
UK

Ye Ding, PhD.
New York State Health Department
Wadsworth Center
Division of Molecular Medicine, Room C-660
Empire State Plaza
Albany, NY 12201-0509
USA
E-mail: yding@wadsworth.org

Graeme Doran
Department of Human Anatomy and Genetics
South Parks Road
University of Oxford
Oxford OX1 3QU
UK
E-mail: graeme.doran@st-edmund-hall.oxford.ac.uk

Mark E. Drew, PhD.
Dept. of Mol. Microbiology, Rm. 9210
Washington University School of Medicine
Box 8230, 4940 Parkview Place
St. Louis, MO 63110
USA
E-mail: drew@borcim.wustl.edu
Contributors

Nathaniel R. Dudley, PhD.
Biology Department
616 Fordham Hall, CB#3280
University of North Carolina
Chapel Hill, NC 27599-3280
USA
E-mail: ndudley@unc.edu

Michael K. Dush, PhD.
Cellular Genomics
GlaxoSmithKline R&D
Stevenage, Herts
UK

Derek M. Dykxhoorn, PhD.
The Center for Blood Research
Harvard Medical School
800 Huntington Ave
Boston, MA 02151
USA
E-mail: dykxhoor@cbr.med.harvard.edu

Mark R. Edbrooke, PhD.
Cellular Genomics
GlaxoSmithKline R&D
Stevenage, Herts
UK
E-mail: mark.r.edbrooke@gsk.com

Paul T. Englund, PhD.
Department of Biological Chemistry
Johns Hopkins Medical School
725 N. Wolfe St.
Baltimore, MD 21205
USA
E-mail: penglund@jhmi.edu

Andrew Farmer, D.Phil.
BD Biosciences Clontech
1020 East Meadow Circle
Palo Alto, CA 94303
USA
E-mail: Andrew_Farmer@bd.com; aafarmer@clontech.com
Contributors

Claude M. Fauquet, PhD.
International Laboratory for Tropical Agricultural Biotechnology
Donald Danforth Plant Science Center
975 N. Warson Rd.
St Louis, MO 63132
USA
E-mail: iltab@danforthcenter.org

James E. Ferrell, Jr., PhD.
Department of Molecular Pharmacology
Stanford University School of Medicine
269 Campus Drive, CCSR Rm 3160
Stanford, CA 94305-5174
USA

Andrew Fire, PhD.
Departments of Pathology and Genetics
Stanford University School of Medicine
300 Pasteur Drive, Room L235
Stanford, CA 94305-5324
USA
E-mail: afire@stanford.edu

Kris J. Fisher
Cellular Genomics
GlaxoSmithKline R&D
Stevenage, Herts
UK

Lance Ford, PhD.
Ambion, Inc.
2130 Woodward Street
Austin, Texas 78744
USA

Takashi Futami
Department of Chemistry and Biotechnology
School of Engineering
The University of Tokyo
Hongo, Tokyo 113-8656
Japan

Marc Gentzel
European Molecular Biology Organization
Meyerhofstr.1
69117 Heidelberg
Germany
Contributors

Bob Goldstein, PhD.
Biology Department
616 Fordham Hall, CB#3280
University of North Carolina
Chapel Hill, NC 27599-3280
USA
E-mail: bobg@unc.edu

Alla Grishok, PhD.
Center for Cancer Research
Massachusetts Institute of Technology
40 Ames Street
Cambridge, MA
USA
E-mail: agrishok@mit.edu

Philipp Hadwiger
Research and Development
Alnylam Europe AG
Fritz-Hornschuch-Strasse 9
95326 Kulmbach
Germany
E-mail: phadwiger@alnylam.de; hpvornlocher@alnylam.de

Steven A. Haney
Wyeth Research
35 Cambridge Park Drive
Cambridge, MA 02140
USA
E-mail: shaney@wyeth.com

Marc Hild, PhD.
Novartis Institute for Biomedical Research
100 Technology Square
Cambridge, MA 02139
USA

Wieland B. Huttner
Max Planck Institute of Molecular Cell Biology and Genetics
Pfotenhauer Strasse 108 Dresden
Germany
E-mail: huttner@mpi-cbg.de

John M. Johnson III
Cellular Genomics
GlaxoSmithKline R&D
Stevenage, Herts
UK
Contributors

Takashi Kadowaki
Department of Internal Medicine
Graduate School of Medicine
The University of Tokyo
Hongo, Tokyo 113-8655
Japan

Shih-Chu Kao
Department of Neurology and Center for Neurologic Diseases
Brigham and Women’s Hospital
Harvard Medical School
4 Blackfan Circle, HIM 760
Boston, MA 02115
USA

