Salmonella Infections
Clinical, Immunological and Molecular Aspects

Salmonella enterica encompasses a diverse range of bacteria that cause a spectrum of diseases in many hosts. Advancements in prevention and treatment of S. enterica infections have at times been hampered by compartmentalization of research efforts and lack of multidisciplinary approaches. This book attempts to cover a diverse range of topics related to the biology of S. enterica infections, including epidemiological and clinical aspects, molecular pathogenesis, immunity to disease and vaccines. Salmonella enterica infections are important zoonoses and therefore material on infections of animals and public health issues have also been considered. Each chapter can be read independently, but the full contents of the book will provide the reader with up-to-date knowledge on all the key aspects of salmonellosis in humans and animals. It will therefore be of interest to graduate students and researchers, as well as to clinicians, whose research focuses on this important pathogen.

PIETRO MASTROENI is a senior lecturer in the Department of Veterinary Medicine at the University of Cambridge, where he leads the Bacterial Immunology Group.

DUNCAN MASKELL is Marks & Spencer Professor of Farm Animal Health, Food Science and Food Safety and Head of the Department of Veterinary Medicine at the University of Cambridge, where he leads the Bacterial Infection Group.
Over the past decade, the rapid development of an array of techniques in the fields of cellular and molecular biology has transformed whole areas of research across the biological sciences. Microbiology has perhaps been influenced most of all. Our understanding of microbial diversity and evolutionary biology and of how pathogenic bacteria and viruses interact with their animal and plant hosts at the molecular level, for example, have been revolutionized. Perhaps the most exciting recent advance in microbiology has been the development of the interface discipline of Cellular Microbiology, a fusion of classic microbiology, microbial molecular biology, and eukaryotic cellular and molecular biology. Cellular Microbiology is revealing how pathogenic bacteria interact with host cells in what is turning out to be a complex evolutionary battle of competing gene products. Molecular and cellular biology are no longer discrete subject areas but vital tools and an integrated part of current microbiological research. As part of this revolution in molecular biology, the genomes of a growing number of pathogenic and model bacteria have been fully sequenced, with immense implications for our future understanding of microorganisms at the molecular level.

Advances in Molecular and Cellular Microbiology is a series edited by researchers active in these exciting and rapidly expanding fields. Each volume will focus on a particular aspect of cellular or molecular microbiology and will provide an overview of the area; it will also examine current research. This series will enable graduate students and researchers to keep up with the rapidly diversifying literature in current microbiological research.

Series Editors

Professor Brian Henderson
University College London

Professor Michael Wilson
University College London

Professor Sir Anthony Coates
St George’s Hospital Medical School, London

Professor Michael Curtis
St Bartholemew’s and Royal London Hospital, London
Published titles

2. *Bacterial Evasion of Host Immune Responses*. Edited by Brian Henderson and Petra Oyston 0-521-80173-7
3. *Dormancy and Low-Growth States in Microbial Disease*. Edited by Anthony R. M. Coates 0-521-80940-1
4. *Susceptibility to Infectious Diseases*. Edited by Richard Bellamy 0-521-81525-8
5. *Bacterial Invasion of Host Cells*. Edited by Richard Lamont 0-521-80954-1
7. *Bacterial Protein Toxins*. Edited by Alistair Lax 0-521-82091-X
8. *The Dynamic Bacterial Genome*. Edited by Peter Mullany 0-521-82157-6

Forthcoming titles in the series

Bacterial Cell-to-Cell Communication. Edited by Don Demuth and Richard Lamont 0-521-84638-2

The Influence of Bacterial Communities on Host Biology. Edited by Margaret McFall Ngai, Brian Henderson and Edward Ruby 0-521-83465-1

Phagocytosis of Bacteria and Bacterial Pathogenicity. Edited by Joel Ernst 0-521-84569-6
Salmonella Infections
Clinical, Immunological and Molecular Aspects

EDITED BY
PIETRO MASTROENI AND
DUNCAN MASKELL

University of Cambridge
To our families and friends

TO CARLOS
Contents

List of contributors

<table>
<thead>
<tr>
<th>List of contributors</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
<td>xiv</td>
</tr>
</tbody>
</table>

