Taking a functional rather than an ecosystem or a utilitarian approach, Thomas and Packham provide a concise account of the structure of woodlands and forests. Using examples from around the world – from polar treelines to savannas to tropical rain forests – the authors explain the structure of the soil and the hidden world of the roots; how the main groups of organisms that live within them interact both positively and negatively. There is particular emphasis on woodland and forest processes, especially those involving the flow and cycling of nutrients, as well as the dynamics of wooded areas, considering how and why they have changed through geological time and continue to do so. This clear, non-technical text will be of interest to undergraduates, foresters, ecologists and land managers.

Peter A. Thomas is senior lecturer in environmental science at Keele University, UK, where his teaching encompasses a wide range of tree and woodland related topics including tree design and biomechanics, tree and woodland ecology and woodland management. His research interests focus on tree ecology, dendrochronology and forest fires. He is the author of Trees: Their Natural History published by Cambridge University Press.

John R. Packham is Emeritus Professor of Ecology at the University of Wolverhampton, where he headed the Woodland Research Group for many years. He has special interests in forestry, was a founder member of the Continuous Cover Forestry Group (CCFG) and has worked extensively in English and Scandinavian forests. His research is particularly concerned with virgin forests, the ecology of the woodland field layer, and the establishment of attractive and diverse communities in new woodlands. Executive editor of The Ecological Flora of the Shropshire Region (1985), he was the first author of two major books on woodland and forest ecology and one on coastal ecology, and an organizing editor of Ecology and Geomorphology of Coastal Shingle (2001).
Forest type African elephant *Loxodonta cyclotis* feeding on acacia canopy. (Formerly regarded as a subspecies of the African elephant *Loxodonta africana*, the forest elephant is now considered a separate species.)
ECOLOGY OF WOODLANDS AND FORESTS
Description, Dynamics and Diversity

PETER A. THOMAS
and
JOHN R. PACKHAM
To our wives, Jody and Mary, who have supported our work so thoroughly. Also to those planting the forests of the future and conserving those of the present.
Epigraph

For ye shall go out with joy, and be led forth with peace: the mountains and the hills shall break forth before you into singing, and all the trees of the field shall clap their hands.

(Isaiah 55, v.12)
Contents

Preface xi
Acknowledgements xiii
Metric equivalents xiv

1 Introduction: Forest basics 1
1.1 Characteristics of woodlands and forests 1
1.2 The value of woodlands and forests 5
1.3 Tree biology and how it influences woodland ecology 6
1.4 Spatial structure 13
1.5 The woodland ecosystem: food chains, food webs and the plant, animal and decomposition subsystems 19
1.6 Forest types and classification 25
1.7 Regional classifications of forests and woodlands 35

2 Forest soils, climate and zonation 39
2.1 Soils and trees 39
2.2 Features of forest soils 41
2.3 Roots, foraging and competition 58
2.4 Forest zonation and site quality 66
2.5 Rain forests: climate, soils and variation 76

3 Primary production and forest development 84
3.1 Plant life forms and biological spectra 84
3.2 Light and shade 91
3.3 Water 110
3.4 Temperature and pollutant influences on tree growth 115
3.5 Altitudinal zonation and timberlines 117
3.6 Evergreen and deciduous strategies: aspects of competitive advantage 127
3.7 Contrasts between three widespread tree genera: the pines, beeches and oaks 131
3.8 Ecology and significance of ageing trees 139
Contents

4 Reproductive strategies of forest plants 144
 4.1 Plant strategies 144
 4.2 Regenerative strategies and vegetative spread 152
 4.3 Reproduction and fruiting 162
 4.4 Masting 165
 4.5 Roles and influences of animals 178
 4.6 Time constraints 181
5 Biotic interactions 187
 5.1 Producers and consumers 187
 5.2 The interdependence of producers and consumers 188
 5.3 Insect defoliation and damage 191
 5.4 Forest fungi 201
 5.5 Specialized heterotrophs: epiphytes, parasites and saprotrophs 214
 5.6 Exotic plants 218
 5.7 Herbivorous mammals and birds 219
 5.8 The impact of woodland carnivores and omnivores 230
 5.9 Herbivores and the Holocene: did the lowland European forest have a closed canopy? 235
6 Biodiversity in woodlands 241
 6.1 Genetic variation in populations and its implications 241
 6.2 Selection pressures and biodiversity 242
 6.3 Biodiversity at organism, population and habitat levels 247
 6.4 Changes in species diversity over time 257
 6.5 What allows species to co-exist in a woodland? 266
 6.6 Conservation, biodiversity, population integrity and uniqueness 273
7 Decomposition and renewal 276
 7.1 The vital key to a working forest 276
 7.2 Decomposition 277
 7.3 Degradative stages 285
 7.4 How much dead material is there? 288
 7.5 What controls the rate of decomposition? 291
 7.6 Rates of decomposition 298
 7.7 Woody material 302
8 Energy and nutrients 318
 8.1 Growth of forests 318
 8.2 Energy flow through forest ecosystems 326
 8.3 Nutrient cycling 328
8.4 Nitrogen 331
8.5 Nutrient dynamics in different forests 341
8.6 Human influences 345
9 Forest change and disturbance 350
 9.1 Ecology of past forests 350
 9.2 Ecological processes that govern change 366
 9.3 Disturbance, patch dynamics and scales of change 374
 9.4 Examples of forest change 387
 9.5 Stability and diversity 395
10 Working forests 397
 10.1 Forest resources and products 397
 10.2 Single- and multi-use forests 409
 10.3 Silviculture and the replacement of trees 410
 10.4 Improving the forest: choice of species
 and provenance 420
 10.5 Forest practices 424
 10.6 Sustainable forest management 427
 10.7 Landscape ecology and forests 429
11 The future – how will our forests change? 441
 11.1 Threats to forests and the increasing demand
 for timber 441
 11.2 Desertification 445
 11.3 Climate change 447
 11.4 Other causes of forest decline 461
 11.5 Problems in urban forests – the social interface 471
 11.6 Agroforestry and new forests 474
 11.7 The final challenge 481
References 483
Index 514
As its subtitle implies, the aim of this book is to provide within a relatively small compass an account of the structure of the woodlands and forests of the world, the relationships between the main groupings of organisms which live within them, and a discussion of the significance of plant and animal diversity at both the community and regional level. There is particular emphasis on woodland processes, especially those involving the flow of energy and cycling of nutrients. An attempt has also been made to show how communities dominated by trees, together with their constituent animals and plants, have gradually evolved during geological time.

