#### **Statistics Explained**

Statistics Explained is a reader-friendly introduction to experimental design and statistics for undergraduate students in the life sciences, particularly those who do not have a strong mathematical background. Hypothesis testing and experimental design are discussed first. Statistical tests are then explained using pictorial examples and a minimum of formulae. This class-tested approach, along with a well-structured set of diagnostic tables, will give students the confidence to choose an appropriate test with which to analyse their own data sets. Presented in a lively and straightforward manner *Statistics Explained* will give readers the depth and background necessary to proceed to more advanced texts and applications. It will therefore be essential reading for all bioscience undergraduates, and will serve as a useful refresher course for more advanced students.

**Steve McKillup** is an Associate Professor of Biology in the School of Biological and Environmental Sciences at Central Queensland University, Rockhampton.

# **Statistics Explained**

An Introductory Guide for Life Scientists

STEVE MCKILLUP



CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK

www.cambridge.org Information on this title: www.cambridge.org/9780521835503

© S. McKillup 2005

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2005

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN-13 978-0-521-83550-3 hardback ISBN-10 0-521-83550-X hardback

ISBN-13 978-0-521-54316-3 paperback ISBN-10 0-521-54316-9 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

## Contents

|     | Preface                                                 | page xi |
|-----|---------------------------------------------------------|---------|
| 1   | Introduction                                            | 1       |
| 1.1 | Why do life scientists need to know about experimental  |         |
|     | design and statistics?                                  | 1       |
| 1.2 | What is this book designed to do?                       | 5       |
| 2   | 'Doing science' – hypotheses, experiments, and disproof | 7       |
| 2.1 | Introduction                                            | 7       |
| 2.2 | Basic scientific method                                 | 7       |
| 2.3 | Making a decision about an hypothesis                   | 10      |
| 2.4 | Why can't an hypothesis or theory ever be proven?       | 11      |
| 2.5 | 'Negative' outcomes                                     | 11      |
| 2.6 | Null and alternate hypotheses                           | 12      |
| 2.7 | Conclusion                                              | 13      |
| 3   | Collecting and displaying data                          | 14      |
| 3.1 | Introduction                                            | 14      |
| 3.2 | Variables, experimental units, and types of data        | 14      |
| 3.3 | Displaying data                                         | 16      |
| 3.4 | Displaying ordinal or nominal scale data                | 20      |
| 3.5 | Bivariate data                                          | 23      |
| 3.6 | Multivariate data                                       | 25      |
| 3.7 | Summary and conclusion                                  | 26      |
| 4   | Introductory concepts of experimental design            | 27      |
| 4.1 | Introduction                                            | 27      |
| 4.2 | Sampling – mensurative experiments                      | 28      |

| Cambridge University Press                                                   |
|------------------------------------------------------------------------------|
| 052183550X - Statistics Explained: An Introductory Guide for Life Scientists |
| Steve McKillup                                                               |
| Frontmatter                                                                  |
| More information                                                             |
|                                                                              |

| vi   | Contents                                                     |    |
|------|--------------------------------------------------------------|----|
| 4.3  | Manipulative experiments                                     | 32 |
| 4.4  | Sometimes you can only do an unreplicated experiment         | 39 |
| 4.5  | Realism                                                      | 40 |
| 4.6  | A bit of common sense                                        | 41 |
| 4.7  | Designing a 'good' experiment                                | 41 |
| 4.8  | Conclusion                                                   | 42 |
| 5    | Probability helps you make a decision about your results     | 44 |
| 5.1  | Introduction                                                 | 44 |
| 5.2  | Statistical tests and significance levels                    | 45 |
| 5.3  | What has this got to do with making a                        |    |
|      | decision or statistical testing?                             | 49 |
| 5.4  | Making the wrong decision                                    | 49 |
| 5.5  | Other probability levels                                     | 50 |
| 5.6  | How are probability values reported?                         | 51 |
| 5.7  | All statistical tests do the same basic thing                | 52 |
| 5.8  | A very simple example – the chi-square test for              |    |
|      | goodness of fit                                              | 52 |
| 5.9  | What if you get a statistic with a probability of            |    |
|      | exactly 0.05?                                                | 55 |
| 5.10 | Statistical significance and biological significance         | 55 |
| 5.11 | Summary and conclusion                                       | 55 |
| 6    | Working from samples – data, populations, and statistics     | 57 |
| 6.1  | Using a sample to infer the characteristics of a population  | 57 |
| 6.2  | Statistical tests                                            | 57 |
| 6.3  | The normal distribution                                      | 57 |
| 6.4  | Samples and populations                                      | 63 |
| 6.5  | Your sample mean may not be an accurate estimate of the      |    |
|      | population mean                                              | 65 |
| 6.6  | What do you do when you only have data from one sample?      | 67 |
| 6.7  | Why are the statistics that describe the normal distribution |    |
|      | so important?                                                | 71 |
| 6.8  | Distributions that are not normal                            | 72 |
| 6.9  | Other distributions                                          | 73 |
| 6.10 | Other statistics that describe a distribution                | 74 |
| 6.11 | Conclusion                                                   | 75 |