Preface

<table>
<thead>
<tr>
<th>Preface</th>
<th>xviii</th>
</tr>
</thead>
</table>

1 Epidemiological and clinical aspects of human typhoid fever

<table>
<thead>
<tr>
<th>1.1 Introduction</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 Salmonella enterica serovar Typhi</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Epidemiology of typhoid fever</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Pathophysiology of typhoid fever</td>
<td>6</td>
</tr>
<tr>
<td>1.5 Clinical features of typhoid fever</td>
<td>7</td>
</tr>
<tr>
<td>1.6 Diagnosis of typhoid fever</td>
<td>9</td>
</tr>
<tr>
<td>1.7 Management of typhoid fever</td>
<td>11</td>
</tr>
<tr>
<td>1.8 Control and prevention of typhoid fever</td>
<td>16</td>
</tr>
<tr>
<td>1.9 Conclusions</td>
<td>17</td>
</tr>
</tbody>
</table>

2 Antibiotic resistance in *Salmonella* infections

<table>
<thead>
<tr>
<th>2.1 Introduction</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 Antibiotic resistance in S. enterica serovar Typhi</td>
<td>27</td>
</tr>
<tr>
<td>2.3 Antibiotic resistance in enteric fevers other than typhoid</td>
<td>36</td>
</tr>
<tr>
<td>2.4 Antibiotic resistance in non-typhoid Salmonella enterica serovars</td>
<td>36</td>
</tr>
<tr>
<td>2.5 The causes of resistance</td>
<td>43</td>
</tr>
<tr>
<td>2.6 Conclusions</td>
<td>48</td>
</tr>
</tbody>
</table>

3 Host-specificity of *Salmonella* infections in animal species

<table>
<thead>
<tr>
<th>3.1 Introduction</th>
<th>57</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2 Salmonella infections of cattle</td>
<td>58</td>
</tr>
<tr>
<td>3.3 Salmonella infections of pigs</td>
<td>64</td>
</tr>
<tr>
<td>3.4 Salmonella infections of domestic fowl and other avian species</td>
<td>68</td>
</tr>
</tbody>
</table>
3.5 What are the determinants of *Salmonella* serovar host-specificity? 73
3.6 Do host-specific serovars use a strategy of stealth to cause systemic disease? 76
3.7 Dissemination of *Salmonella* to systemic tissues – an evolutionary dead-end or an alternative means of inter-animal spread? 77
3.8 Conclusions 79
3.9 Acknowledgements 80

4 Public health aspects of *Salmonella enterica* in food production 89
4.1 Introduction and historical perspective 89
4.2 Recent trends in *S. enterica* infections 90
4.3 Human disease caused by *S. enterica* and vehicles for its transmission to humans 92
4.4 Animal reservoirs of *S. enterica* infection 94
4.5 Milk and milk products as vehicles of infection 96
4.6 Meat and meat products and *S. enterica* 97
4.7 Contamination of poultry meat with *S. enterica* 98
4.8 Eggs and egg products as vehicles of infection and the *S. enterica* serovar Enteritidis pandemic 100
4.9 The infectious dose of *S. enterica* 105
4.10 Conclusions 107

5 The *Salmonella* genome: a global view 117
5.1 Introduction 117
5.2 Full genome sequences facilitate the study of *Salmonella* 117
5.3 Comparative genomics: old and new techniques 118
5.4 *In silico* tools for comparative genomics 119
5.5 Microarray technology as a tool for comparative genomics 120
5.6 Sequenced *Salmonella* genomes as tools for comparative genomics 121
5.7 *In silico* analysis of *Salmonella* genomes and comparisons between genome sequences 124
5.8 Mobile genetic elements: plasmids and bacteriophages 130
5.9 Fimbrial and pilus genes are highly variable between *Salmonella* genomes 133
5.10 Analysis of *Salmonella* genomes based on microarray technology 134
6 Pathogenicity islands and virulence of *Salmonella enterica*

