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22.7 Tiling the Poincaré disc with hyperbolic squares 499
22.8 Heptagon tilings 507
22.9 The upper half-plane representation 510
Exercises 512

23 Physics in three and four dimensions I 513
Introduction 513
23.1 Minkowski space and the celestial sphere 514
23.2 Stereographic projection revisited 515
23.3 Projective coordinates 515
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Preface

Why this book?

Since 1985, I have been fortunate to have taught the theory of complex variables
for several courses in both the USA and the UK. In the USA I lectured a course
on advanced calculus for engineers and scientists at MIT, and in the UK I have
given tutorials on the subject to undergraduate students in mathematics at both
Cambridge and Oxford. Indeed, draft versions of this text have been inflicted on
my students at Balliol and, more recently, at St. Catherine’s over the last fourteen
years. Few topics have given me such pleasure to teach, given the rich yet highly
accessible structure of the subject, and it has at times formed the subject of
my research, notably in its development into twistor theory, and latterly in its
applications to financial mathematics. A parallel thread of my work has been
in the applications of computer algebra and calculus systems, and in particular
Mathematica R©, to diverse topics in applied mathematics. This book is in part
an attempt to use Mathematica to illuminate the topic of complex analysis, and
draws on both these threads of my experience.

The book attempts also to inject some new mathematical themes into the topic
and the teaching of it. These themes I feel are, if not actually missing, under-
emphasized in most traditional treatments. It is perfectly possible for students
to have had a formal training in mathematics that leaves them unaware of many
key and/or beautiful topics. If we take the beginning of the historical time-line
to supply our first example, many students will not be aware of how to solve a
cubic equation, despite this procedure being one of the key early developments
in this field. Having invented complex numbers to cope with a general quadratic,
early algebraists found that the cubic could also be solved. This is of paramount
importance, not just for the elegance of the solution, but also because it is the first
indication that the fundamental theorem of algebra might be a possible theorem!
If we take a more recent example, those students that do consider the applications
to basic physics will almost always emerge with the entirely mistaken notion that
complex variable methods are limited to a few very special problems in two-
dimensional electrostatics or fluid dynamics. Similarly, the Möbius transform will
often be presented only as a neat trick for mapping shapes around the complex
plane, and its profound links to relativistic physics, via its equivalence to the
Lorentz transformation, are ignored.
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xvi Preface

So in addition to providing illuminations and visualizations with Mathematica,
I have tried to put back and indeed add some of the topics that I feel students
ought to know. In particular, and unusually for a text targeted at undergraduate
mathematicians or graduate students in other disciplines, this book includes a
friendly introduction to the theory of spinors and twistors, thereby unlocking the
applications of complex functions to problems in three and four dimensions.

But you do not have to accept this particular set of views to make good use
of this book. It is perfectly possible to use this text to teach a standard course
in complex analysis, ignore my idiosyncratic additions, and take the Mathematica
elements as purely an embedded tool that has been used to generate some of the
pictures!

Mathematica makes its appearance in many different ways. In several chapters
it is there purely to provide, literally, illustrations. In some places it is used as
a checking tool, for example when calculating residues and integrals. In other
chapters it is fundamental, and indeed in Part II, it is the centre of a set of
investigations into the solving of equations by iteration. In places its rich library
of special functions, the ability to evaluate them over the complex plane, to do
calculus with them, come to the fore. It is particularly valuable when applied
to topics in conformal mapping. Finally, Mathematica’s wonderful graphics are
universally useful.

How this text is organized

It is best to think of the material of this book as being grouped informally into
five parts. These are as follows:

Part I Basic complex number theory and history

Attention will be focused on three topics, each of which constitutes one chapter:

• Chapter 1: Why you need complex numbers;

• Chapter 2: Complex algebra and geometry;

• Chapter 3: Cubics, quartics and visualization of complex roots.

