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The simulation of physical systems requires a simplified, hierarchical approach,
which models each level from the atomistic to the macroscopic scale. From quan-
tum mechanics to fluid dynamics, this book systematically treats the broad scope
of computer modeling and simulations, describing the fundamental theory behind
each level of approximation. Berendsen evaluates each stage in relation to their
applications giving the reader insight into the possibilities and limitations of the
models. Practical guidance for applications and sample programs in Python are
provided. With a strong emphasis on molecular models in chemistry and biochem-
istry, this book will be suitable for advanced undergraduate and graduate courses
on molecular modeling and simulation within physics, biophysics, physical chem-
istry and materials science. It will also be a useful reference to all those working in
the field. Additional resources for this title including solutions for instructors and
programs are available online at www.cambridge.org/9780521835275.
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Preface

This book was conceived as a result of many years research with students
and postdocs in molecular simulation, and shaped over several courses on
the subject given at the University of Groningen, the Eidgenössische Tech-
nische Hochschule (ETH) in Zürich, the University of Cambridge, UK, the
University of Rome (La Sapienza), and the University of North Carolina
at Chapel Hill, NC, USA. The leading theme has been the truly interdisci-
plinary character of molecular simulation: its gamma of methods and models
encompasses the sciences ranging from advanced theoretical physics to very
applied (bio)technology, and it attracts chemists and biologists with limited
mathematical training as well as physicists, computer scientists and mathe-
maticians. There is a clear hierarchy in models used for simulations, ranging
from detailed (relativistic) quantum dynamics of particles, via a cascade of
approximations, to the macroscopic behavior of complex systems. As the
human brain cannot hold all the specialisms involved, many practical simu-
lators specialize in their niche of interest, adopt – often unquestioned – the
methods that are commonplace in their niche, read the literature selectively,
and too often turn a blind eye on the limitations of their approaches.

This book tries to connect the various disciplines and expand the horizon
for each field of application. The basic approach is a physical one, and an
attempt is made to rationalize each necessary approximation in the light
of the underlying physics. The necessary mathematics is not avoided, but
hopefully remains accessible to a wide audience. It is at a level of abstrac-
tion that allows compact notation and concise reasoning, without the bur-
den of excessive symbolism. The book consists of two parts: Part I follows
the hierarchy of models for simulation from relativistic quantum mechanics
to macroscopic fluid dynamics; Part II reviews the necessary mathematical,
physical and chemical concepts, which are meant to provide a common back-
ground of knowledge and notation. Some of these topics may be superfluous

xi

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-83527-5 - Simulating the Physical World: Hierarchical Modeling from Quantum
Mechanics to Fluid Dynamics
Herman J. C. Berendsen
Frontmatter
More information

http://www.cambridge.org/0521835275
http://www.cambridge.org
http://www.cambridge.org


xii Preface

to physicists or mathematicians, others to chemists. The chapters of Part II
could be useful in courses or for self-study for those who have missed certain
topics in their education; for this purpose exercises are included. Answers
and further information are available on the book’s website.

The subjects treated in this book, and the depth to which they are ex-
plored, necessarily reflect the personal preference and experience of the au-
thor. Within this subjective selection the literature sources are restricted
to the period before January 1, 2006. The overall emphasis is on simulation
of large molecular systems, such as biomolecular systems where function is
related to structure and dynamics. Such systems are in the middle of the
hierarchy of models: very fast motions and the fate of electronically excited
states require quantum-dynamical treatment, while the sheer size of the sys-
tems and the long time span of events often require severe approximations
and coarse-grained approaches. Proper and efficient sampling of the con-
figurational space (e.g., in the prediction of protein folding and other rare
events) poses special problems and requires innovative solutions. The fun
of simulation methods is that they may use physically impossible pathways
to reach physically possible states; thus they allow a range of innovative
phantasies that are not available to experimental scientists.

This book contains sample programs for educational purposes, but it con-
tains no programs that are optimized to run on large or complex systems.
For real applications that require molecular or stochastic dynamics or en-
ergy minimization, the reader is referred to the public-domain program suite
Gromacs (http://www.gromacs.org), which has been described by Van der
Spoel et al. (2005).