| Cambridge University Press                                                 |     |
|----------------------------------------------------------------------------|-----|
| 052183550X - Statistics Explained: An Introductory Guide for Life Scientis | sts |
| Steve McKillup                                                             |     |
| Frontmatter                                                                |     |
| More information                                                           |     |
|                                                                            |     |

|      | Contents                                                 | vii |
|------|----------------------------------------------------------|-----|
| 7    | Normal distributions – tests for comparing the           |     |
|      | means of one and two samples                             | 77  |
| 7.1  | Introduction                                             | 77  |
| 7.2  | The 95% confidence interval and 95% confidence limits    | 77  |
| 7.3  | Using the $Z$ statistic to compare a sample mean and     |     |
|      | population mean when population statistics are known     | 78  |
| 7.4  | Comparing a sample mean with an expected value           | 81  |
| 7.5  | Comparing the means of two related samples               | 88  |
| 7.6  | Comparing the means of two independent samples           | 90  |
| 7.7  | Are your data appropriate for a <i>t</i> test?           | 92  |
| 7.8  | Distinguishing between data that should be analysed by a |     |
|      | paired sample test or a test for two independent samples | 94  |
| 7.9  | Conclusion                                               | 95  |
| 8    | Type 1 and Type 2 errors, power, and sample size         | 96  |
| 8.1  | Introduction                                             | 96  |
| 8.2  | Type 1 error                                             | 96  |
| 8.3  | Type 2 error                                             | 97  |
| 8.4  | The power of a test                                      | 100 |
| 8.5  | What sample size do you need to ensure the risk of       |     |
|      | Type 2 error is not too high?                            | 102 |
| 8.6  | Type 1 error, Type 2 error, and the concept of           |     |
|      | biological risk                                          | 104 |
| 8.7  | Conclusion                                               | 104 |
| 9    | Single factor analysis of variance                       | 105 |
| 9.1  | Introduction                                             | 105 |
| 9.2  | Single factor analysis of variance                       | 106 |
| 9.3  | An arithmetic/pictorial example                          | 112 |
| 9.4  | Unequal sample sizes (unbalanced designs)                | 117 |
| 9.5  | An ANOVA does not tell you which particular              |     |
|      | treatments appear to be from different populations       | 117 |
| 9.6  | Fixed or random effects                                  | 118 |
| 10   | Multiple comparisons after ANOVA                         | 119 |
| 10.1 | Introduction                                             | 119 |
| 10.2 | Multiple comparison tests after a Model I ANOVA          | 119 |

| Cambridge University Press                                                   |   |
|------------------------------------------------------------------------------|---|
| 052183550X - Statistics Explained: An Introductory Guide for Life Scientists | 5 |
| Steve McKillup                                                               |   |
| Frontmatter                                                                  |   |
| More information                                                             |   |
|                                                                              |   |

