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Introduction

The topic of this book is the application of mathematics to physical problems.
Mathematics and physics are often taught separately. Despite the fact that education
in physics relies on mathematics, it turns out that students consider mathematics
to be disjoint from physics. Although this point of view may strictly be correct,
it reflects an erroneous opinion when it concerns an education in the sciences.
The reason for this is that mathematics is the only language at our disposal for
quantifying physical processes. One cannot learn a language by just studying a
textbook. In order to truly learn how to use a language one has to go abroad and start
using that language. By the same token one cannot learn how to use mathematics in
the physical sciences by just studying textbooks or attending lectures; the only way
to achieve this is to venture into the unknown and apply mathematics to physical
problems.

It is the goal of this book to do exactly that; problems are presented in order to
apply mathematical techniques and knowledge to physical concepts. These exam-
ples are not presented as well-developed theory. Instead, they are presented as a
number of problems that elucidate the issues that are at stake. In this sense this book
offers a guided tour: material for learning is presented but true learning will only
take place by active exploration. In this process, the interplay of mathematics and
physics is essential; mathematics is the natural language for physics while physical
insight allows for a better understanding of the mathematics that is presented.

How can you use this book most efficiently?

Since this book is written as a set of problems you may frequently want to consult
other material as well to refresh or deepen your understanding of material. In many
places we refer to the book of Boas [19]. In addition, the books of Butkov [24],
Riley et al. [87] and Arfken [5] on mathematical physics are excellent.
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2 Introduction

In addition to books, colleagues in either the same field or other fields can be a
great source of knowledge and understanding. Therefore, do not hesitate to work
together with others on these problems if you are in the fortunate position to do so.
This may not only make the work more enjoyable, it may also help you in getting
“unstuck” at difficult moments and the different viewpoints of others may help to
deepen yours.

For who is this book written?

This book is set up with the goal of obtaining a good working knowledge of math-
ematical physics that is needed for students in physics or geophysics. A certain
basic knowledge of calculus and linear algebra is required to digest the material
presented here. For this reason, this book is meant for upper-level undergraduate
students or lower-level graduate students, depending on the background and skill
of the student. In addition, teachers can use this book as a source of examples and
illustrations to enrich their courses.

This book is evolving

This book will be improved regularly by adding new material, correcting errors and
making the text clearer. The feedback of both teachers and students who use this
material is vital in improving this text, please send your remarks to:

Roel Snieder

Dept of Geophysics

Colorado School of Mines
Golden CO 80401

USA

telephone: +1-303-273.3456
fax: +1-303-273.3478

email: rsnieder@mines.edu

Errata can be found at the following website: www.mines.edu/̃ rsnieder/Errata.
html.
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2

Dimensional analysis

The material of this chapter is usually not covered in a book on mathematics.
The field of mathematics deals with numbers and numerical relationships. It does
not matter what these numbers are; they may account for physical properties of
a system, but they may equally well be numbers that are not related to anything
physical. Consider the expression g = d f/dt . From a mathematical point of view
these functions can be anything, as long as g is the derivative of f . The situation is
different in physics. When f (t) is the position of a particle, and t denotes time, then
g(t) is a velocity. This relation fixes the physical dimension of g(t). In mathematical
physics, the physical dimension of variables imposes constraints on the relation
between these variables. In this chapter we explore these constraints. In Section 2.2
we show that this provides a powerful technique for spotting errors in equations. In
the remainder of this chapter we show how the physical dimensions of the variables
that govern a problem can be used to find physical laws. Surprisingly, while most
engineers learn about dimensional analysis, this topic is not covered explicitly in
many science curricula.