Programming examples are given in Python, a public domain interpreta-
tive object-oriented language that is both simple and powerful. For those
who are not familiar with Python, the example programs will still be intel-
ligible, provided a few rules are understood:

• Indentation is essential. Consecutive statements at the same indentation
level are considered as a block, as if – in C – they were placed between
curly brackets.

• Python comes with many modules, which can be imported (or of which
certain elements can be imported) into the main program. For example,
after the statement import math the math module is accessible and the
sine function is now known as math.sin. Alternatively, the sine function
may be imported by from math import sin, after which it is known as sin.
One may also import all the methods and attributes of the math module
at once by the statement from math import ∗.
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Preface xiii

• Python variables need not be declared. Some programmers don’t like this
feature as errors are more easily introduced, but it makes programs a lot
shorter and easier to read.

• Python knows several types of sequences or lists, which are very versatile
(they may contain a mix of different variable types) and can be manipu-
lated. For example, if x = [1, 2, 3] then x[0] = 1, etc. (indexing starts at
0), and x[0 : 2] or x[: 2] will be the list [1, 2]. x + [4, 5] will concatenate
x with [4, 5], resulting in the list [1, 2, 3, 4, 5]. x ∗ 2 will produce the list
[1, 2, 3, 1, 2, 3]. A multidimensional list, as x = [[1, 2], [3, 4]] is accessed
as x[i][j], e.g., x[0][1] = 2. The function range(3) will produce the list
[0, 1, 2]. One can run over the elements of a list x by the statement for i

in range(len(x)): . . .

• The extra package numpy (numerical python) which is not included in the
standard Python distribution, provides (multidimensional) arrays with
fixed size and with all elements of the same type, that have fast methods
or functions like matrix multiplication, linear solver, etc. The easiest way
to include numpy and – in addition – a large number of mathematical and
statistical functions, is to install the package scipy (scientific python). The
function arange acts like range, but defines an array. An array element is
accessed as x[i, j]. Addition, multiplication etc. now work element-wise
on arrays. The package defines the very useful universal functions that
also work on arrays. For example, if x = array([1, 2, 3]), sin(x ∗ pi/2) will
be array([1., 0.,−1.]).

The reader who wishes to try out the sample programs, should install in
this order: a recent version of Python (http://www.python.org), numpy and
scipy (http://www.scipy.org) on his system. The use of the IDLE Python
shell is recommended. For all sample programs in this book it is assumed
that scipy has been imported:

from scipy import *

This imports universal functions as well, implying that functions like sin are
known and need not be imported from the math module. The programs in
this book can be downloaded from the Cambridge University Press website
(http://www.cambridge.org/9780521835275) or from the author’s website
(http://www.hjcb.nl). These sites also offer additional Python modules that
are useful in the context of this book: plotps for plotting data, producing
postscript files, and physcon containing all relevant physical constants in SI
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xiv Preface

units. Instructions for the installation and use of Python are also given on
the author’s website.

This book could not have been written without the help of many for-
mer students and collaborators. It would never have been written with-
out the stimulating scientific environment in the Chemistry Department of
the University of Groningen, the superb guidance into computer simulation
methods by Aneesur Rahman (1927–1987) in the early 1970s, the pioneering
atmosphere of several interdisciplinary CECAM workshops, and the fruitful
collaboration with Wilfred van Gunsteren between 1976 and 1992. Many
ideas discussed in this book have originated from collaborations with col-
leagues, often at CECAM, postdocs and graduate students, of whom I can
only mention a few here: Andrew McCammon, Jan Hermans, Giovanni Ci-
ccotti, Jean-Paul Ryckaert, Alfredo DiNola, Raúl Grigera, Johan Postma,
Tjerk Straatsma, Bert Egberts, David van der Spoel, Henk Bekker, Pe-
ter Ahlström, Siewert-Jan Marrink, Andrea Amadei, Janez Mavri, Bert de
Groot, Steven Hayward, Alan Mark, Humberto Saint-Martin and Berk Hess.
I thank Frans van Hoesel, Tsjerk Wassenaar, Farid Abraham, Alex de Vries,
Agur Sevink and Florin Iancu for providing pictures.