| viii | Contents                                                 |     |
|------|----------------------------------------------------------|-----|
| 10.3 | An a-posteriori Tukey comparison following a significant |     |
| 1010 | result for a single factor Model I ANOVA                 | 122 |
| 10.4 | Other a-posteriori multiple comparison tests             | 123 |
| 10.5 | Planned comparisons                                      | 124 |
| 11   | Two factor analysis of variance                          | 127 |
| 11.1 | Introduction                                             | 127 |
| 11.2 | What does a two factor ANOVA do?                         | 129 |
| 11.3 | How does a two factor ANOVA analyse these data?          | 131 |
| 11.4 | How does a two factor ANOVA separate out the effects     |     |
|      | of each factor and interaction?                          | 136 |
| 11.5 | An example of a two factor analysis of variance          | 139 |
| 11.6 | Some essential cautions and important complications      | 140 |
| 11.7 | Unbalanced designs                                       | 149 |
| 11.8 | More complex designs                                     | 149 |
| 12   | Important assumptions of analysis of variance:           |     |
|      | transformations and a test for equality of variances     | 151 |
| 12.1 | Introduction                                             | 151 |
| 12.2 | Homogeneity of variances                                 | 151 |
| 12.3 | Normally distributed data                                | 152 |
| 12.4 | Independence                                             | 155 |
| 12.5 | Transformations                                          | 156 |
| 12.6 | Are transformations legitimate?                          | 158 |
| 12.7 | Tests for heteroscedasticity                             | 159 |
| 13   | Two factor analysis of variance without replication,     |     |
|      | and nested analysis of variance                          | 162 |
| 13.1 | Introduction                                             | 162 |
| 13.2 | Two factor ANOVA without replication                     | 162 |
| 13.3 | A-posteriori comparison of means after a two factor      |     |
|      | ANOVA without replication                                | 166 |
| 13.4 | Randomised blocks                                        | 167 |
| 13.5 | Nested ANOVA as a special case of a one factor ANOVA     | 168 |
| 13.6 | A pictorial explanation of a nested ANOVA                | 170 |
| 13.7 | A final comment on ANOVA – this book is only an          | 1   |
|      | introduction                                             | 175 |

|       | Contents                                                 | ix  |
|-------|----------------------------------------------------------|-----|
| 14    | Relationships between variables:                         |     |
|       | linear correlation and linear regression                 | 176 |
| 14.1  | Introduction                                             | 176 |
| 14.2  | Correlation contrasted with regression                   | 177 |
| 14.3  | Linear correlation                                       | 177 |
| 14.4  | Calculation of the Pearson <i>r</i> statistic            | 178 |
| 14.5  | Is the value of <i>r</i> statistically significant?      | 184 |
| 14.6  | Assumptions of linear correlation                        | 184 |
| 14.7  | Summary and conclusion                                   | 184 |
| 15    | Simple linear regression                                 | 186 |
| 15.1  | Introduction                                             | 186 |
| 15.2  | Linear regression                                        | 186 |
| 15.3  | Calculation of the slope of the regression line          | 188 |
| 15.4  | Calculation of the intercept with the <i>Y</i> axis      | 192 |
| 15.5  | Testing the significance of the slope and the            |     |
|       | intercept of the regression line                         | 193 |
| 15.6  | An example – mites that live in the your hair follicles  | 199 |
| 15.7  | Predicting a value of Y from a value of X                | 201 |
| 15.8  | Predicting a value of X from a value of Y                | 201 |
| 15.9  | The danger of extrapolating beyond the range of data     |     |
|       | available                                                | 202 |
| 15.10 | Assumptions of linear regression analysis                | 202 |
| 15.11 | Further topics in regression                             | 204 |
| 16    | Non-parametric statistics                                | 205 |
| 16.1  | Introduction                                             | 205 |
| 16.2  | The danger of assuming normality when a population       |     |
|       | is grossly non-normal                                    | 205 |
| 16.3  | The value of making a preliminary inspection of the data | 207 |
| 17    | Non-parametric tests for nominal scale data              | 208 |
| 17.1  | Introduction                                             | 208 |
| 17.2  | Comparing observed and expected frequencies – the        |     |
|       | chi-square test for goodness of fit                      | 209 |
| 17.3  | Comparing proportions among two or more independent      |     |
|       | samples                                                  | 212 |

| Cambridge University Press                                                   |
|------------------------------------------------------------------------------|
| 052183550X - Statistics Explained: An Introductory Guide for Life Scientists |
| Steve McKillup                                                               |
| Frontmatter                                                                  |
| More information                                                             |
|                                                                              |