Foresters and conservationists have of necessity to be far-sighted, and are usually both cheerful and philosophical. While Isaiah 55, v.12 presents a somewhat unusual view of tree behaviour, it does convey a very positive approach, one well suited to the major forest tasks which have to be dealt with in this new century. One function of this book is to provide a background against which foresters, ecologists, land managers and others can view the past and plan for the future. This book, while drawing on previous work, is wherever possible based upon the most recent research, in the hope that those familiar with our other books will find something more of value here. It uses the ecosystem approach and endeavours to show how various organisms, often diverse in space and time, have employed basically similar strategies, sometimes resulting in the repeated evolution of special features that enable them to exploit particular environmental niches. It is intended to provide undergraduates, teachers, and all those interested in vegetation dominated by trees, with a concise account of woodlands and how they operate. The more society at large gets to know about these systems, which never cease to fascinate the authors, the greater is the chance that rare species and habitats – and in particular old woodlands – will be effectively protected.

A great deal of interest attaches itself to the study of particular ecosystems. Amongst the ultimate aims of a plant ecologist, however, must be the ability to
predict the ways in which vegetation will change, and the achievement of an understanding of the general rules which govern plant and vegetation behaviour. Many eminent scientists have devoted much of their research to studies along these lines, notably Grime whose *Plant Strategies, Vegetation Processes, and Ecosystem Properties* (2001) is a seminal reference. In his preface, Grime quotes MacArthur (1972) ‘To do science is to search for repeated patterns not accumulate facts’. We hope that the examples described in this book are illustrative of the general patterns that are the basis of woodland and forest ecology.

Bold type is used to emphasize key ideas and concept words when first explained, while entries involving definitions are printed in bold in the index. Much of the book is written directly from our own experience. Where the work of others is quoted, the names of the authors are given together with dates of publication, so that the article can be looked up in the references at the end of the book.
Acknowledgements

We are indebted to the many colleagues with whom we have discussed topics of interest. These include Frans Vera, colleagues at Forest Research, Alice Holt, Farnham and many others including Håkan Hytteborn and Roland Moberg who introduced JRP to Scandinavian forests. We are grateful also to the late Arthur Willis, who read the whole draft, and to many who helped with discussion and the provision of information and diagrams including Ena Adam, Martyn Ainsworth, Ian Baillie, Posy Busby, John Campbell, Eleanor Cohn, Bill Currie, Ed Faison, Geoff Hilton, Jonathan Humphrey, Jim Karagatzides, Keith Kirby, Andy Lawrence, Pat Morris, Brooks Mathewson, Robert McDonald, Tony Polwart, Jack Putz, Glenn Motzkin, Tim Sparks, Brian Stocks, Robin Stuttard, Sarah Taylor, Jill Thompson, Ian Trueman and Ruth Yanai. Alan Crowden at Cambridge University Press is thanked for his constant encouragement as is David Harding for contributions to Chapters 2, 5 and 7, as well as his long continued friendship and co-operation from long before the publication of Packham and Harding (1982). Peter Hobson produced elegant drawings, comments on the draft and information regarding African forests; Nick Musgrove provided long continued assistance with data acquisition and computing; Malcolm Inman and Richard Homfrey also gave expert help. PAT gratefully acknowledges that much of his contribution to this book was written while a Bullard Fellow at Harvard Forest, Massachusetts; David Foster and his staff are thanked for their help and encouragement. We are both particularly grateful to Peter Alma for his initial suggestions regarding the original plan of the book and for his comments on the final draft.
Metric equivalents

Metre = 39.37 inches = 3.28 feet
Kilometre = 0.6214 statute mile
Hectare = 2.4711 acres
Kilogram = 2.2046 lb
Tonne = 0.985 ton
1 mile = 1.6093 km