Contents

Preface xi
Structure and résumé xiv
Acknowledgements xvii

1 Heat, buoyancy, instability and turbulence 1
 1.1 Introduction 1
 1.2 Heat and temperature 3
 1.3 Density 5
 1.4 Instability and oscillations resulting from buoyancy forces 8
 1.5 Transfer of heat 12
 1.6 Heat capacity of the ocean 17
 1.7 Turbulence 19
 1.8 Turbulent dispersion 30
 1.9 Diapycnal heat transfer in the ocean 37

2 Neutral stability: internal waves 44
 2.1 Introduction 44
 2.2 Interfacial waves 50
 2.3 Internal inertial gravity waves in continuous stratification 52
 2.4 Energy and energy flux 62
 2.5 The Garrett–Munk spectrum; the energy in the internal wave field 64
 2.6 Wave–wave interactions 67
 2.7 Generation of internal waves 70
 2.8 Internal waves and vortical mode 77

3 Instability and transition to turbulence in stratified shear flows 80
 3.1 Introduction 80
 3.2 The onset of instability in shear flows 83
 3.3 The transition from Kelvin–Helmholtz instability to turbulence 92
 3.4 Unstratified shear flows 105
 3.5 Energy dissipation in stratified shear flows and the efficiency of mixing 106
 3.6 Holmboe instability 109
 3.7 The shape of billow patches and the length of billow crests 110
 3.8 Instability in a rotating ocean 112
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Convective instabilities</td>
</tr>
<tr>
<td>4.1 Introduction</td>
</tr>
<tr>
<td>4.2 The onset of convective motion</td>
</tr>
<tr>
<td>4.3 Convection near surfaces of uniform buoyancy flux</td>
</tr>
<tr>
<td>4.4 Convection from localized sources</td>
</tr>
<tr>
<td>4.5 Convection and rotation</td>
</tr>
<tr>
<td>4.6 Double diffusive convection</td>
</tr>
<tr>
<td>5 Instability and breaking of internal waves in mid-water</td>
</tr>
<tr>
<td>5.1 Introduction</td>
</tr>
<tr>
<td>5.2 Static instability or convective overturn</td>
</tr>
<tr>
<td>5.3 Self-induced shear</td>
</tr>
<tr>
<td>5.4 The superposition of waves: caustics and standing waves</td>
</tr>
<tr>
<td>5.5 Resonant interactions and parametric instability</td>
</tr>
<tr>
<td>5.6 Breaking of internal waves in shear flows</td>
</tr>
<tr>
<td>5.7 Breaking and double diffusive convection</td>
</tr>
<tr>
<td>5.8 Breaking of wave groups or wave packets</td>
</tr>
<tr>
<td>5.9 Three-dimensional breaking</td>
</tr>
<tr>
<td>5.10 Discussion: mixing processes</td>
</tr>
<tr>
<td>6 The measurement of turbulence and mixing</td>
</tr>
<tr>
<td>6.1 Introduction</td>
</tr>
<tr>
<td>6.2 Instrument platforms and measurement systems</td>
</tr>
<tr>
<td>6.3 Estimation of ε</td>
</tr>
<tr>
<td>6.4 Estimation of χ_T and χ_S</td>
</tr>
<tr>
<td>6.5 Estimation of K_T</td>
</tr>
<tr>
<td>6.6 Estimation of K_T or K_ρ</td>
</tr>
<tr>
<td>6.7 Estimates of Γ</td>
</tr>
<tr>
<td>6.8 Isotropy</td>
</tr>
<tr>
<td>6.9 Intermittency and patchiness</td>
</tr>
<tr>
<td>6.10 Acoustic detection of turbulence</td>
</tr>
<tr>
<td>7 Fine-structure, transient-structures, and turbulence in the pycnocline</td>
</tr>
<tr>
<td>7.1 Introduction</td>
</tr>
<tr>
<td>7.2 Causes of fine-structure</td>
</tr>
<tr>
<td>7.3 Shear-driven turbulence in stratified regions</td>
</tr>
<tr>
<td>7.4 Tracer dispersion experiments in the pycnocline</td>
</tr>
<tr>
<td>7.5 Diapycnal diffusion in the abyssal ocean</td>
</tr>
<tr>
<td>7.6 Turbulence from shear and double diffusion</td>
</tr>
<tr>
<td>7.7 Two-dimensional turbulence</td>
</tr>
<tr>
<td>Chapter</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>8.1</td>
</tr>
<tr>
<td>8.2</td>
</tr>
<tr>
<td>8.3</td>
</tr>
<tr>
<td>8.4</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>9.1</td>
</tr>
<tr>
<td>9.2</td>
</tr>
<tr>
<td>9.3</td>
</tr>
<tr>
<td>9.4</td>
</tr>
<tr>
<td>9.5</td>
</tr>
<tr>
<td>9.6</td>
</tr>
<tr>
<td>9.7</td>
</tr>
<tr>
<td>9.8</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>10.1</td>
</tr>
<tr>
<td>10.2</td>
</tr>
<tr>
<td>10.3</td>
</tr>
<tr>
<td>10.4</td>
</tr>
<tr>
<td>10.5</td>
</tr>
<tr>
<td>10.6</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>11.1</td>
</tr>
<tr>
<td>11.2</td>
</tr>
<tr>
<td>11.3</td>
</tr>
<tr>
<td>11.4</td>
</tr>
<tr>
<td>11.5</td>
</tr>
<tr>
<td>11.6</td>
</tr>
<tr>
<td>11.7</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>12.1</td>
</tr>
<tr>
<td>12.2</td>
</tr>
<tr>
<td>12.3</td>
</tr>
<tr>
<td>12.4</td>
</tr>
<tr>
<td>12.5</td>
</tr>
<tr>
<td>12.6</td>
</tr>
<tr>
<td>Chapter</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>12.7</td>
</tr>
<tr>
<td>12.8</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>13.1</td>
</tr>
<tr>
<td>13.2</td>
</tr>
<tr>
<td>13.3</td>
</tr>
<tr>
<td>13.4</td>
</tr>
<tr>
<td>13.5</td>
</tr>
<tr>
<td>13.6</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>14.1</td>
</tr>
<tr>
<td>14.2</td>
</tr>
<tr>
<td>14.3</td>
</tr>
<tr>
<td>Appendices</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>Index of laboratory experiments</td>
</tr>
<tr>
<td>Subject index</td>
</tr>
</tbody>
</table>