6.1 Introduction 146
6.2 Pathogenicity islands of *Salmonella* 147
6.3 *Salmonella* Pathogenicity Island 1 148
6.4 *Salmonella* Pathogenicity Island 2 154
6.5 *Salmonella* Pathogenicity Island 3 158
6.6 *Salmonella* Pathogenicity Island 4 159
6.7 *Salmonella* Pathogenicity Island 5 159
6.8 *Salmonella* Pathogenicity Island 6 (or *Salmonella* centisome 7 genomic island) 160
6.9 *Salmonella* Pathogenicity Island 7 (or Major Pathogenicity Island) 161
6.10 *Salmonella* Pathogenicity Islands 8 to 10 162
6.11 *Salmonella* genomic island 1 163
6.12 High Pathogenicity Island 164
6.13 Other SPI of *Salmonella*? 164
6.14 Conclusions 165
6.15 Acknowledgements 167

7 In vivo identification, expression and function of *Salmonella* virulence genes

7.1 Introduction 173
7.2 Identification of virulence genes in vivo 174
7.3 Regulation of the expression of virulence genes 185
7.4 Functions of virulence genes involved in gastroenteritis and systemic disease 191
7.5 Conclusions 195
7.6 Acknowledgements 195

8 Mechanisms of immunity to *Salmonella* infections

8.1 Introduction 207
8.2 Models for the study of immunity to *S. enterica* 207
8.3 Early events in the interaction between *S. enterica* and the immune system 208
8.4 *S. enterica* reaches the phagocytic cells in the infected tissues 210
8.5 Dynamics of *S. enterica* spread and distribution at the single cell level 211
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6</td>
<td>Innate immunity and control of the early growth of S. enterica in the tissues</td>
<td>215</td>
</tr>
<tr>
<td>8.7</td>
<td>Progressive bacterial growth in the tissues results in lethal infections</td>
<td>219</td>
</tr>
<tr>
<td>8.8</td>
<td>The activation of the adaptive innate immune response and the suppression of bacterial growth in sublethal infections</td>
<td>220</td>
</tr>
<tr>
<td>8.9</td>
<td>The clearance of a primary infection requires the presence of T-cells</td>
<td>224</td>
</tr>
<tr>
<td>8.10</td>
<td>The initiation and development of antigen-specific immunity</td>
<td>225</td>
</tr>
<tr>
<td>8.11</td>
<td>Mechanisms of host resistance in secondary infections</td>
<td>228</td>
</tr>
<tr>
<td>8.12</td>
<td>Immunity to S. enterica infection in humans</td>
<td>230</td>
</tr>
<tr>
<td>8.13</td>
<td>Conclusions</td>
<td>237</td>
</tr>
<tr>
<td>8.14</td>
<td>Acknowledgements</td>
<td>239</td>
</tr>
<tr>
<td>9</td>
<td>Interactions of S. enterica with phagocytic cells</td>
<td>255</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>255</td>
</tr>
<tr>
<td>9.2</td>
<td>Interactions of S. enterica with the macrophage endosomal pathways</td>
<td>256</td>
</tr>
<tr>
<td>9.3</td>
<td>Innate anti-S. enterica activity of the Nramp1 divalent metal transporter</td>
<td>258</td>
</tr>
<tr>
<td>9.4</td>
<td>Oxygen-dependent killing of S. enterica</td>
<td>260</td>
</tr>
<tr>
<td>9.5</td>
<td>Activation of macrophage activity against S. enterica</td>
<td>265</td>
</tr>
<tr>
<td>9.6</td>
<td>Conclusions</td>
<td>269</td>
</tr>
<tr>
<td>9.7</td>
<td>Acknowledgements</td>
<td>269</td>
</tr>
<tr>
<td>10</td>
<td>Interactions between Salmonella and dendritic cells: what happens along the way?</td>
<td>279</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>279</td>
</tr>
<tr>
<td>10.2</td>
<td>Dendritic cells</td>
<td>279</td>
</tr>
<tr>
<td>10.3</td>
<td>Dendritic cells and the entry of Salmonella into the host</td>
<td>281</td>
</tr>
<tr>
<td>10.4</td>
<td>Dendritic cell interactions with Salmonella in the Peyer's patches</td>
<td>282</td>
</tr>
<tr>
<td>10.5</td>
<td>Dendritic cell interactions with Salmonella in mesenteric lymph nodes</td>
<td>284</td>
</tr>
<tr>
<td>10.6</td>
<td>Dendritic cell interactions with Salmonella in the spleen</td>
<td>286</td>
</tr>
<tr>
<td>10.7</td>
<td>Dendritic cell interactions with Salmonella in the liver</td>
<td>289</td>
</tr>
<tr>
<td>10.8</td>
<td>Conclusions</td>
<td>291</td>
</tr>
<tr>
<td>10.9</td>
<td>Acknowledgements</td>
<td>292</td>
</tr>
</tbody>
</table>
11 Immunity to *Salmonella* in domestic (food animal) species