Finally, I thank my wife Lia for her endurance and support; to her I
dedicate this book.
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Symbols, units and constants

Symbols

The typographic conventions and special symbols used in this book are listed
in Table 1; Latin and Greek symbols are listed in Tables 2, 3, and 4. Symbols
that are listed as vectors (bold italic, e.g., r) may occur in their roman italic
version (r = |r|) signifying the norm (absolute value or magnitude) of the
vector, or in their roman bold version (r) signifying a one-column matrix of
vector components. The reader should be aware that occasionally the same
symbol has a different meaning when used in a different context. Symbols
that represent general quantities as a, unknowns as x, functions as f(x), or
numbers as i, j, n are not listed.

Units

This book adopts the SI system of units (Table 5). The SI units (Système
International d’Unités) were agreed in 1960 by the CGPM, the Conférence
Générale des Poids et Mesures. The CGPM is the general conference of
countries that are members of the Metre Convention. Virtually every coun-
try in the world is a member or associate, including the USA, but not all
member countries have strict laws enforcing the use of SI units in trade
and commerce.1 Certain units that are (still) popular in the USA, such as
inch (2.54 cm), Ångström (10−10 m), kcal (4.184 kJ), dyne (10−5 N), erg
(10−7 J), bar (105 Pa), atm (101 325 Pa), electrostatic units, and Gauss
units, in principle have no place in this book. Some of these, such as the Å
and bar, which are decimally related to SI units, will occasionally be used.
Another exception that will occasionally be used is the still popular Debye
for dipole moment (10−29/2.997 924 58 Cm); the Debye relates decimally
1 A European Union directive on the enforcement of SI units, issued in 1979, has been incorpo-

rated in the national laws of most EU countries, including England in 1995.

xv
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xvi Symbols, units and constants

to the obsolete electrostatic units. Electrostatic and electromagnetic equa-
tions involve the vacuum permittivity (now called the electric constant) ε0

and vacuum permeability (now called the magnetic constant) µ0; the veloc-
ity of light does not enter explicitly into the equations connecting electric
and magnetic quantities. The SI system is rationalized, meaning that elec-
tric and magnetic potentials, but also energies, fields and forces, are derived
from their sources (charge density ρ, current density j) with a multiplicative
factor 1/(4πε0), resp. µ0/4π:

Φ(r) =
1

4πε0

∫
ρ(r′)

|r − r′| dr′, (1)

A(r) =
µ0

4π

∫
j(r′)

|r − r′| dr′, (2)

while in differential form the 4π vanishes:

div E = −div gradΦ = ρ/ε0, (3)

curlB = curl curlA = µ0j. (4)

In non-rationalized systems without a multiplicative factor in the integrated
forms (as in the obsolete electrostatic and Gauss systems, but also in atomic
units), an extra factor 4π occurs in the integrated forms:

div E = 4πρ, (5)

curlB = 4πj. (6)

Consistent use of the SI system avoids ambiguities, especially in the use of
electric and magnetic units, but the reader who has been educated with non-
rationalized units (electrostatic and Gauss units) should not fall into one of
the common traps. For example, the magnetic susceptibility χm, which is
the ratio between induced magnetic polarization M (dipole moment per
unit volume) and applied magnetic intensity H, is a dimensionless quantity,
which nevertheless differs by a factor of 4π between rationalized and non-
rationalized systems of units. Another quantity that may cause confusion
is the polarizability α, which is a tensor defined by the relation µ = αE

between induced dipole moment and electric field. Its SI unit is F m2, but its
non-rationalized unit is a volume. To be able to compare α with a volume,
the quantity α′ = α/(4πε0) may be defined, the SI unit of which is m3.

