Elementary Euclidean Geometry An Introduction

This is a genuine introduction to the geometry of lines and conics in the Euclidean plane. Lines and circles provide the starting point, with the classical invariants of general conics introduced at an early stage, yielding a broad subdivision into types, a prelude to the congruence classification. A recurring theme is the way in which lines intersect conics. From single lines one proceeds to parallel pencils, leading to midpoint loci, axes and asymptotic directions. Likewise, intersections with general pencils of lines lead to the central concepts of tangent, normal, pole and polar.

The treatment is example-based and self-contained, assuming only a basic grounding in linear algebra. With numerous illustrations and several hundred worked examples and exercises, this book is ideal for use with undergraduate courses in mathematics, or for postgraduates in engineering and the physical sciences.

C. G. GIBSON is a senior fellow in mathematical sciences at the University of Liverpool.

Cambridge University Press 978-0-521-83448-3 - Elementary Euclidean Geometry: An Introduction C. G. Gibson Frontmatter More information Cambridge University Press 978-0-521-83448-3 - Elementary Euclidean Geometry: An Introduction C. G. Gibson Frontmatter More information

Elementary Euclidean Geometry An Introduction

C. G. GIBSON

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge св2 8ru, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521834483

© Cambridge University Press 2003

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Gibson, Christopher G., 1940– Elementary Euclidean geometry: an introduction / C.G. Gibson. p. cm. Includes bibliographical references and index. ISBN 0 521 83448 I I. Geometry. I. Title. QA453.G45 2004 516.2–dc22 2003055904

ISBN 978-0-521-83448-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

Contents

	List of Figures	<i>page</i> viii
	List of Tables	Х
	Preface	xi
	Acknowledgements	xvi
1	Points and Lines	1
1.1	The Vector Structure	1
1.2	Lines and Zero Sets	2
1.3	Uniqueness of Equations	3
1.4	Practical Techniques	4
1.5	Parametrized Lines	7
1.6	Pencils of Lines	9
2	The Euclidean Plane	12
2.1	The Scalar Product	12
2.2	Length and Distance	13
2.3	The Concept of Angle	15
2.4	Distance from a Point to a Line	18
3	Circles	22
3.1	Circles as Conics	22
3.2	General Circles	23
3.3	Uniqueness of Equations	24
3.4	Intersections with Lines	26
3.5	Pencils of Circles	27
4	General Conics	32
4.1	Standard Conics	33
4.2	Parametrizing Conics	35
4.3	Matrices and Invariants	37

vi	Contents	
4.4	Intersections with Lines	39
4.5	The Component Lemma	41
5	Centres of General Conics	44
5.1	The Concept of a Centre	44
5.2	Finding Centres	45
5.3	Geometry of Centres	49
5.4	Singular Points	51
<u></u> б	Degenerate Conics	54
6.1	Binary Quadratics	54
6.2	Reducible Conics	56
6.3	Pencils of Conics	59
6.4	Perpendicular Bisectors	61
7	Axes and Asymptotes	65
7.1	Midpoint Loci	65
7.2	Axes	68
7.3	Bisectors as Axes	72
7.4	Asymptotic Directions	74
8	Focus and Directrix	76
8.1	Focal Constructions	76
8.2	Principles for Finding Constructions	79
8.3	Constructions for Parabolas	79
8.4	Geometric Generalities	81
8.5	Constructions of Ellipse and Hyperbola	83
9	Tangents and Normals	88
9.1	Tangent Lines	88
9.2	Examples of Tangents	89
9.3	Normal Lines	94
10	The Parabola	98
10.1	The Axis of a Parabola	98
10.2	Practical Procedures	99
10.3	Parametrizing Parabolas	102
11	The Ellipse	105
11.1	Axes and Vertices	105
11.2	Rational Parametrization	107
11.3	Focal Properties	110

CAMBRIDGE

	Contents	vii
12	The Hyperbola	114
12.1	Asymptotes	114
12.2	Parametrizing Hyperbolas	119
12.3	Focal Properties of Hyperbolas	121
13	Pole and Polar	125
13.1	The Polars of a Conic	125
13.2	The Joint Tangent Equation	127
13.3	Orthoptic Loci	132
14	Congruences	137
14.1	Congruences	138
14.2	Congruent Lines	142
14.3	Congruent Conics	144
14.4	The Invariance Theorem	146
15	Classifying Conics	149
15.1	Rotating the Axes	149
15.2	Listing Normal Forms	151
15.3	Some Consequences	154
15.4	Eigenvalues and Axes	155
16	Distinguishing Conics	159
16.1	Distinguishing Classes	159
16.2	Conic Sections	161
16.3	Conics within a Class	162
17	Uniqueness and Invariance	167
17.1	Proof of Uniqueness	167
17.2	Proof of Invariance	169
	Index	171