| x      | Contents                                                   |     |
|--------|------------------------------------------------------------|-----|
| 17.4   | Bias when there is one degree of freedom                   | 215 |
| 17.5   | Three-dimensional contingency tables                       | 219 |
| 17.6   | Inappropriate use of tests for goodness of fit and         | 217 |
| 17.0   | heterogeneity                                              | 220 |
| 17.7   | Recommended tests for categorical data                     | 221 |
| 17.8   | Comparing proportions among two or more related            |     |
|        | samples of nominal scale data                              | 222 |
| 18     | Non-parametric tests for ratio, interval, or ordinal       |     |
|        | scale data                                                 | 224 |
| 18.1   | Introduction                                               | 224 |
| 18.2   | A non-parametric comparison between one sample             |     |
|        | and an expected distribution                               | 225 |
| 18.3   | Non-parametric comparisons between two independent         |     |
|        | samples                                                    | 227 |
| 18.4   | Non-parametric comparisons among more than two             |     |
|        | independent samples                                        | 232 |
| 18.5   | Non-parametric comparisons of two related samples          | 236 |
| 18.6   | Non-parametric comparisons among three or                  |     |
|        | more related samples                                       | 238 |
| 18.7   | Analysing ratio, interval, or ordinal data that show gross |     |
|        | differences in variance among treatments and cannot be     |     |
|        | satisfactorily transformed                                 | 241 |
| 18.8   | Non-parametric correlation analysis                        | 243 |
| 18.9   | Other non-parametric tests                                 | 245 |
| 19     | Choosing a test                                            | 246 |
| 19.1   | Introduction                                               | 246 |
| 20     | Doing science responsibly and ethically                    | 255 |
| 20.1   | Introduction                                               | 255 |
| 20.2   | Dealing fairly with other people's work                    | 255 |
| 20.3   | Doing the experiment                                       | 257 |
| 20.4   | Evaluating and reporting results                           | 258 |
| 20.5   | Quality control in science                                 | 260 |
| Refere | nces                                                       | 261 |
| Index  |                                                            | 263 |

## Preface

If you mention 'statistics' or 'biostatistics' to life scientists, they often look nervous. Many fear or dislike mathematics, but an understanding of statistics and experimental design is essential for graduates, postgraduates, and researchers in the biological, biochemical, health, and human movement sciences.

Since this understanding is so important, life science students are usually made to take some compulsory undergraduate statistics courses. Nevertheless, I found that a lot of graduates (and postgraduates) were unsure about designing experiments and had difficulty knowing which statistical test to use (and which ones not to!) when analysing their results. Some even told me they had found statistics courses 'boring, irrelevant and hard to understand'.

It seemed there was a problem with the way many introductory biostatistics courses were presented, which was making students disinterested and preventing them from understanding the concepts needed to progress to higher-level courses and more complex statistical applications. There seemed to be two major reasons for this problem, and as a student I encountered both.

First, a lot of statistics textbooks take a mathematical approach and often launch into considerable detail and pages of daunting looking formulae without any straightforward explanation about what statistical testing really does.

Second, introductory biostatistics courses are often taught in a way that does not cater for life science students who may lack a strong mathematical background.

When I started teaching at Central Queensland University I thought there had to be a better way of introducing essential concepts of

#### xii Preface

biostatistics and experimental design. It had to start from first principles and develop an understanding that could be applied to all statistical tests. It had to demystify what these tests actually did and explain them with a minimum of formulae and terminology. It had to relate statistical concepts to experimental design. And, finally, it had to build a strong understanding to help the student progress to more complex material. I tried this approach with my undergraduate classes and the response from a lot of students, including some postgraduates who sat in on the course, was, 'Hey Steve, you should write an introductory stats book!'

Ward Cooper suggested I submit a proposal for this sort of book to Cambridge University Press. Ruth McKillup read, commented on, and reread several drafts, provided constant encouragement, and tolerated my absent mindedness. My students, especially Steve Dunbar, Kevin Strychar, and Glenn Druery, encouraged me to start writing and my friends and colleagues, especially Dearne Mayer and Sandy Dalton, encouraged me to finish. Finally, I sincerely thank the anonymous reviewers of the initial proposal and the subsequent manuscript who, without exception, made most appropriate suggestions for improvement.