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1

Points and Lines

Lines play a fundamental role in geometry. It is not just that they occur widely
in the analysis of physical problems — the geometry of more complex curves
can sometimes be better understood by the way in which they intersect lines.
For some readers the material of this chapter will be familiar from linear al-
gebra, in which case it might be best just to scan the contents and proceed to
Chapter 2. Even so, you are advised to look carefully at the basic definitions.
It is worth understanding the difference between a linear function and its zero
set: it may seem unduly pedantic, but blurring the distinction introduces a po-
tential source of confusion. Much of this text depends on the mechanics of
handling lines efficiently and for that reason Section 1.4 is devoted to practical
procedures. In Section 1.5 we consider lines from the parametric viewpoint,
which will be of use later when we look at the properties of conics in more
detail. Finally, we go one step further by considering pencils of lines, which
will play a key role in introducing axes in Chapter 7.

1.1 The Vector Structure

Throughout this texR will denote the set of real numbers. For linguistic vari-
ety we will refer to real numbers @snstants (or scalars).> We will work in the
familiar real planéR? of elementary geometry, whose elements- (x, y) are
calledpoints (or vectors). Recall that we can add vectors, and multiply them
by constants., according to the familiar rules

XY+ X, Y)=x+X,y+Y), AXY) =X, Ay).

Two vectorsZ = (x, y), Z' = (X, y') arelinearly dependent when there exist
constantsi, A’ (not both zero) for whichhZ + A’Z’ = 0: otherwise they are

1 In this text the first occurrence of an expression is always italicized, the context defining its
meaning. Now and again we also italicize expressions for emphasis.

1



2 Points and Lines

linearly independent. Thus non-zero vectoi®, Z’ are linearly dependent when
each is a constant multiple of the other. By linear algebr&’ are linearly
independent if and only iky’ — x'y # 0: and in that case linear algebra tells
us that any vector can be written uniquely in the fox&@ + A'Z’ for some
scalarsk, 1.

Example 1.1 The relation of linear dependence aon-zero vectors is an
equivalence relation on the plane (with the origin deleted) and the resulting
equivalence classes aratios. The ratio associated to the poif®, y) is de-
notedx : y. Providedy # O the ratiox : y can be identified with the constant
X/Y, whilst the ratio(1 : 0) is usually denotedo.

1.2 Lines and Zero Sets

Our starting point is to give a careful definition of what we mean by a line.
A linear function in x, y is an expressioax + by + ¢, where thecoefficients

a, b, c are constants, and at least oneg is non-zero. Suppose we have two
linear functions

L(x,y) =ax + by +c, L'(x,y) =ax+by+c.

We say that., L" arescalar multiples of each other when there exists a real
numbers # 0 witha' = Aa, b’ = Ab, ¢’ = Ac. For instance, any two of the
following linear functions are scalar multiples of each other

X—y+1 2X —2y+ 2, —X+y—-1

This relation on linear functions is an equivalence relation, and an equivalence
class is called dine. Our convention is that the line associated to a linear
functionL is denoted by the same symbol. Associated to any linear funkttion

is its zero set

{(x,y) e R?: L(x,y) =0}.

Note that any scalar multiple &f has the same zero set, so the concept makes
perfect sense for lines. Instead of saying tRat= (X, y) is a point in the
zero set, we shall (for linguistic variety) say tHatieson L, or thatL passes
through P.

At this point you should pause, long enough to be sure you have absorbec
the preceding definitions. A line is a linear function, up to scalar multiples: it
is a quite distinct object from its zero set, a set of points in the plane. The zero
set of a line is completely determined by that line. In the next section we will
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show that conversely, a line is completely determined by its zero set, so it may
seem pedantic to separate the concepts. However the ‘conics’ we will meet in
the Chapter 4 are not necessarily determined by their zero sets, so it is wise to
get into the habit of maintaining the distinction.

1.3 Uniqueness of Equations

Though elementary, the following result is conceptually important. It is the
first of a sequence of results linking two disparate notions.

Theorem 1.1Through any two distinct points P = (p1, p2), Q = (41, 2)
thereisaunique line ax + by + c.