11.1 Introduction
11.2 Innate immunity
11.3 Adaptive immunity
11.4 Vaccines against *S. enterica* infections
11.5 Live *Salmonella* vaccines as vectors for the delivery of heterologous antigens in domestic species
11.6 Protection induced by live *S. enterica* vaccines by non-immune and non-specific immune mechanisms
11.7 Conclusions

12 Newer vaccines against typhoid fever and gastrointestinal salmonelloses

12.1 Introduction
12.2 Typhoid vaccines
12.3 Vaccines for use against non-typhoidal salmonelloses in humans
12.4 Vaccines for use in veterinary species
12.5 Novel approaches to the development of *S. enterica* vaccines
12.6 Conclusions
12.7 Acknowledgements

13 *S. enterica*-based antigen delivery systems

13.1 Introduction
13.2 *S. enterica* expressing heterologous antigens as multivalent vaccines
13.3 Expression systems for heterologous antigens in *S. enterica*
13.4 Immune responses against heterologous antigens expressed in *S. enterica*
13.5 *S. enterica* as a delivery system for DNA vaccines
13.6 New emerging applications of *S. enterica* as a vaccine vector
13.7 Conclusions

Index 371

The colour plates are situated between pages 206 and 207
Contributors

Helen Andrews-Polymenis
Department of Medical Microbiology & Immunology
407 Reynolds Medical Building
Texas A&M University SHSC
College Station
TX 77843-1114
USA

Stephen Baker
Wellcome Trust Sanger Institute
Wellcome Trust Genome Campus
Hinxton
Cambs CB10 1SA
UK

Paul Barrow
Institute for Animal Health
Compton
Newbury
Berkshire RG20 7NN
UK

Andreas J. Bäumler
Department of Medical Microbiology & Immunology
School of Medicine
University of California at Davis
One Shields Ave.
Davis
CA 95616-8645
USA

Anne L. Bishop
Wellcome Trust Sanger Institute
Wellcome Trust Genome Campus
Hinxton
Cambs CB10 1SA
UK

José A. Chabalgoity
Laboratory for Vaccine Research
Department of Biotechnology
Instituto de Higiene
Facultad de Medicina
Avda. A. Navarro 3051
Montevideo CP 11600
Uruguay

Fiona J. Cooke
Centre for Molecular Microbiology and Infection
Imperial College of Science, Technology and Medicine
University of London
Exhibition Road, South Kensington
Caleb W. Dorsey
407 Reynolds Medical Building
Texas A&M University SHSC
College Station
TX 77843-1114
USA

Gordon Dougan
Wellcome Trust Sanger Institute
Wellcome Trust Genome Campus
Hinxton
Cambs CB10 1SA
UK

Michael Hensel
Institut für Klinische Mikrobiologie,
Immunologie und Hygiene
Universität Erlangen-Nürnberg
Wasserturmstr. 3-5
D-91054 Erlangen
Germany

Tom Humphrey
Department of Clinical Veterinary Science
University of Bristol
Langford House
Langford
North Somerset BS40 5DU
UK

Cecilia Johannson
Department of Clinical Immunology,
University of Goteborg,
Guldheds gatan 10A
Goteborg SE-413 46
Sweden

Pietro Mastroeni
Centre for Veterinary Science
Department of Veterinary Medicine
University of Cambridge
Madingley Road
Cambridge CB3 OES
UK

Bruce D. McCollister
Department of Microbiology
University of Colorado Health Sciences Center
B175, Room 4615
4200 E. 9th Ave.
Denver, CO 80262
USA

