
Elementary Euclidean Geometry
An Introduction

This is a genuine introduction to the geometry of lines and conics in the Euclidean
plane. Lines and circles provide the starting point, with the classical invariants of
general conics introduced at an early stage, yielding a broad subdivision into types,
a prelude to the congruence classification. A recurring theme is the way in which lines
intersect conics. From single lines one proceeds to parallel pencils, leading to midpoint
loci, axes and asymptotic directions. Likewise, intersections with general pencils of
lines lead to the central concepts of tangent, normal, pole and polar.

The treatment is example-based and self-contained, assuming only a basic ground-
ing in linear algebra. With numerous illustrations and several hundred worked examples
and exercises, this book is ideal for use with undergraduate courses in mathematics, or
for postgraduates in engineering and the physical sciences.

C. G. G I B S O N is a senior fellow in mathematical sciences at the University of
Liverpool.
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Preface

It is worth saying something about the background to this book, since it is
linked to a sea change in the teaching of university mathematics, namely the
renaissance in undergraduate geometry, following a postwar decline. There is
little doubt that the enormous progress made in studying non-linear phenom-
ena by geometric methods has rekindled interest in the subject. However, that
is not the only reason for seeking change, as I pointed out in the preface to
Elementary Geometry of Algebraic Curves:

‘For some time I have felt there is a good case for raising the profile of
undergraduate geometry. The case can be argued on academic grounds alone.
Geometry represents a way of thinking within mathematics, quite distinct from
algebra and analysis, and so offers a fresh perspective on the subject. It can
also be argued on purely practical grounds. My experience is that there is a
measure of concern in various practical disciplines where geometry plays a
substantial role (engineering science for instance) that their students no longer
receive a basic geometric training. And thirdly, it can be argued on psycho-
logical grounds. Few would deny that substantial areas of mathematics fail to
excite student interest: yet there are many students attracted to geometry by its
sheer visual content.’

Background

A good starting point in developing undergraduate geometry is to focus on
plane curves. They comprise a rich area, of historical significance and increas-
ing relevance in the physical and engineering sciences. That raises a practical
consideration, namely that there is a dearth of suitable course texts: some are
out of date, whilst others are written at too high a level, or contain too much
material.

xi
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xii Preface

I felt it was time to improve the situation, bearing in mind the importance
of foundational mathematical training, where the primary objective is to en-
able students to gain fluency in the basics. (Those who wish to develop their
interests will be warmly welcomed at the postgraduate level.) Over my career,
one of the healthier developments in the teaching of university mathematics is
the widespread adoption of clean, careful treatments of foundational material.
For instance linear algebra, group theory, general abstract algebra, introductory
calculus and real analysis are now widely taught on this pattern, supported by
excellent texts. Such courses fit the contemporary mould of good mathematics
education, by exhibiting internal coherence, an intrinsic approach, and stan-
dards of proof appropriate to the subject. I wanted to see geometry regain its
place in the mathematics curriculum, within this broad pattern.

The Elementary Geometry Trilogy

It was against this background that I wrote two companion texts1 presenting
elementary accounts of complementary viewpoints, to wit the algebraic view-
point (where curves are defined by the vanishing of a polynomial in two vari-
ables) and the differentiable viewpoint (where curves are parametrized by a
single real variable). I have been encouraged by the reactions of the mathe-
matical community, which has welcomed these contributions to undergraduate
geometry.

Both texts were intended primarily for second year students, with later ma-
terial aimed at third years. However, neither addresses the question of introduc-
ing university students to geometry for the first time. I emphasize this for good
reason, namely that geometry has largely disappeared from school mathemat-
ics. In my experience, few students acquire more than an imperfect knowledge
of lines and circles before embarking on their degree studies.

I think the way forward is to offer foundational geometry courses which
properly expose the body of knowledge common to both viewpoints, the basic
geometry of lines and conics in the Euclidean plane. The geometry of conics
is important in its own right. Conics are of considerable historical significance,
largely because they arise naturally in numerous areas of the physical and engi-
neering sciences, such as astronomy, electronics, optics, acoustics, kinematics,
dynamics and architecture. Quite apart from their physical importance, conics
are quite fundamental objects in mathematics itself, playing crucial roles in
understanding general plane curves.

1 Elementary Geometry of Algebraic Curves and Elementary Geometry of Differentiable Curves,
published by Cambridge University Press, and henceforth referred to as EGAC and EGDC respec-
tively. The present text will be designated as EEG.
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Preface xiii

In this respect EEG should be of solid practical value to students and teach-
ers alike. On such a basis, students can develop their geometry with a degree
of confidence, and a useful portfolio of down-to-earth examples. For teachers,
EEG provides a source of carefully worked out material from which to make
a selection appropriate to their objectives. Such a selection will depend on
several factors, such as the attainment level of the students, the teaching time
available, and the intended integration with other courses.