2.1 Two rules for physical dimensions

In physics every physical parameter is associated with a physical dimension. The
value of each parameter is measured with a certain physical unit. For example,
when I measure how long a table is, the result of this measurement has dimension
“length”. This length is measured in a certain unit, that may be meters, inches,
furlongs, or whatever length unit I prefer to use. The result of this measurement
can be written as

l = 3 m. (2.1)
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4 Dimensional analysis

The variable l has the physical dimension of length, in this chapter we write this as

l ∼ [L]. (2.2)

The square brackets are used in this chapter to indicate a physical dimension. The
capital letter L denotes length, T denotes time, and M denotes mass. Other physical
dimensions include electric charge and temperature. When dealing with physical
dimensions two rules are useful. The first rule is:

Rule 1 When two variables are added, subtracted, or set equal to each other, they
must have the same physical dimension.

In order to see the logic of this rule we consider the following example. Suppose
we have an object with a length of 1 meter and a time interval of one second. This
means that

l = 1 m,

t = 1 s.
(2.3)

Since both variables have the same numerical value, we might be tempted to declare
that

l = t. (2.4)

It is, however, important to realize that the physical units that we use are arbitrary.
Suppose, for example, that we had measured the length in feet rather than meters.
In that case the measurements (2.3) would be given by

l = 3 ft,
t = 1 s.

(2.5)

Now the numerical value of the same length measurement is different! Since the
choice of the physical units is arbitrary, we can scale the relation between variables
of different physical dimensions in an arbitrary way. For this reason these variables
cannot be equal to each other. This implies that they cannot be added or subtracted
either.

The first rule implies the following rule.

Rule 2 Mathematical functions can act on dimensionless numbers only.

To see this, let us consider as an example the function f (ξ ) = eξ . Using a Taylor
expansion, this function can be written as:

f (ξ ) = 1 + ξ + 1

2
ξ 2 + · · · (2.6)
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2.1 Two rules for physical analysis 5

According to rule 1 the different terms in this expression must have the same
physical dimension. The first term (the number 1) is dimensionless, hence all the
other terms in the series must be dimensionless. This means that ξ must be a
dimensionless number as well. This argument can be used for any function f (ξ )
whose Taylor expansion contains different powers of ξ . Note that the argument
would not hold for a function such as f (ξ ) = ξ 2 that contains only one power of ξ .

To please the purists, rule 2 could easily be reformulated to exclude these special
cases.

These rules have several applications in mathematical physics. Suppose we want
to find the physical dimension of a force, as expressed in the basic dimensions mass,
length, and time. The only thing we need to do is take one equation that contains a
force. In this case Newton’s law F = ma comes to mind. The mass m has physical
dimension [M], while the acceleration has dimension [L/T 2]. Rule 1 implies that
force has the physical dimension [M L/T 2].

Problem a The force F in a linear spring is related to the extension x of the
spring by the relation F = −kx . Show that the spring constant k has dimension
[M/T 2].

Problem b The angular momentum L of a particle with momentum p at position
r is given by

L = r × p, (2.7)

where × denotes the cross-product of two vectors. Show that angular momen-
tum has the dimension [M L2/T ].

Problem c A plane wave is given by the expression

u(r, t) = ei(k·r−ωt), (2.8)

where r is the position vector and t denotes time. Show that k ∼ [L−1] and
ω ∼ [T −1].

In quantum mechanics the behavior of a particle is characterized by a wave
equation, that is called the Schrödinger equation. In one space dimension this
equation is given by

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+ V (x)ψ, (2.9)

where x denotes the position, t denotes the time, m the mass of the particle, and
V (x) the potential energy of the particle. At this point it is not clear what the wave
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6 Dimensional analysis

function ψ(x, t) is, and how this equation should be interpreted. The meaning of
the symbol h̄ is not yet defined. We can, however, determine the physical dimension
of h̄ without knowing the meaning of this variable.

Problem d Compare the physical dimensions of the left-hand side of (2.9) with
the first term on the right-hand side and show that the variable h̄ has the physi-
cal dimension angular momentum. You can use problem b in showing this.