Technical units are often based on the force exerted by standard gravity
(9.806 65 m s−2) on a mass of a kilogram or a pound avoirdupois [lb =
0.453 592 37 kg (exact)], yielding a kilogramforce (kgf) = 9.806 65 N, or a
poundforce (lbf) = 4.448 22 N. The US technical unit for pressure psi (pound
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Symbols, units and constants xvii

per square inch) amounts to 6894.76 Pa. Such non-SI units are avoided in
this book.

When dealing with electrons, atoms and molecules, SI units are not very
practical. For treating quantum problems with electrons, as in quantum
chemistry, atomic units (a.u.) are often used (see Table 7). In a.u. the
electron mass and charge and Dirac’s constant all have the value 1. For
treating molecules, a very convenient system of units, related to the SI
system, uses nm for length, u (unified atomic mass unit) for mass, and ps
for time. We call these molecular units (m.u.). Both systems are detailed
below.

SI Units

SI units are defined by the basic units length, mass, time, electric current,
thermodynamic temperature, quantity of matter and intensity of light. Units
for angle and solid angle are the dimensionless radian and steradian. See
Table 5 for the defined SI units. All other units are derived from these basic
units (Table 6).

While the Système International also defines the mole (with unit mol),
being a number of entities (such as molecules) large enough to bring its total
mass into the range of grams, one may express quantities of molecular size
also per mole rather than per molecule. For macroscopic system sizes one
then obtains more convenient numbers closer to unity. In chemical ther-
modynamics molar quantities are commonly used. Molar constants as the
Faraday F (molar elementary charge), the gas constant R (molar Boltzmann
constant) and the molar standard ideal gas volume Vm (273.15 K, 105 Pa)
are specified in SI units (see Table 9).

Atomic units

Atomic units (a.u.) are based on electron mass me = 1, Dirac’s constant
� = 1, elementary charge e = 1 and 4πε0 = 1. These choices determine the
units of other quantities, such as

a.u. of length (Bohr radius) a0 =
4πε0�

2

mee2
=

�

αmec
, (7)

a.u. of time =
(4πε0)2�3

mee4
=

mea
2
0

�
, (8)

a.u. of velocity = �/(mea0) = αc, (9)
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xviii Symbols, units and constants

a.u. of energy (hartree) Eh =
mee

4

(4πε0)2�2
=

α2c2me

�2
. (10)

Here, α = e2/(4πε0�c) is the dimensionless fine-structure constant. The
system is non-rationalized and in electromagnetic equations ε0 = 1/(4π) and
µ0 = 4πα2. The latter is equivalent to µ0 = 1/(ε0c

2), with both quantities
expressed in a.u. Table 7 lists the values of the basic atomic units in terms
of SI units.

These units employ physical constants, which are not so constant as the
name suggests; they depend on the definition of basic units and on the
improving precision of measurements. The numbers given here refer to con-
stants published in 2002 by CODATA (Mohr and Taylor, 2005). Standard
errors in the last decimals are given between parentheses.

Molecular units

Convenient units for molecular simulations are based on nm for length, u
(unified atomic mass units) for mass, ps for time, and the elementary charge
e for charge. The unified atomic mass unit is defined as 1/12 of the mass of a
12C atom, which makes 1 u equal to 1 gram divided by Avogadro’s number.
The unit of energy now appears to be 1 kJ/mol = 1 u nm2 ps−2. There is
an electric factor fel = (4πε0)−1 = 138.935 4574(14) kJ mol−1 nm e−2 when
calculating energy and forces from charges, as in Vpot = fel q

2/r. While
these units are convenient, the unit of pressure (kJ mol−1 nm−3) becomes a
bit awkward, being equal to 1.666 053 886(28) MPa or 16.66 . . . bar.

Warning : One may not change kJ/mol into kcal/mol and nm into Å
(the usual units for some simulation packages) without punishment. When
keeping the u for mass, the unit of time then becomes 0.1/

√
4.184 ps =

48.888 821 . . . fs. Keeping the e for charge, the electric factor must be ex-
pressed in kcal mol−1 Å e−2 with a value of 332.063 7127(33). The unit of
pressure becomes 69 707.6946(12) bar! These units also form a consistent
system, but we do not recommend their use.