Proof To establish this fact we seek constaat$, c (not all zero) for which
ap; +bp,+c=0, ags +bgz+c=0. (1.1

That is a linear system of two equations in the three unknaayrs c with

matrix
(pl P2 1)
g 0 1)°

Since P, Q are distinct, at least one of the>2 2 minors of this matrix is
non-zero. (You really ought to check this.) By linear algebra, the matrix has
rank 2, hence kernel rank 1. That means that thererisnatrivial solution

(a, b, ¢), and that any other solutiog@’, b’, ¢’) is a non-zero scalar multiple.
Non-triviality means that at least oneafb, ¢ is non-zero: in fact, at least one

of a, b is non-zero, for ifa = b = 0 thenc # 0, and our linear system of
equations fails to have a solution. Thus there is a line thrd@glp and any
other line with that property coincides with it. O

Thusalineis determined by its zero set, meaning that if the linear functions
L, L’ have the same zero sets they are scalar multiples of each other: we have
only to pick two distinct points in the common zero set, and apply the above
result. That justifies the time-honoured practice of referring toethetion
L = 0 of a lineL. Strictly, that is an abbreviation for the zero setlqfbut
since the zero set determinksdt is not too misleading. Nevertheless, you are
strongly advised to maintain a crystal-clear mental distinction between lines
and their zero sets.

Example 1.2 Theslope of a lineax + by + ¢ = O is the ratio—a : b. Lines of
infinite slope arevertical and can be written in the form = xg, whilst lines
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of zero slope aréorizontal and can be written in the form = yp. For non-
vertical lines the slope is identified with the constar/b. Any non-vertical

line can be writtery = px + g for some constantp, g and has slope:
likewise, any non-horizontal line can be writter=ry + s for some constants

r, s and has slope/t . Observe that any line can be expressed in one (or both)
of these forms. It will also be convenient to refer to the ratib : a as the
direction of the line, and any representative of this ratio afrection vector:

in particular,(—b, a) is a direction vector for the line.

Exercise

1.3.1 Two linear functiongyx + b1y + c1, a2x + boy + ¢2 are such that
1 = aZ + b?, ¢ = a3 + b3. Show that if the resulting lines coincide
thena; = ap, by = bo.

1.4 Practical Techniques

Much of the material in this book revolves around the sheer mechanics of han-
dling lines. In this section we introduce a small number of practical techniques,
which are well worth mastering.

Example 1.3 There is an easily remembered formula for the line thropgh

g of the previous example. Linear algebra (or direct substitution) tells us that a
solution(a, b, ¢) of the equations (1.1) is given lay= p2 — g2, b = q1 — pu,

C = p102 — p201. Substituting fora, b, ¢ in ax + by + ¢ = 0 we see that the
equation of the line is

x y 1
pr p2 1] =0. 1.2
G 02 1

Here is a useful application. A set of pointscdlinear when there exists
one line on which all the points of the set lie. Assuming there are at least two
distinct points in the set, it will be collinear if and only if every other point
lies on the line joining these two. Thus to check that a given set of points is
collinear we need a criterion for three points to be collinear.

Example 1.4 The condition for three distinct pointB; = (X1, y1), P> =
(X2, ¥2), P3 = (Xs, y3) to be collinear is that the following relation holds.
Indeed they are collinear if and only B, lies on the line joiningP,, P so



1.4 Practical Techniques 5

7=\

intersecting lines parallel lines repeated lines

Fig. 1.1. Three ways in which lines can intersect

satifies the equation of the previous example

X1 y1 1
X2 Yo 1| =0.

X3 y3 1

The intersection of two lines is the set of points common to both zero sets.
The point of the next example is that there are just three possibilities: the in-
tersection is either a single point, or empty, or coincides with both zero sets.

Example 1.5 The intersections of two linek, L’ are the common solutions
of two linear equations

ax+by+c=0 ax+by+c=0.

Provided(a, b), (&', b’) are linearly independent there is a unique solution,
given by Cramer’s Rule

B bc — b'c B a’c—ac
ab—ab’ y= ab —ab’

Otherwise, there are two possibilities. The first is that.” have no intersec-
tion, and are said to garallel: and the second is that L have identical zero
sets, so coincide. Thus the lines parallebto+ by + ¢ = 0 are those of the
form ax + by + d = 0 with d # c. More generally, a set of lines arallel
when no two of them have a common point.