2.2 A trick for finding mistakes

The requirement that all terms in an equation have the same physical dimension
is an important tool for spotting mistakes. Cipra [26] gives many useful tips for
spotting errors in his delightful book “Misteakes [sic] . . . and how to find them
before the teacher does.” As an example of using dimensional analysis for spotting
mistakes, we consider the erroneous equation

E = mc3, (2.10)

where E denotes energy, m denotes mass, and c is the speed of light. Let us first find
the physical dimension of energy. The work done by a force F over a displacement
dr is given by d E = F · dr. We showed in Section 2.1 that force has the dimension
[M L/T 2]. This means that energy has the dimension [M L2/T 2]. The speed of light
in the right-hand side of expression (2.10) has dimension [L/T ], which means that
the right-hand side has physical dimension [M L3/T 3]. This is not an energy, which
has dimension [M L2/T 2]. Therefore expression (2.10) is wrong.

Problem a Now that we have determined that expression (2.10) is incorrect we
can use the requirement that the dimensions of the different terms must match
to guess how to set it right. Show that the right-hand side must be divided by
a velocity to match the dimensions.

It is not clear that the right-hand side must be divided by the speed of light to give
the correct expression E = mc2. Dimensional analysis tells us only that it must be
divided by something with the dimension of velocity. For all we know, it could be
the speed at which the average snail moves.

Problem b Is the following equation dimensionally correct?

(v · ∇v) = −∇ p. (2.11)

In this expression v is the velocity of fluid flow, p is the pressure, and ∇ is
the gradient vector (which essentially is a derivative with respect to the space
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2.3 Buckingham pi theorem 7

coordinates). You can use that pressure has the dimension is force per unit
area.

Problem c Answer the same question for the expression that relates the particle
velocity v to the pressure p in an acoustic medium:

v = p

ρc
(2.12)

Here ρ is the mass density and c is velocity of propagation of acoustic waves.

Problem d In quantum mechanics, the energy E of the harmonic oscillator is
given by

En = h̄ω2 (n + 1/2) , (2.13)

where ω is a frequency, n is a dimensionless integer, and h̄ is Planck’s constant
divided by 2π as introduced in problem d of the previous section. Verify if this
expression is dimensionally correct.

In general it is a good idea to carry out a dimensional analysis while working
in mathematical physics because this may help in finding the mistakes that we all
make while doing derivations. It takes a little while to become familiar with the
dimensions of properties that are used most often, but this is an investment that
pays off in the long run.

2.3 Buckingham pi theorem

In this section we introduce the Buckingham pi theorem. This theorem can be used
to find the relation between physical parameters based on dimensional arguments.
As an example, let us consider a ball shown in Figure 2.1 with mass m that is
dropped from a height h. We want to find the velocity with which it strikes the
ground. The potential energy of the ball before it is dropped is mgh, where g is
the acceleration of gravity. This energy is converted into kinetic energy 1

2 mv2 as it
strikes the ground. Equating these quantities and solving for the velocity gives:

v =
√

2gh. (2.14)

Now let us suppose we did not know about classical mechanics. In that case,
dimensional analysis could be used to guess relation (2.14). We know that the
velocity is some function of the acceleration of gravity, the initial height, and the
mass of the particle: v = f (g, h, m). The physical dimensions of these properties
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8 Dimensional analysis

v

v=0

h

m

Fig. 2.1 Definition of the variables for a falling ball.

are given by

v ∼ [L/T ], g ∼ [L/T 2], h ∼ [L], m ∼ [M]. (2.15)

Let us consider the dimension mass first. The dimension mass enters only the
variable m. We cannot combine the variable m with the parameters g and h in any
way to arrive at a quantity that is independent of mass. Therefore, the velocity does
not depend on the mass of the particle. Next we consider the dimension time. The
velocity depends on time as

[
T −1

]
, the acceleration of gravity as

[
T −2

]
, and h is

independent of time. This means that we can match the dimension time only when

v ∼ √
g. (2.16)

In this expression the left-hand side depends of the length as [L], while the right-
hand side varies with length as [L1/2]. We have, however, not used the height h yet.
The dimension length can be made to match if we multiply the right-hand side with
h1/2. This means that the only combination of g and h that gives a velocity is given
by

v ∼
√

gh. (2.17)