Christopher M. Parry
Department of Medical Microbiology and Genitourinary Medicine
Duncan Building
University of Liverpool
Daulby Street
Liverpool L69 3GA
UK

Manuela Raffatellu
School of Medicine
University of California at Davis
One Shields Ave.
Davis, CA 95616-8645

Richard A. Strugnell
Department of Microbiology & Immunology
The University of Melbourne
Parkville
Victoria 3010
Australia
Malin Sundquist
Department of Clinical Immunology,
University of Goteborg,
Guldhedsgatan 10A
Goteborg SE-413 46
Sweden

Andres Vazquez-Torres
Department of Microbiology
University of Colorado Health Sciences Center
B175, Room 4615
4200 E. 9th Ave.
Denver, CO 80262
USA

Bernardo Villarreal
Institute for Animal Health
Compton
Newbury
Berkshire RG20 7NN
UK

John Wain
Wellcome Trust Sanger Institute
Wellcome Trust Genome Campus
Hinxton
Cambs CB10 1SA
UK

Timothy S. Wallis
Institute for Animal Health
Compton
Newbury
Berkshire RG20 7NN
UK

Mary Jo Wick
Department of Clinical Immunology,
University of Goteborg,
Guldhedsgatan 10A
Goteborg SE-413 46
Sweden

Paul Wigley
Institute for Animal Health
Compton
Newbury
Berkshire RG20 7NN
UK

Odilia L. C. Wijburg
Department of Microbiology & Immunology
The University of Melbourne
Parkville
Victoria 3010
Australia

Salmonella enterica encompasses a diverse range of bacteria that cause a spectrum of diseases in many hosts. Typhoid fever is still a major killer of people in the developing world and rears its ugly head whenever war or natural disaster strikes. The increase in antibiotic resistance that has been observed in *S. enterica* serovar *Typhi* makes the understanding of this pathogen ever more important. But typhoid fever is not the only *Salmonella*-related disease that causes concern, with human gastrointestinal disease a major problem in developed and developing countries, not forgetting salmonellosis in livestock that bring with them economic losses as well as the problems of zoonoses and food-borne disease.

The different salmonellae make up a versatile and fascinating group of organisms that have inspired both of the Editors of this book since we were scientific juveniles studying the pathogenesis and immunity of these bacteria for our Ph.D. degrees. As we have moved through the stages of our scientific careers, other bacteria and immunological questions may have caught our attention for a while, but always the salmonellae persisted, providing the bedrock of our interests and the centrepiece of our scientific enquiries.

So why edit a book on salmonellae now? The easy answer to this question is that the study of the salmonellae is entering a brave new world with the completion of the genome sequences of serovars *Typhi*, *Paratyphi A* and *Typhimurium*, with other sequences hot on their tail. Add to this impetus the remarkable advances in whole genome analysis that have been allied to genome science, and that have especially opened the door on so many of the secrets of how salmonellae cause disease, and it begins to look like a really exciting time to be working with salmonellae. Add again advances in the study of the cellular biology of infection that have been made recently, especially in the context of the marvellous imaging technologies that are now...
available, and we begin to move to a position where the diseases caused by salmonellae might be understood at a level of detail unimaginable only ten years ago.

We hope that we have covered most of the key aspects of the biology of *Salmonella* infections in this book and that we have brought out some of the excitement in the field currently being felt by researchers. We have also been intent on embedding the basic science aspects of this book in real disease states, and so we have enthusiastically included chapters on the clinical diseases and public health problems caused by this group of bacteria.

Finally, science-based vaccines against salmonellae are already a reality. Improvements in our understanding of the immunology and vaccinology of these diseases may not only lead to control of these problems in the future but may also lead in unexpected directions. In fact, this intracellular pathogen can be used as a Trojan horse to introduce antigens from other organisms to a host’s immune system, or indeed deliver other immunotherapeutics that might lead to treatments for a range of non-infectious diseases. We have tried to cover these exciting advances in the book.

It has been a pleasure editing this book, and an enormous education. It would not have been possible without timely and high quality papers from our contributors, to whom we would like to say thank you, and we hope you like the end product. We also hope that you the reader like the book, find it useful and most importantly of all, are enthused by it and by these fascinating organisms.