The idea of this part of the book is to explain how and why complex numbers
were introduced, and then to go on to discuss elementary properties of the complex
number system. This material is at a level normally to be found in final year high
school programs or introductory college level. Chapter 3 should be regarded as
optional, but is highly recommended for any students with an interest in the
history of the subject. It covers the treatment of cubics and quartics, which is
not usually taught in modern courses, and also includes some material on the
visualization of roots of polynomials.
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Preface xvii

Part II Iterated mappings

Part I showed how to define complex numbers and how to use them to solve low-
order polynomial equations. The methods used to treat the quadratic, cubic and
quartic equations are the classical techniques that have been known for some time
– many hundreds of years in some cases.

Now that computer systems are available, you can explore, either through
this text, or directly yourselves through the use of these Mathematica notebooks,
the rich structure that is obtained by the application of iterative equation-solving
techniques to these same simple polynomial systems. This idea originates with
A. Cayley in the 19th century, who although able to understand quickly the com-
plex structure of Newton–Raphson methods when applied to a quadratic, was
frustrated by the corresponding problem with a cubic. In getting to grips with
Cayley’s problem, we shall quickly encounter some of the most beautiful objects
in modern mathematics – chaotic systems and fractals.

This part of the text consists of material that is not part of a traditional course
on complex analysis. It may be skipped by those using this text to pursue such
a traditional route, who should proceed to Part III. Part III does not rely on any
of the material in Part II.

In Part II, all of the systems that you will see can be regarded as special cases
of the general first-order iterated map:

zn+1 = f(zn)

You will be able to explore how this works for various choices of the function f .
One way or other, f is to be associated with the solution of a low-order polynomial
equation. The association of the iterated map with the polynomial equation can
take place in several ways, and two will be considered here.

The first approach will involve polynomial (or even transcendental) equations
of the form

g(z) = 0

and you will explore the Newton–Raphson iteration scheme given by the choice

f(z) = z − g(z)
g′(z)

The second scheme will involve a polynomial equation that is already written (for
example, by simply isolating the linear term, if there is one) in the form

z = f(z)

and you will explore the ‘cobwebbing’ solution scheme based on iteration of this
representation.

Attention will be focused on four topics, each of which constitutes one chapter.
Of these four topics, the first is specifically Newton–Raphson. The next two may
be regarded as being associated with the cobwebbing method. The fourth topic
is a complex extension of the cobwebbing method with symmetry. In order of
presentation, the topics are:
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xviii Preface

• Chapter 4: Newton–Raphson iteration and complex fractals;

• Chapter 5: A complex view of the real logistic map;

• Chapter 6: The Mandelbrot set;

• Chapter 7: Symmetric chaos in the complex plane.

In Chapter 4 the solution of a low-order polynomial equation will be reconsidered
in the complex plane using Newton–Raphson iteration, as part of an investigation
of Cayley’s problem (Cayley, 1879). This is a standard technique for solving
real non-linear equations – our purpose here is to explore what happens when
Newton–Raphson is applied in the complex plane, and to use the computer to
understand why Cayley was defeated by the cubic!

In this part of the text we will engage occasionally engage in ‘fashionable
number crunching’, as chaos theory was once famously described. The desire
to produce some spectacular pictures is never far from one’s mind. But not all
mathematics has to be useful, and the uncovering of beauty is a worthwhile goal
in itself. So in this part of the book I shall indulge shamelessly in some fash-
ionable number crunching - this is sometimes referred to somewhat pompously
as ‘experimental mathematics’. But good experiments should be designed to test
some theory about what should happen, and we can use complex numbers, to
some extent, to provide a framework for first formulating a hypothesis regarding
what may happen in a simple real non-linear system.

The logistic map, as developed by May (1976), is the place where this experi-
mentation will commence for real, with Chapter 5. This is usually regarded as a
real mapping, so what is it doing here? The point is that we shall not just indulge
in computation, but shall attempt to predict, through the machinery of complex
numbers, what should happen in a certain experiment. It will turn out that the
period-doubling behaviour of the logistic map is in fact a simple and predictable
result that requires nothing more than ‘end of high school’ mathematics. The
experimentation will serve to confirm our hypotheses about it. What is surprising
and fascinating is the transition to chaos that follows, and there are indeed many
properties of the logistic map that are still not properly understood.