Mark A. Kay, MD., PhD.
Stanford University School of Medicine
Departments of Pediatrics and Genetics
Program in Human Gene Therapy
Stanford, CA 94305
USA

Anastasia Khvorova, PhD.
Dharmacon, Inc.
2650 Crescent Dr, Suite #100
Lafayette, CO 80026
USA
E-mail: khvorova.a@dharmacon.com

Ralf Kittler
Max Plank Institute of Molecular Cell Biology and Genetics
Pfotenhauer Strasse 108 Dresden
Germany

Kenneth S. Kosik, MD.
Department of Neurology and Center for Neurologic Diseases
Brigham and Women’s Hospital
Harvard Medical School
4 Blackfan Circle, HIM 760
Boston, MA 02115
USA
Contributors

Anna M. Krichevsky, PhD.
Department of Neurology and Center for Neurologic Diseases
Brigham and Women's Hospital
Harvard Medical School
4 Blackfan Circle, HIM 760
Boston, MA 02115
USA
E-mail: krichevsky@cnd.bwh.harvard.edu; akrichevsky@rics.bwh.harvard.edu

Po-Tsan Ku
Ambion, Inc.
2130 Woodward Street
Austin, Texas 78744
USA

Stefan Kubicka, M.D.
Department of Gastroenterology
Medical School of Hannover
Carl-Neuberg-Str. 1
30623 Hannover
Germany
E-mail: kubicka.Stefan@mh-hannover.de

Patricia E. Kuwabara, PhD.
Department of Biochemistry
University of Bristol
The School of Medical Sciences
University Walk, Bristol BS8 1TD
UK
E-mail: p.kuwabara@bristol.ac.uk

Eric Lader, PhD.
QIAGEN, Inc.
19300 Germantown Rd
Germantown, MD 20874
USA
E-mail: E.lader@qiagensciences.com

Laurence Lamarcq
BD Biosciences Clontech
1020 East Meadow Circle
Palo Alto, CA 94303
USA
Contributors

Peter Lapan
Wyeth Research
35 Cambridge Park Drive
Cambridge, MA 02140
USA

Robert Larsen
BD Biosciences Clontech
1020 East Meadow Circle
Palo Alto, CA 94303
USA

Kathy Latham, PhD.
Ambion, Inc.
2130 Woodward Street
Austin, Texas 78744
USA

Charles E. Lawrence, PhD.
New York State Health Department
Wodsworth Center
Division of Molecular Medicine, Room C-660
Empire State Plaza
Albany, NY 12201-0509
USA

Joe D. Lewis
Anadys Pharmaceuticals Europe GmbH
Meyerhofstr.1
69117 Heidelberg
Germany

Patrick Y. Lu, Ph.D.
Intradigm Corporation
Rockville, Maryland
USA
E-mail: patricklu@intradigm.com

Michael P. Manns, M.D.
Department of Gastroenterology
Medical School of Hannover
Carl-Neuberg-Str. 1
30623 Hannover
Germany
E-mail: manns.michael@mh-hannover.de
Contributors

Ying Mao
BD Biosciences Clontech
1020 East Meadow Circle
Palo Alto, CA 94303
USA

William S. Marshall, PhD.
Dharmacon, Inc.,
2650 Crescent Dr, Suite #100
Lafayette, CO 80026
USA
E-mail: Marshall.b@dharmacon.com

Sahohime Matsumoto
Department of Chemistry and Biotechnology
School of Engineering
The University of Tokyo
Hongo, Tokyo 113-8656
Japan
and
Gene Function Research Center
National Institute of Advanced Industrial Science and Technology (AIST)
Central 4, 1-1-1 Higashi
Tsukuba Science City 305-8562
Japan
and
Department of Internal Medicine
Graduate School of Medicine
The University of Tokyo
Hongo, Tokyo 113-8655
Japan

Anton P. McCaffrey, PhD.
Stanford University School of Medicine
Departments of Pediatrics and Genetics
Program in Human Gene Therapy
Stanford, CA 94305
USA
E-mail: anton-mccaffrey@uiowa.edu

Chris Mello
BD Biosciences Clontech
1020 East Meadow Circle
Palo Alto, CA 94303
USA
xxvi Contributors

Chris Miller
Wyeth Research
35 Cambridge Park Drive
Cambridge, MA 02140
USA

Makoto Miyagishi
Department of Chemistry and Biotechnology
School of Engineering
The University of Tokyo
Hongo, Tokyo 113-8656
Japan
and
Gene Function Research Center
National Institute of Advanced Industrial Science and Technology (AIST)
Central 4, 1-1-1 Higashi
Tsukuba Science City 305-8562
Japan