Physical constants

In Table 9 some relevant physical constants are given in SI units; the values
are those published by CODATA in 2002.2 The same constants are given
in Table 10 in atomic and molecular units. Note that in the latter table
2 See Mohr and Taylor (2005) and

http://physics.nist.gov/cuu/. A Python module containing a variety of physical constants,
physcon.py, may be downloaded from this book’s or the author’s website.
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Symbols, units and constants xix

molar quantities are not listed: It does not make sense to list quantities in
molecular-sized units per mole of material, because values in the order of
1023 would be obtained. The whole purpose of atomic and molecular units
is to obtain “normal” values for atomic and molecular quantities.
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xx Symbols, units and constants

Table 1 Typographic conventions and special symbols

Element Example Meaning

∗ c∗ complex conjugate c∗ = a − bi if c = a + bi
‡ ∆G‡ transition state label
hat Ĥ operator
overline u (1) quantity per unit mass, (2) time average
dot v̇ time derivative
〈〉 〈x〉 average over ensemble
bold italic (l.c.) r vector
bold italic (u.c.) Q tensor of rank ≥ 2
bold roman (l.c.) r one-column matrix,

e.g., representing vector components
bold roman (u.c.) Q matrix, e.g., representing tensor components
overline u quantity per unit mass
overline M multipole definition
superscript T bT transpose of a column matrix (a row matrix)

AT transpose of a rank-2 matrix (AT)ij = Aji

superscript † H† Hermitian conjugate (H†)ij = H∗
ji

d df/dx derivative function of f
∂ ∂f/∂x partial derivative
D D/Dt Lagrangian derivative ∂/∂t + u · ∇
δ δA/δρ functional derivative
centered dot v · w dot product of two vectors vTw
× v × w vector product of two vectors
∇ nabla vector operator (∂/∂x, ∂/∂y, ∂/∂z)
grad ∇φ gradient (∂φ/∂x, ∂φ/∂y, ∂φ/∂z)
div ∇ · v divergence (∂vx/∂x + ∂vy/∂y + ∂vz/∂z)
grad ∇v gradient of a vector (tensor of rank 2)

(∇v)xy = ∂vy/∂x
curl ∇× v curlv; (∇× v)x = ∂vz/∂y − ∂vy/∂z
∇2 ∇2Φ Laplacian: nabla-square or Laplace operator

(∂2Φ/∂x2 + ∂2Φ/∂y2 + ∂2Φ/∂z2)
∇∇ ∇∇Φ Hessian (tensor) (∇∇Φ)xy = ∂2Φ/∂x∂y
tr trQ trace of a matrix (sum of diagonal elements)
calligraphic C set, domain or contour
Z set of all integers (0,±1,±2, . . .)
R set of all real numbers
C set of all complex numbers
� �z real part of complex z
� �z imaginary part of complex z
1 diagonal unit matrix or tensor
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Symbols, units and constants xxi

Table 2 List of lower case Latin symbols

symbol meaning

a activity
a0 Bohr radius
c (1) speed of light, (2) concentration (molar density)
d infinitesimal increment, as in dx
e (1) elementary charge, (2) number 2.1828 . . .

fel electric factor (4πε0)−1

g metric tensor
h (1) Planck’s constant, (2) molar enthalpy
� Dirac’s constant (h/2π)
i

√−1 (j in Python programs)
j current density
k (1) rate constant, (2) harmonic force constant
k wave vector

kB Boltzmann’s constant
n (1) total quantity of moles in a mixture, (2) number density
m mass of a particle
p (1) pressure, (2) momentum, (3) probability density
p (1) n-dimensional generalized momentum vector,

(2) momentum vector mv (3D or 3N -D)
q (1) heat, mostly as dq, (2) generalized position, (3) charge