A set of lines isconcurrent when there exists a point through which every
line in the set passes. Assuming there are at least two distinct lines in the set,
it will be concurrent if and only if every other line passes through their inter-
section. It would therefore be helpful to have a criterion for three general lines
to be concurrent.
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Lemma 1.2 A necessary and sufficient condition for three distinct non-
parallel linesaix + b1y + ¢1 = 0, apx + by + ¢, = 0, agx + by +¢c3 =0
to be concurrent is that the relation (1.3) below holds

ap by ¢

ap b2 Co| = 0. (13)

az by c3

Proof By linear algebra (1.3) is a necessary and sufficient condition for the
following homogeneous sytem of linear equations to have a non-trivial solution

X,y.2)

X +biy+c1z=0, aX + by + ¢z =0, asx + bgy +c3z=0.
(1.4)

If the lines are concurrent, there is a pofpt q) lying on all three, and hence

a non-trivial solutionx = p, y = q, z = 1 of the system wittz # 0. And,
conversely, if there is a solution with-£ 0 then the pointp, g) with p = x/z,

g = y/zlies on all three lines, so they are concurrent. It remains to consider
the possibility when (1.4) has a non-trivial soluti¢gx, y, z) with z = 0, so
there is a non-trivial solutionx, y) for the homogeneous system

X + by =0, aX + by =0, agX + bsy = 0.

However, in that case linear algebra tells us that the vectard;), (az, bo),
(ag, bg) are linearly dependent, so the lines are parallel, contrary to assump-
tion. |

Exercises

1.4.1  In each of the following cases find the equation of thellirlbrough
the given point®, Q:

) P=@@-D Q=@2-3,
i) P=@7n, Q=G-4,
(i) P=(3-2, Q=5 -1.

1.4.2 In each of the following cases find the points of intersection of the
given lines:
(i) 2x-5y+1=0, X+y+4=0,

@iy 7x—-4y+1=0, X—y+1=0,
(i) ax+by—1=0, bx+ay—1=0.
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1.4.3 In each of the following cases determine whetef, R are colli-
near, and if so find the line through them:

0} P=(-3), Q=(-1-5, R=(2 -2,
i) P=@31, Q=(-12, R=(19 -3),
i)y P=(43, Q=(-21, R=(12.

1.4.4  Find the value of for whichP = (3,1), Q = (5,2, R= (4, -3)
are collinear.
1.4.5 Show that for any choice af b the points(a, 2b), (3a, 0), (2a, b),
(0, 3b) are collinear.
1.4.6 In each of the following cases show that the given lines are concur-

rent:
() 3X—-y—-2=0, 5% —-2y—-3=0, X+y—-3=0,
(i) 2x—-5y+1=0, X+y+4=0, x—3y=0,
(i) 7x—4y+1=0, X—y+1=0, X —y=0.

1.4.7  Find the unique value of for which the linesx — 3y + 3 = 0,
X+ 5y —7=0,2x — 2y — » = 0 are concurrent.

1.5 Parametrized Lines

So far we have viewed lines as sets of points in the plane, defined by a single
equation. The next step is to take a different viewpoint, and think of lines as
‘parametrized’ in a natural way. Itis a small step, but it develops into a different
viewpoint of the subject.

Lemma 1.3Let P = (p1, p2), Q = (g1, g2) be distinct points on a line
ax + by + ¢ = 0. For any constant t the point Z(t) = (x(t), y(t)), where x(t),
y(t) are defined below, also lieson the line

XO)=A-Yp+tq, yO=0A-t)p2+1ta. (1.5

Conversely, any point Z = (X, y) on the line has this formfor some constant t.

Proof The first claim follows from the following identity, as both expressions
in braces are zero

ax(t) + by(t) + ¢ = (1 —t){aps + bpz + ¢} + t{aq; + bag, + c}.

Conversely, for any poinZ = (x, y) on L the relation (1.2) is satisfied. Thus
the rows of the matrix are linearly dependent, and there are constanfisr
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Z(t)

Fig. 1.2. Parametrization of a line

which the following relation holds. The relations (1.5) follow immediately

X, y,1) =s(p1, p2, D +t(q1, 92, D).
O

The relations (1.5) are trstandard parametrization of the line with respect
to the pointsP, Q. The mental picture is that the line is traced by a moving
particle having the positioZ (t) at timet: at timet = 0 the particle is at
P =Z7(0),and attimg = litisatQ = Z(1).

Example 1.6 Consider the line2— 3y + 3 = 0. By inspection the line passes
through the point$® = (0, 1), Q = (3, 3) giving the parametrizatior(t) =

3t, y(t) = 2t + 1. A different choice gives rise to a different parametrization.
For instanceP = (-3, —1), Q = (6, 5) produces(t) = 3(3t — 1), y(t) =

6t — 1.