James C. Morris
Department of Genetics, Biochemistry and Life Science Studies
Clemson University
Clemson, SC 29634
USA

Brooke T. Mossman, MD.
Environmental Pathology Program, Department of Pathology
University of Vermont, College of Medicine
89 Beaumont Ave. HSRF 218
Burlington, VT 05405
USA
E-mail: brooke.mossman@uvm.edu

Shawn A. Motyka
Department of Biological Chemistry
Johns Hopkins Medical School
725 N. Wolfe St.
Baltimore, MD 21205
USA
E-mail: smotyka@jhmi.edu

Jason W. Myers, PhD.
Department of Molecular Pharmacology
Stanford University School of Medicine
269 Campus Drive, CCSR Rm 3160
Stanford, CA 94305-5174
USA
E-mail: jmyers@stanford.edu
Contributors

Ryozo Nagai
Department of Internal Medicine
Graduate School of Medicine
The University of Tokyo
Hongo, Tokyo 113-8655
Japan

Nigel J. O’Neil
The Wellcome Trust Sanger Institute
Hinxton, Cambridge CB10 1SA
UK
E-mail: njo@sanger.ac.uk

Antje Ostareck-Lederer
Anadys Pharmaceuticals Europe GmbH
Meyerhofstr.1
69117 Heidelberg
Germany
E-mail: aostareck@biochemtech.uni-halle.de

Vince Pallotta
Ambion, Inc.
2130 Woodward Street
Austin, Texas 78744
USA

Amy E. Pasquinelli, Ph.D.
Molecular Biology Section
Division of Biology 0368
Bonner Hall, Room 2214
9500 Gilman Drive
University of California, San Diego
La Jolla, CA 92093-0368
USA
E-mail: apasquin@biomail.ucsd.edu

Maria Polycarpou-Schwarz
Anadys Pharmaceuticals Europe GmbH
Meyerhofstr.1
69117 Heidelberg
Germany

Thomas Quinn
BD Biosciences Clontech
1020 East Meadow Circle
Palo Alto, CA 94303
USA
Contributors

Maria E. Ramos-Nino, PhD.
Environmental Pathology Program
Department of Pathology
University of Vermont, College of Medicine
89 Beaumont Ave. HSRF 218
Burlington, VT 05405
UK
E-mail: mramos@zoo.uvm.edu

Christopher J. A. Ring
Cellular Genomics
GlaxoSmithKline R&D
Stevenage, Herts
UK

John J. Rossi, PhD.
Division of Molecular Biology, Graduate School of Biological Sciences
Beckman Research Institute of the City of Hope
City of Hope, Duarte, CA 91010
USA
E-mail: jrossi@bricoh.edu

Rosa M. Ruiz-Vázque, PhD.
Department of Genetics and Microbiology
Faculty of Biology
University of Murcia
Campus de Espinardo
30071 Murcia
Spain
E-mail: rmruiz@um.es

Rejina Sadhu
University of Zurich, Institute of Zoology
Winterthurerstrasse 190, CH-8057
Zurich
Switzerland

Dmitry Samarsky, PhD.
Invitrogen Corporation
14 Tech Circle
Natick, MA 01760
USA
E-mail: dsamarsky@oligo.com

Brad Scherer, PhD.
BD Biosciences Clontech
1020 East Meadow Circle
Palo Alto, CA 94303
USA
Contributors

Lisa Scherer, PhD.
Division of Molecular Biology, Graduate School of Biological Sciences
Beckman Research Institute of the City of Hope
City of Hope, Duarte, CA 91010
USA

Oded Singer, PhD.
Laboratory of Genetics
The Salk Institute
10010 North Torrey Pines Road
La Jolla, CA 92037
USA
E-mail: singer@salk.edu

Mouldy Sioud, DEA Pharm, PhD.
Department of Immunology, Molecular Medicine Group
The Norwegian Radium Hospital
Montebello, 0310
Norway
E-mail: mouldy.sioud@biotek.uio.no

Muhammad Sohail, D. Phil.
MRC Research Associate
University of Oxford,
Department of Biochemistry
South Parks Road, Oxford OX1 3QU
UK
E-mail: muhammad.sohail@bioch.ox.ac.uk

Dag R. Sørensen, PhD.
Department of Immunology, Molecular Medicine Group
The Norwegian Radium Hospital
Montebello, 0310
Norway

Karen E. Stephens
The Wellcome Trust Sanger Institute
Hinxton, Cambridge CB10 1SA
UK
E-mail: kes@sanger.ac.uk