It is admittedly very hard to extend this approach to more complicated non-
linear systems, so we shall then rely more substantially on numerical experiments
for our other chapters. In Chapter 6 we shall extend the cobwebbing concept
to the complex plane using the simple quadratic (Mandelbrot) map. Finally, in
Chapter 7, we shall revisit the logistic map again, constructing complex versions of
it possessing various types of symmetry, leading to the recently developed concepts
of symmetric chaos. This leads to some stunning imagery, discovered by Field and
Golubitsky. Their text (Field and Golubitsky, 1992) is one of the most beautiful
books I have ever seen. Here we will see how some of their work can be readily
investigated using Mathematica.
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Preface xix

Part III Traditional complex analysis

By the beginning of Part III you will have seen how to define complex numbers and
how to use them to solve simple polynomial equations by both classical solution
methods (and by modern iterative techniques if you have worked through Part II).
In Part III you begin the study of complex functions from a formal point of view.
Your goal is to understand the calculus of complex functions – differentiation,
integration, series (just as in the real case) – and the very special results that
apply to complex differentiable functions, in manifest distinction to the real case.
The plan of this part of the text is as follows:

• Chapter 8: Complex functions;

• Chapter 9: Sequences, series and power series;

• Chapter 10: Complex differentiation;

• Chapter 11: Paths and complex integration;

• Chapter 12: Cauchy’s theorem;

• Chapter 13: Cauchy’s integral formula and its remarkable consequences;

• Chapter 14: Laurent series, zeroes, singularities and residues;

• Chapter 15: Residue calculus: integration, summation and the argument
principle.

There are various ways of presenting and ordering this material, and it is worth
explaining the particular approach taken here. Our approach is to give a first
introduction to standard functions in Chapter 8, by extension of their definitions
for real variables. Next, in Chapter 9, we assume some basic results from real
analysis related to sequences and series. A summary of results about sequences
and series are presented without formal proof. Students of pure mathematics
should consult a good calculus or basic real analysis text for background on this
(a comprehensive text is the book by Rudin, 1976). Then we define power series
for complex functions, and establish their convergence within a circle of conver-
gence. Then, in Chapter 10, differentiability is introduced. The approach to
complex differentiability is based on the notion of a local linear approximation to
a function – equivalent to the notion that there is a tangent to a complex curve.
The definition quite frequently given, based on the quotient formula, is given as
an aside. There are several very good reasons for this approach. First, the quo-
tient formula for the derivative does not work for functions of two or more real or
complex variables, so if we were to take this approach we could not sensibly relate
complex differentiation to differentiation of functions of two real variables, nor
can we make a generalization to functions of several complex (or real) variables
without starting again with the linear approximation approach. I think it is better
to do it properly in the first place. Second, the standard properties of derivatives
such as the product, ratio and chain rules are really easy to write down within the
linear approximation framework. Once differentiability has been defined, the dif-
ferentiability of a power series within the circle of convergence is then established
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xx Preface

immediately. We then redefine our standard basic functions in terms of power
series – their differentiability properties are then obvious.

Chapter 10 also includes a discussion of the theorem that the author has ten-
tatively called the ‘Ahlfors-Struble’ theorem. This is the means by which one can
recover a holomorphic function from its real part alone (or from just the imaginary
part) by a purely algebraic method. This idea seems to have been rediscovered
several times over the years. It is a very powerful technique when linked to the
symbolic power of Mathematica and I have also given a discussion of the history,
to justify crediting the result to Ahlfors and Struble, in Section 10.10.

Next, in Chapter 11, paths and integrals along paths are defined. Chapter
12 introduces the key theorem of this section – Cauchy’s theorem – that certain
integrals vanish identically. This is the key to the magic that follows, and a
standard approach to the consequences of Cauchy’s theorem is given in Chapters
13–15, culminating in the evaluation of certain integrals and series by the calculus
of residues. Some of the material here can be augmented by other texts and I would
recommend Rudin (1976), particularly as it also proceeds in a manner that makes
the multi-variable case straightforward. I also suggest that geometrically-minded
students look at Needham’s (1997) beautiful book, Visual Complex Analysis.