I make no apology for the fact that some sections overlap the material of
EGAC and EGDC. On the contrary, I saw close integration as a positive advan-
tage. This book is a convenient stepping stone to those texts, taking one further
down the geometry road, and bringing more advanced treatments within reach.
In this way EEG can be viewed as the base of a trilogy, sharing a common
format. In particular, the book is unashamedly example based. The material is
separated into short chapters, each revolving around a single idea. That is done
for good pedagogical reasons. First, students find mathematics easier to digest
when it is split into a bite–sized chunks: the overall structure becomes clearer,
and the end of each chapter provides a welcome respite from the mental ef-
fort demanded by the subject. Second, by pigeon–holing the material in this
way the lecturer gains flexibility in choosing course material, without damag-
ing the overall integrity. On a smaller scale, the same philosophy is pursued
within individual chapters. Each chapter is divided into a number of sections,
and in turn each section is punctuated by a series of ‘examples’, culminating
in ‘exercises’ designed to illustrate the material, and to give the reader plenty
of opportunity to master computational techniques and gain confidence.

Axioms for Writing

The material is designed to be accessible to those with minimal mathematical
preparation. Basic linear algebra is the one area where some familiarity is as-
sumed: the material of a single semester course should suffice. And it would be
an advantage for the reader to feel comfortable with the concept of an equiva-
lence relation.

One of my guiding axioms was that the content should provide the reader
with a secure foundation for further study. Though elementary, it is coherent
mathematics, not just a mishmash of calculations posing as geometry. There
are new ways of viewing old things, concepts to be absorbed, results to con-
template, proofs to be understood, and computational techniques to master, all
of which further the student’s overall mathematical development. In this re-
spect I feel it is important for the student to recognise that although geometric
intuition points one in the right direction, it is no substitute for formal proof.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-83448-3 - Elementary Euclidean Geometry: An Introduction
C. G. Gibson
Frontmatter
More information

http://www.cambridge.org/9780521834483
http://www.cambridge.org
http://www.cambridge.org


xiv Preface

To be consistent with that philosophy, it is necessary to provide intrinsic defi-
nitions and argue coherently from them.

There is something to be said for ring–fencing the content of a foundational
course from the outset. In the present context, I felt there was a good case for
restricting the geometry entirely to the real Euclidean plane. For instance, even
with that restriction there is more than enough material from which to choose.
Also, at the foundational level it may be unwise to develop too many concepts.
Thus complex conics are probably best left till students feel comfortable with
the mechanics of handling complex numbers. Likewise, my experience sug-
gests it is sensible to leave the projective plane till a little later in life.

The Development

One has to maintain a careful balance between theory and practice. For in-
stance, the initial discussion of lines emphasizes the difference between a lin-
ear function on the plane and its zero set. To the student that may seem un-
duly pedantic, but failure to make the distinction introduces a potential source
of confusion. On the other hand, since lines are quite fundamental to the de-
velopment, a whole section is devoted to the practicalities of handling them
efficiently. The Euclidean structure on the plane may well be familiar from a
linear algebra course: nevertheless, there is a self–contained treatment, leading
to the formula for the distance from a point to a line which underlies the focal
constructions of conics.

Circles provide the first examples of general conics, and of the fact that a
conic may not be determined by its zero set. However, we follow the pattern
for lines by showing that the zero sets of real circles do determine the equation,
a result extended (in the final chapter) to general conics with infinite zero sets.
From circles it is but a short step to general conics. The classical invariants
are introduced at an early stage, yielding a first broad subdivision into types,
a prelude to the later congruence classification. Despite their uninteresting ge-
ometry, degenerate conics do arise naturally in families of conics as transitional
types: and for that reason, a chapter is devoted to them. Likewise, a chapter is
reserved for centres, since they provide basic geometric distinctions exploited
in the congruence classification.

A recurring theme in the development is the way in which lines intersect
conics. From single lines we progress to parallel pencils, leading to the clas-
sical midpoint locus, and the concepts of axis and asymptotic direction. In the
same vein we study pencils of lines through a point on a conic, leading to the
central geometric concepts of tangent and normal. Finally, the question of how
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Preface xv

a general pencil of lines interesects a conic gives rise to the classical concepts
of pole and polar, and the interesting idea of the orthoptic locus.

This text has two distinctive features. The first is that despite its intrinsic im-
portance to the metric geometry, the classical focal construction appears later
in the development than is usual. That is quite deliberate. One reason is that it
aids clarity of thought. But there is also a technical reason. I wanted a method
for finding foci and directrices independent of the congruence classification.
That not only enables the student to handle a wider range of examples, but also
clarifies the uniqueness question for focal constructions, a surprising omission
in most texts. Another distinctive feature is that the congruence classification
is left till the end. Again, that is quite deliberate. To my way of thinking, the
geometry is more interesting than the listing process, so deserves to be devel-
oped first. Also, the congruence classification is a natural resting point in the
student’s geometric progression. Looking back, it lends cohesion to the range
of examples met in the text: and looking forward, it raises fundamental ques-
tions which are better left to final year courses.
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