[q] [q0, q1, q2, q3] = [q, Q] quaternions
q n-dimensional generalized position vector
r cartesian radius vector of point in space (3D or 3N -D)
s molar entropy
t time
u molar internal energy
u symbol for unified atomic mass unit (1/12 of mass 12C atom)
u fluid velocity vector (3D)
v molar volume
v cartesian velocity vector (3D or 3N -D)
w (1) probability density, (2) work, mostly as dw
z ionic charge in units of e
z point in phase space {q,p}
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xxii Symbols, units and constants

Table 3 List of upper case Latin symbols

Symbol Meaning

A Helmholtz function or Helmholtz free energy
A vector potential

B2 second virial coefficient
B magnetic field vector
D diffusion coefficient
D dielectric displacement vector
E energy
E electric field vector
F Faraday constant (NA e = 96 485 C)
F force vector
G (1) Gibbs function or Gibbs free energy, (2) Green’s function
H (1) Hamiltonian, (2) enthalpy
H magnetic intensity
I moment of inertia tensor
J Jacobian of a transformation
J flux density vector (quantity flowing through unit area per unit time)
K kinetic energy
L Onsager coefficients
L (1) Liouville operator, (2) Lagrangian
L angular momentum
M (1) total mass, (2) transport coefficient
M (1) mass tensor, (2) multipole tensor

(3) magnetic polarization (magnetic moment per unit volume)
N number of particles in system

NA Avogadro’s number
P probability density
P (1) pressure tensor,

(2) electric polarization (dipole moment per unit volume)
Q canonical partition function
Q quadrupole tensor
R gas constant (NA kB)
R rotation matrix
S (1) entropy, (2) action

dS surface element (vector perpendicular to surface)
S overlap matrix
T absolute temperature
T torque vector
U (1) internal energy, (2) interaction energy
V (1) volume, (2) potential energy
W (1) electromagnetic energy density

W→ transition probability
X thermodynamic driving force vector
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Symbols, units and constants xxiii

Table 4 List of Greek symbols

Symbol Meaning

α (1) fine structure constant, (2) thermal expansion coefficient,
(3) electric polarizability

α′ polarizability volume α/(4πε0)
β (1) compressibility, (2) (kBT )−1

γ (1) friction coefficient as in v̇ = −γv, (2) activity coefficient
Γ interfacial surface tension
δ (1) delta function, (2) Kronecker delta: δij

∆ small increment, as in ∆x
ε (1) dielectric constant, (2) Lennard Jones energy parameter

ε0 vacuum permittivity
εr relative dielectric constant ε/ε0

η viscosity coefficient
ζ (1) bulk viscosity coefficient, (2) friction coefficient
κ (1) inverse Debye length, (2) compressibility
λ (1) wavelength, (2) heat conductivity coefficient,

(3) coupling parameter
µ (1) thermodynamic potential, (2) magnetic permeability,

(3) mean of distribution
µ dipole moment vector

µ0 vacuum permeability
ν (1) frequency, (2) stoichiometric coefficient
π number π = 3.1415 . . .
Π product over terms
Π momentum flux density
ρ (1) mass density, (2) number density, (3) charge density
σ (1) Lennard–Jones size parameter, (2) variance of distribution

(3) irreversible entropy production per unit volume
σ stress tensor∑

sum over terms
Σ Poynting vector (wave energy flux density)
τ generalized time
τ viscous stress tensor
φ wave function (generally basis function)
Φ (1) wave function, (2) electric potential, (3) delta-response function
ψ wave function
Ψ wave function, generally time dependent
χ susceptibility: electric (χe) or magnetic (χm)

χ2 chi-square probability function
Ξ (1) grand-canonical partition function, (2) virial
ω angular frequency (2πν)
ω angular velocity vector
Ω microcanonical partition function
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xxiv Symbols, units and constants

Table 5 Defined SI units

Quantity Name Symbol Definition (year adopted by CGPM)

length meter m distance traveled by light in vacuum
in 1/299 792 458 s (1983)

mass kilogram kg mass of international prototype kilogram
in Paris (1889)

time second s duration of 9 192 631 770 periods of
hyperfine transition in 133Cs atoms [at
rest at 0 K, in zero magnetic field] (1967)

current ampere A current in two infinitely long and thin
conductors at 1 m distance that exert a
mutual force of 2 × 10−7 N/m (1948)

temperature kelvin K 1/273.16 of thermodynamic tempera-
ture of triple point of water (1967)

quantity mole mol quantity of matter with as many
specified elementary entities as there
are atoms in 0.012 kg pure 12C (1971)

light candela cd intensity of light source emitting 1/683
intensity W/sr radiation with frequency