The proof of Lemma 1.3 shows that the zero set of any line is infinite,
since different values df correspond to different poin@(t) on the line. The
midpoint of the line is the poinR with parametet = 1/2, i.e. the point

P+Q

R= .
2

Exercises
1.5.1 Ineach of the following cases find the standard parametrization of the
line L relative to the point$, Q:

) L=x—-2y-5 P=(@3-1), Q=({71),
(i) L=3xx+y—-1, P=(3,-8, Q=(-1-2.
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1.5.2 In each of the following cases find parametrizations (with integral
coefficients if possible) for the given lines:

() x+3y—7=0, (v) 2X+6y—5=0,
(i) 3x—4y—13=0, () X —3y+1=0
(i) 7x—3y—8=0, (vi) 5x—3y+1=0.

1.5.3 Find equations for the following parametrized lines:

() x=2+3, y=-1+4,
(i) x=3+3t, y=-3+t,
(i) x=-3-t, y=1-2t.

1.5.4  Show that the parametrized lines= 2 + 3t, y = —1 + 4t and
X = —4 4 6t, y = —9 4 8t coincide.
1.5.5 Find the three intersections of the following parametrized lines:

i) x=243t, y=1-t,
(i) x=4+4+4, y=1-2t,
(i) x=-3-—-t, y=2+3t.

1.5.6  Show that any non-vertical line has a parametrization of the form
x(t) = t, yt) = o + Bt, and that any non-horizontal line has a
parametrization of the form(t) = y + dt, y(t) =t.

1.6 Pencils of Lines

By the pencil of lines spanned by two distinct linels, M we mean the set of
all lines of the formiL + uM, wherei, u are constants, not both zero. The
key intersection property of a pencil is that any two distinct linds’, M’ in it
have the same intersectionlasM. To this end, write

L'=aL+uM, M =L+ M.

Sincel’, M’ are distinct, the vectors., ), (', u’) are linearly independent,
and by linear algebra the relatioh$ = 0, M’ = 0 are equivalent t&. = O,
M = 0. That establishes the claim.

The first geometric possibility for the pencil of lines spannedLhy is
thatL, M intersect at a poinP. Then, by the intersection property any line in
the pencil passes through and we refer to the pencil of linélsrough P. Any
line ax + by + ¢ = 0 throughP = (p, ) must satisfyap + bg + ¢ = 0, so
can be written in the form

ax—p) +by—q) =0. (1.6)
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general pencil parallel pencil

Fig. 1.3. Pencils of lines

Example 1.7 Let L, M be distinct lines in the pencil of all lines through a
point P. We claim thatany line N throughP is in the pencil, so has the form
N = AL + «M for some constants, . As above, we can write

Lx,y) =a(x—p)+bly—-q)
M(X,y) = c(X — p) +d(y —q)
NX,y) =ex—p) + f(y—a.

SincelL, M have different directions, the vecto¢s, b), (c, d) are linearly
independent, and by linear algebra form a basis for the plane. Thus there exis
unigue constants, u (not both zero) for which the displayed relation below
holds. It follows thatN = AL + uM, as was required

(e, f) =A@, b) + u(c, d).

Example 1.8 In the pencil of lines through? = (p, q) there is a unique
vertical lineL (X, y) = X — p, and a unique horizontal lingl (X, y) =y —qQ.
By the previous example, any line in the pencil is a linear combinatiadn, of
M, as is illustrated by equation (1.6).

The second geometric possibility for the pencil of lines spanneld, i is
thatL, M are parallel, so by the intersection propeaty two distinct lines in
the pencil are parallel. We call thisparallel pencil of lines, and think of it as
a limiting case of a general pencil, where all the lines ‘pass through’ the same
point at infinity. In such a pencil all the lines have tsne direction—b : a,
so it makes sense to refer to the parallel pencil in that direction.

Example 1.9 Any line in the direction—b : a has an equation of the form
N = 0, whereN = ax + by + c for some constant. Conversely any line
of this form must be in the pencil. Suppose indeed that ax + by + I,
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M = ax + by + m are two distinct lines in the pencil. Then we can write
N = AL + uM, where
c—m | —c
“i-m T CTm

Finally, it is worth noting one small difference between the two geometric
possibilities described above. Consider the pencil of lines spanned by two dis-
tinctlinesL, M. In the case when the lines intersect at a p&ingévery expres-
sionAL + uM is automatically a linear function, so defines a line. However,
when the lines are parallel, there is a unique ratiou for which AL + uM
fails to be a linear function. For instance, in the parallel pencil spanned by
L(X,y) = X, M(X, y) = 2x — 1, the expressionl2— M = 1 fails to be linear.

Exercise
1.6.1  Show that the pencil of lines spanned by the linest+23y — 8,
4x — 7y + 10 coincides with the pencil spanned by 3 4y — 11,
2X — 5y + 8.