Part IV Standard applications

In this part of the book you explore the basic applications of the material. Most
first courses in complex variable theory include at least some of these topics,
though the transform material may also find its way into other applied mathe-
matics courses, and the basic applications to two-dimensional physics could also
be useful in courses on potential theory and/or fluid dynamics. This part begins
with basic conformal mapping – more advanced conformal maps are revisited in
Chapter 21. Similarly, numerical issues with transforms are deferred to Chapter
20. You should note that Chapters 17–18 also discuss more advanced topics in
contour integration, including the development and application of Jordan’s lemma
for semicircles. The plan of this part of the book is as follows:

• Chapter 16: Conformal mapping I: simple mappings and Möbius transforms;

• Chapter 17: Fourier transforms;

• Chapter 18: Laplace transforms;

• Chapter 19: Elementary applications to two-dimensional physics.

The novel features in this part of the book include the use of Mathematica to visu-
alize conformal maps and their applications to potential flow. The generalization
of the convolution theorem for Laplace transforms due to Efros is also presented,
and the discussion of fluid dynamics includes a discussion of viscous flow and the
biharmonic equation in complex form.
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Preface xxi

Part V Advanced applications

In this part of the book you may explore material that is not so frequently pre-
sented in introductory complex variable texts. There are five topics:

• Chapter 20: Numerical transform techniques;

• Chapter 21: Conformal mapping II: the Schwarz–Christoffel transformation;

• Chapter 22: Tiling the Euclidean and hyperbolic planes;

• Chapter 23: Physics in three and four dimensions I;

• Chapter 24: Physics in three and four dimensions II;.

The first three of these chapters have been added because the integration of
the presentation with Mathematica allows a full treatment of some issues that
require a combination of numerical/advanced analytical and graphical methods
on a computer. With a computer one can explore the numerical treatment of
transforms, the beautiful applications of the Schwarz–Christoffel transformation,
and produce stunning hyperbolic tilings! Finally, in the last two chapters, you
can see how complex numbers are very useful for doing physics and geometry
in more than two dimensions. For example, you will discover that the Möbius
transformation is not just a dry device for mapping circles and lines, but is really
the mapping at the heart of Einstein’s theory of special relativity. You will discover
how complex numbers may be used to solve non-linear partial differential equations
such as arise for the shape of a soap bubble, in a formalism – Penrose’s theory
of twistors – that links the nineteenth century work of Weierstrass to modern
minimal surface and string theory. In the last chapter you will see at last the true
power of holomorphic functions in solving the 3-D Laplace equation and the wave
equation in four dimensions, again through Penrose’s theory of twistors.

Some suggestions on how to use this text

In the end this is up to you, the reader, whether you are student or teacher. But
in writing this material I have had several possible course threads in my mind.
Let’s look at a few possibilities.

A basic computer-enhanced course on complex numbers and
solving equations

This might consist of Chapters 1–7. The unifying theme is the solution of equa-
tions. In the first few chapters the emphasis is on solving polynomial equations by
traditional attempts at factorization, whereas in Chapters 4–7 we look at iterative
methods of solution and the consequences.
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xxii Preface

A traditional mathematics course on complex analysis

As a minimum this would consist of Chapters 8–15, with parts of Chapters 1–3 for
less well prepared students, and some portions of Chapters 16–19, 21–22 depending
on the scope of the presentation.

For physics and engineering

Students taking a serious mathematics component could use Chapters 8–15 to-
gether with material from 16–19 and 23–24.

For a numerical programme

Students studying numerical methods could draw on material from Chapters 4–6,
with 7 for fun, a review of 17–18 and then 20–21.