540 × 1012 Hz (1979)

Table 6 Derived named SI units

Quantity Symbol Name Unit

planar angle α, . . . radian rad (circle = 2π)
solid angle ω, Ω steradian sr (sphere= 4π)
frequency ν, f hertz Hz = s−1

force F newton N = kg m s−2

pressure p pascal Pa = N/m2

energy E,U,w joule J = N m = kg m2 s−2

power P,W watt J s = kg m2 s−1

charge q,Q coulomb C = A s
electric potential V, Φ volt V = J/C
capacity C farad F = C/V
resistance R ohm Ω = V/A
conductance G siemens S = Ω−1

inductance L henry H = Wb/A
magnetic flux Φ weber Wb = V s
magnetic field B tesla T = Wb/m2
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Symbols, units and constants xxv

Table 7 Atomic units (a.u.)

Quantity Symbol Value in SI unit

mass me 9.109 3826(16) × 10−31 kg
length a0 5.291 772 108(18) × 10−11 m
time mea

2
0/� 2.418 884 326505(16) × 10−17 s,

velocity αc 2.187 691 2633(73) × 106 m/s
energy �

2/(mea
2
0) 4.359 744 17(75) × 10−18 J

(Eh) = 27.211 3845(23) eV
(hartree) = 2 625.499 63(45) kJ/mol

= 627.509 47(11) kcal/mol
force Eh/a0 8.238 7225(14) × 10−8 N
charge e 1.602 176 53(14) × 10−19 C,
current a.u. 6.623 617 82(57) × 10−3 A
electric potential a.u. 27.211 3845(23) V
electric field a.u. 5.142 206 42(44) × 1011 V/m
electric field gradient a.u. 9.717 361 82(83) × 1021 Vm−2

dipole moment a.u. 8.478 353 09(73) × 10−30 C m
= 2.541 746 31(22) Debye

quadrupole moment a.u. 4.486 551 24(39) × 10−40 C m2

electric polarizability a.u. 1.648 777 274(16) × 10−41 F m2

α′ = α/(4πε0) a.u. a3
0 = 1.481 847 114(15) × 10−31 m3

Table 8 Molecular units (m.u.)

quantity symbol value in SI unit

mass u 1.66053886(28) × 10−27 kg
length nm 1 × 10−9 m
time ps 1 × 10−12 s,
velocity nm/ps 1000 m/s
energy kJ/mol 1.660 538 86(28) × 10−21 J

= 0.010 364 268 99(85) eV
= 0.239 005 736 . . . kcal/mol

force kJ mol−1 nm−1 1.660 538 86(28) × 10−12 N
charge e 1.602 176 53(14) × 10−19 C,
current e/ps 1.602 176 53(14) × 10−7 A
electric potential kJ mol−1 e−1 0.010 364 268 99(85) V
electric field kJ mol−1 e−1 nm−1 1.036 426 899(85) × 107 V/m
electric field gradient kJ mol−1 e−1 nm−2 1.036 426 899(85) × 1016 V m−2

dipole moment e nm 1.602 176 53(14) × 10−28 Cm
= 48.032 0440(42) Debye

quadrupole moment e nm2 1.602 176 53(14) × 10−37 Cm2

electric polarizability e2 nm2 kJ−1 mol 1.545 865 44(26) × 10−35 F m2

α′ = α/(4πε0) nm3 1 × 10−27 m3
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xxvi Symbols, units and constants

Table 9 Some physical constants in SI units (CODATA 2002)