This result agrees with expression (2.14), which was derived using classical me-
chanics. Note that in order to arrive at expression (2.17) we used only dimensional
arguments, and did not need to have any knowledge from classical mechanics other
than that the velocity depends only on g and h. The dimensional analysis that led
to expression (2.17), however, does not tell us what is the proportionality constant
in that expression. The reason is that a proportionality constant is dimensionless,
and can therefore not be found by dimensional analysis.
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2.3 Buckingham pi theorem 9

The treatment given here may appear to be cumbersome. This analysis, however,
can be carried out in a systematic fashion using the Buckingham pi theorem [23]
which states the following:

Buckingham pi theorem If a problem contains N variables that depend on P
physical dimensions, then there are N − P dimensionless numbers that de-
scribe the physics of the problem.

The original paper of Buckingham is very clear, but as we will see at the end
of this section, this theorem is not fool-proof. Let us first apply the theorem to
the problem of the falling ball. We have four variables: v, g, h, and m, so that
N = 4. These variables depend on the physical dimensions [M], [L], and [T ],
hence P = 3. According to the Buckingham pi theorem, N − P = 1 dimensionless
number characterizes the problem. We want to express the velocity in the other
parameters; hence we seek a dimensionless number of the form

vgαhβmγ ∼ [1], (2.18)

where the notation in the right-hand side means that it is dimensionless. Let us seek
the exponents α, β, and γ that make the left-hand side dimensionless. Inserting the
dimensions of the different variables then gives the following dimensions[

L

T

] [
Lα

T 2α

] [
Lβ

] [
Mγ

] ∼ [1] . (2.19)

The left-hand side depends on length as [L1+α+β]. The left-hand side can only
be independent of length when the exponent is equal to zero. Applying the same
reasoning to each of the dimensions length, time, and mass, then gives

dimension [L]: 1 + α + β = 0,

dimension [T ]: −1 − 2α = 0,

dimension [M]: γ = 0.

(2.20)

This constitutes a system of three equations with three unknowns.

Problem a Show that the solution of this system is given by

α = β = − 1

2
, γ = 0. (2.21)

Inserting these values into expression (2.18) shows that the combination
vg−1/2h−1/2 is dimensionless. This implies that

v = C
√

gh, (2.22)
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10 Dimensional analysis

where C is the one dimensionless number in the problem as dictated by the Buck-
ingham pi theorem.

The approach taken here is systematic. In his original paper [23], Buckingham
applied this treatment to a number of problems: the thrust provided by the screw
of a ship, the energy density of the electromagnetic field, the relation between the
mass and radius of the electron, the radiation of an accelerated electron, and heat
conduction.

There is, however, a catch that we introduce with an example. When air (or water)
has a stably stratified mass–density structure, it can support oscillations where the
restoring force is determined by the density gradient in the air. These oscillations
occur with the Brunt-Väisälä frequency ωB given by [50, 82]:

ωB =
√

g

θ

dθ

dz
. (2.23)

In this expression, g is the acceleration of gravity, z is height, and θ is potential
temperature (a measure of the thermal structure of the atmosphere).

Problem b Verify that this expression is dimensionally correct.

Problem c Check that this expression is also dimensionally correct when θ is
replaced by the air pressure p, or the mass density ρ.

The result of problem c indicates that the potential temperature θ can be replaced
by any physical parameter, and expression (2.23) is still dimensionally correct. This
means that a dimensional analysis alone can never be used to prove that θ should
be the potential temperature. In order to show this we need to know more of the
physics of the problem.

Another limitation of the Buckingham pi theorem as formulated in its original
form is that the theorem assumes that physical parameters need to be multiplied
or divided to form dimensionless numbers; see equation (3) of reference [23]. The
derivative of one variable with respect to another, however, has the same dimension
as the ratio of these variables. Consider for example a problem where dimensional
analysis shows that the variable of interest depends on the ratio of the acceleration
of gravity and the height: g/h. The derivative of g with height dg/dz has the
same physical dimension as g/h. Therefore, a dimensional analysis alone cannot
completely describe the physics of the problem. Nevertheless, as we will see in the
following section, it may provide valuable insights.
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