Esther T. Stoeckli
University of Zurich, Institute of Zoology
Winterthurerstrasse 190, CH-8057
Zurich
Switzerland
E-mail: esther.stoeckli@zool.unizh.ch
Contributors

Yerramilli V. B. K. Subrahmanyam, PhD.
QIAGEN, Inc.
19300 Germantown Rd
Germantown, MD 20874
USA
E-mail: subu.yerramilli@qiagen.com

Asako Sugimoto, Ph.D.
Laboratory Head
Laboratory for Developmental Genomics
RIKEN Center for Developmental Biology
2-2-3 Minatojima-minamimachi, Chuo-ku
Kobe 650-0047
Japan
E-mail: sugimoto@cdb.riken.go.jp

Shizuyou Sutou
iGENE Therapeutics, Inc.
c/o AIST
Central 4, 1-1-1 Higashi
Tsukuba Science City 305-8562
Japan

Kazunari Taira, PhD.
Department of Chemistry and Biotechnology
School of Engineering, The University of Tokyo
Hongo, Tokyo 113-8656
Japan
E-mail: taira@chembio.t.u-tokyo.ac.jp
and
Gene Function Research Center
National Institute of Advanced Industrial Science and Technology (AIST)
Central 4, 1-1-1 Higashi
Tsukuba Science City 305-8562
Japan

Yasuomi Takagi
iGENE Therapeutics, Inc.
c/o AIST
Central 4, 1-1-1 Higashi
Tsukuba Science City 305-8562
Japan
Contributors

Marcia Tan
BD Biosciences Clontech
1020 East Meadow Circle
Palo Alto, CA 94303
USA

Margaret Taylor, PhD.
Invitrogen Corporation
14 Tech Circle
Natick, MA 01760
USA

Rolf Thermann
Department of Biochemistry and Biotechnology
Institute of Biochemistry
Martin-Luther-University
Kurt-Mothes-Str. 5, 06120 Halle (Saale)
Germany
and
Anadys Pharmaceuticals Europe GmbH
and
European Molecular Biology Organization
Meyerhofstr. 1, 69117 Heidelberg
Germany
E-mail: sworland@anadyspharma.com

Gustavo Tiscornia, PhD.
Laboratory of Genetics
The Salk Institute
10010 North Torrey Pines Road
La Jolla, CA 92037
USA
E-mail: coyne@salk.edu

Li-Huei Tsai
Department of Neurology and Center for Neurologic Diseases
Brigham and Women's Hospital
Harvard Medical School
4 Blackfan Circle, HIM 760
Boston, MA 02115
USA
Contributors

Ramachandran Vanitharani, PhD.
International Laboratory for Tropical Agricultural Biotechnology
Donald Danforth Plant Science Center
975 N. Warson Rd.
St Louis, MO 63132
USA
E-mail: iltab@danforthcenter.org; VRamachandran@danforthcenter.org

Inder M. Verma, PhD.
Laboratory of Genetics
The Salk Institute
10010 North Torrey Pines Road
La Jolla, CA 92037
USA
E-mail: Verma@salk.edu

Hans-Peter Vornlocher
Research and Development
Alnylam Europe AG
Fritz-Hornschuch-Strasse 9
95326 Kulmbach
Germany
E-mail: hpvornlocher@alnylam.de

Nancy N. Wang
Departments of Biochemistry and Dermatology
Stanford University School of Medicine
Stanford, CA 94305
USA

Zefeng Wang
Dept. of Mol. Microbiology, Rm. 9210
Washington University School of Medicine
Box 8230, 4940 Parkview Place
St. Louis, MO 63110
USA
and
Department of Biological Chemistry
Johns Hopkins Medical School
725 N. Wolfe St.
Baltimore, MD 21205
USA

Matthias Wilm
European Molecular Biology Organization
Meyerhofstr.1
69117 Heidelberg
Germany
Contributors

Patty Wong
BD Biosciences Clontech
1020 East Meadow Circle
Palo Alto, CA 94303 USA

Martin C. Woodle, Ph.D.
Intradigm Corporation
Rockville, Maryland
USA
E-mail: mwoodle@intradigm.com

Paul Yaworsky
Wyeth Research,
35 Cambridge Park Drive
Cambridge, MA 02140, USA

Lars Zender, M.D.
Department of Gastroenterology
Medical School of Hannover
Carl-Neuberg-Str. 1
30623 Hannover
Germany
E-mail: Zender.Lars@mh-hannover.de

Olivier Zugasti
The Wellcome Trust Sanger Institute
Hinxton, Cambridge CB10, 1SA
UK
E-mail: omz@sanger.ac.uk