Constant Equivalent Value in SI units

magnetic constanta µ0 4π × 10−7 (ex) N/A2

electric constantb ε0 (µ0c
2)−1 8.854 187 818... × 10−12 F/m

electric factorc fel (4πε0)−1 8.987 551 787... × 109 m/F
velocity of light c def 299 792 458(ex) m/s
gravitation constantd G fund 6.6742(10) × 10−11 m3 kg−1 s−1

Planck constant h fund 6.626 0693(11) × 10−34 J s
Dirac constant � h/2π 1.054 571 68(18) × 10−34 J s
electron mass me fund 9.109 3826(16) × 10−31 kg
elementary charge e fund 1.602 176 53(14) × 10−19 C
unified a.m.u.e u fund 1.66053886(28) × 10−27 kg
proton mass mp fund 1.672 621 71(29) × 10−27 kg
neutron mass mn fund 1.674 927 28(29) × 10−27 kg
deuteron mass md fund 3.343 583 35(57) × 10−27 kg
muon mass mµ fund 1.883 531 40(33) × 10−28 kg
1H atom mass mH fund 1.673 532 60(29) × 10−27 kg
fine-structure const. α e2/(2ε0hc) 7.297 352 568(24) × 10−3

—, inverse α−1 2ε0hc/e2 137.035 999 11(46)
Bohr radius a0 �/(αcme) 5.291 772 108(18) × 10−11 m
Rydberg constantf R∞ α2mec/2h 1.097 373 156 8525(73) × 107 m−1

Bohr magneton µB e�/2me 9.274 009 49(80) × 10−24 J/T
Boltzmann constant kB 1.380 6505(24) × 10−23 J/K
ideal gas volumeg v0

m kBT 0/p0 3.771 2467(66) × 10−26 m3

Avogadro constant NA 0.001 kg/u 6.022 1415(10) × 1023 mol−1

Faraday constant F NAe 96 485.3383(83) C/mol
molar gas constant R NAkB 8.314 472(15) J mol−1 K−1

molar gas volumeh V 0
m RT 0/p0 22.710 981(40) × 10−3 m3/mol

a also called vacuum permeability.
b also called vacuum permittivity or vacuum dielectric constant.
c as in F = felq1q2/r2.
d as in F = Gm1m2/r2.
e atomic mass unit, defined as 1/12 of the mass of a 12C atom
f very accurately known: relative uncertainty is 6.6 × 10−12.
g volume per molecule of an ideal gas at a temperature of T 0 = 273.15 K and a pressure of

p0 = 105 Pa. An alternative, but now outdated, standard pressure is 101 325 Pa.
h volume per mole of ideal gas under standard conditions; see previous note.
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Symbols, units and constants xxvii

Table 10 Physical constants in atomic units and “molecular units”

Symbol Value in a.u. Value in m.u.

µ0 6.691 762 564(44) × 10−4 1.942 591 810(19) × 10−8

ε0 1/(4π) 5.727 657 506(58) × 10−4

fel 1(ex) 138.935 4574(14)
c 137.035 99911(46) 299 792.458(ex)
G 4.222 18(63) × 10−32 1.108 28(17) × 10−34

h 2π 0.399 031 2716(27)
� 1(ex) 0.063 507 799 32(43)
me 1(ex) 5.485 799 0945(24) × 10−4

e 1(ex) 1(ex)
u 1 822.888 484 93(80) 1(ex)
mp 1 836.152 672 61(85) 1.007 276 46688(13)
mn 1 838.683 6598(13) 1.008 664 915 60(55)
md 3 670.482 9652(18) 2.013 553 212 70(35)
mµ 206.768 2838(54) 0.113 428 9264(30)
mH 1 837.152 645 89(85) 1.007 825 032 13(13)
α 7.297 352 568(24) × 10−3 7.297 352 568(24) × 10−3

α−1 137.035 999 11(46) 137.035 999 11(46)
a0 1 (ex) 5.291 772 108(18) × 10−2

R∞ 0.5(ex) 0.010 973 731 568 525(73)
µB 0.5(ex) 57.883 818 04(39)
kB 3.166 8154(55) × 10−6 0.008 314 472(15)
v0
m 254 496.34(44) 37.712 467(66)
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