Material for specific courses in physics and engineering

It is hopefully evident that some topics may be useful for parts of other pro-
grammes. Obvious cases include courses on potential theory, whether in electro-
statics, gravity or fluids, which frequently dip into complex variable theory. This
material is available here, notably in Chapter 19, but it is to be hoped that those
who dip into Chapter 19 also take a good look at Chapters 23 and 24!

Motivational mathematics

Many of the topics developed here could also be used as motivational material,
perhaps for students not taking specialist mathematics, physics or engineering
programs, but on more general courses. In my view, having an appreciation of
the beauty, indeed the art, of mathematics is a vital component of an advanced
education. The material in Part II could be extensively drawn on for such a
program, in addition to snippets from other chapters.

Playing

Everybody should play! You can have fun just trying out the Mathematica imple-
mentations in many of the chapters. You can have even more fun by coming up
with better ways of doing things than the author has done here and letting the
author know.

About the enclosed CD

The enclosed CD contains three directories, entitled ‘Notebooks’, ‘MathLink’ and
‘Goodies’.
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Preface xxiii

The Notebooks directory contains electronic copies of all the chapters of the
text, in the form of Mathematica notebooks. These have been finalized in Mathe-
matica 5.1 and therefore should open directly in V5.1 or later. If you are using an
earlier version you will get a warning that you can ignore and open the file anyway.
If you are using version 4.x or even 3.x you may find that some things do not quite
work as in the text. The results from Integrate have now stabilized but differed
in earlier versions, so you should watch out for that, particularly in the sections
where you check a contour integral or work out a Schwarz–Christoffel map. There
are other minor stylistic issues, such as Conjugate appearing in output form as
the whole word ‘Conjugate’ in older versions, whereas now the output form is a
simple star!

The MathLink directory contains MathLink code in the form of (a) source for
any system, (b) binaries for some systems. The source consists of .tm files and
.c files. A lack of resources prevents me from making immediately useful binaries
for every operating system.

The Goodies directory contains encrypted information pertinent to Mathe-
matica technologies beyond version 5.2 that will be made available once such
technology is officially released. See below for more details on this. First I need
to remark on kernel compatibility issues in general.

The author is unable to offer support on the code or MathLink issues. But I do
wish to receive bug reports on kernel operation. This code started off as working
in Mathematica 2.2, and has been updated for compatibility with 3.x, 4.x, 5.x. As
Mathematica has been updated it has become increasingly difficult to retain total
compatibility with older versions, as noted above. The evolution of the software
has in fact resulted in better code for this book, as I have been driven to write
code that relies less on a trick that might work in one version, and more towards
code that uses the fundamental principles of Mathematica .

Please let me know if you find anything that does NOT work under versions
5.1 or 5.2. You are strongly encouraged to use version 5.x or later, until a new
version is released. I have made an effort to explain where there is a significant
different between the way this book works between major versions. As for Math-
ematica technologies beyond Version 5.2, I cannot comment on any of the details
of unreleased software, but you should see the author’s web site at King’s College
London:

www.mth.kcl.ac.uk/staff/w_shaw.html

and the CUP website for the book at

www.cambridge.org/0521836263

for updates when a new version is released, including a key to unlock the encrypted
material in the ‘Goodies’ section of the CD. If you are using a Mathematica tech-
nology beyond version 5.2, please do not send me bug reports until you have first
checked the CD and then the on-line information, as the author will do his best
to ensure that the book as distributed together with the CD is future-proof.
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xxiv Preface

Exercises and solutions

Each chapter ends with a collection of exercises. These consist of some requiring
traditional thought and pen and paper analysis, others where you can addition-
ally check the results with Mathematica and others that are entirely based on
Mathematica. Questions entirely based on Mathematica are indicated by a poly-
hedral Mathematica icon, while those having some partial or optional involvement
of Mathematica have the icon bracketed. Similarly sections of the book based
primarily on the software are prefixed with the same icon.

Some problems are elementary exercises based on the material, while others
are more open-ended investigations that do do not have a ‘correct answer’. The
author intends to make a ‘Solutions to Selected Exercises’ available on-line to
educators at the earliest opportunity, and information of the progress on this will
be available from the web sites noted above.
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