Figures

1.1	Three ways in which lines can intersect	page 5
1.2	Parametrization of a line	8
1.3	Pencils of lines	10
2.1	Components of a vector	14
2.2	Angles between two lines	17
2.3	The perpendicular bisector	18
2.4	Projection of a point on to a line	19
3.1	How circles intersect lines	26
3.2	Three ways in which circles can intersect	28
3.3	The family of circles in Example 3.8	30
4.1	A standard parabola	33
4.2	A standard ellipse	34
4.3	A standard hyperbola	35
5.1	The concept of a centre	45
5.2	A translate of a conic	46
5.3	Auxiliary circles of ellipse	48
6.1	Conic types in a pencil	60
6.2	Bisectors of two lines	62
6.3	Cones associated to a line-pair	63
7.1	A midpoint locus for an ellipse	66
7.2	A parallel pencil intersecting a hyperbola	74
8.1	Construction of the standard parabola	77
8.2	Degenerate 'constructible' conics	78
8.3	Axis of a constructible conic	82
8.4	Constructions of a standard ellipse	82
8.5	Constructions of a standard hyperbola	82
9.1	Idea of a tangent	89
9.2	Latus rectum of the standard parabola	90

CAMBRIDGE

	List of Figures	ix
9.3	A normal line to an ellipse	94
9.4	Evolute of a parabola	96
10.1	The conic Q of Example 10.1	99
10.2	Reflective property for a parabola	103
11.1	Rational parametrization of the circle	108
11.2	Metric property of an ellipse	111
11.3	The string construction	112
11.4	Reflective property for an ellipse	113
12.1	A line in one asymptotic cone	116
12.2	A hyperbola as a graph	118
12.3	Parametrizing a rectangular hyperbola	120
12.4	Wide and narrow hyperbolas	122
12.5	Metric property of a hyperbola	123
12.6	Reflective property for a hyperbola	123
13.1	Circle intersecting pencils of lines	126
13.2	Pole and polar	128
13.3	The idea of the orthoptic locus	132
13.4	Orthoptic locus of a narrow hyperbola	134
14.1	Superimposition of two ellipses	138

14.1	Superimposition of two ellipses	138	
14.2	Translation of the plane	140	
14.3	Rotation about the origin	141	
14.4	Invariance of midpoint loci	146	
16.1	Sections of the cone Γ	161	

Tables

4.1	Non-degenerate classes	page 38
6.1	Degenerate classes	57
11.1	Eccentricities for the planets	112
16.1	Invariants for conic classes	160
16.2	Conic sections	162

Preface

It is worth saying something about the background to this book, since it is linked to a sea change in the teaching of university mathematics, namely the renaissance in undergraduate geometry, following a postwar decline. There is little doubt that the enormous progress made in studying non-linear phenomena by geometric methods has rekindled interest in the subject. However, that is not the only reason for seeking change, as I pointed out in the preface to *Elementary Geometry of Algebraic Curves*:

'For some time I have felt there is a good case for raising the profile of undergraduate geometry. The case can be argued on *academic* grounds alone. Geometry represents a way of thinking within mathematics, quite distinct from algebra and analysis, and so offers a fresh perspective on the subject. It can also be argued on purely *practical* grounds. My experience is that there is a measure of concern in various practical disciplines where geometry plays a substantial role (engineering science for instance) that their students no longer receive a basic geometric training. And thirdly, it can be argued on *psychological* grounds. Few would deny that substantial areas of mathematics fail to excite student interest: yet there are many students attracted to geometry by its sheer visual content.'

Background

A good starting point in developing undergraduate geometry is to focus on plane curves. They comprise a rich area, of historical significance and increasing relevance in the physical and engineering sciences. That raises a practical consideration, namely that there is a dearth of suitable course texts: some are out of date, whilst others are written at too high a level, or contain too much material. Cambridge University Press 978-0-521-83448-3 - Elementary Euclidean Geometry: An Introduction C. G. Gibson Frontmatter More information

xii

Preface

I felt it was time to improve the situation, bearing in mind the importance of foundational mathematical training, where the primary objective is to enable students to gain fluency in the basics. (Those who wish to develop their interests will be warmly welcomed at the postgraduate level.) Over my career, one of the healthier developments in the teaching of university mathematics is the widespread adoption of clean, careful treatments of foundational material. For instance linear algebra, group theory, general abstract algebra, introductory calculus and real analysis are now widely taught on this pattern, supported by excellent texts. Such courses fit the contemporary mould of good mathematics education, by exhibiting internal coherence, an intrinsic approach, and standards of proof appropriate to the subject. I wanted to see geometry regain its place in the mathematics curriculum, within this broad pattern.

The Elementary Geometry Trilogy

It was against this background that I wrote two companion texts¹ presenting elementary accounts of complementary viewpoints, to wit the *algebraic* viewpoint (where curves are defined by the vanishing of a polynomial in two variables) and the *differentiable* viewpoint (where curves are parametrized by a single real variable). I have been encouraged by the reactions of the mathematical community, which has welcomed these contributions to undergraduate geometry.

Both texts were intended primarily for second year students, with later material aimed at third years. However, neither addresses the question of introducing university students to geometry *for the first time*. I emphasize this for good reason, namely that geometry has largely disappeared from school mathematics. In my experience, few students acquire more than an imperfect knowledge of lines and circles before embarking on their degree studies.

I think the way forward is to offer foundational geometry courses which properly expose the body of knowledge common to both viewpoints, the basic geometry of lines and conics in the Euclidean plane. The geometry of conics is important in its own right. Conics are of considerable historical significance, largely because they arise naturally in numerous areas of the physical and engineering sciences, such as astronomy, electronics, optics, acoustics, kinematics, dynamics and architecture. Quite apart from their physical importance, conics are quite fundamental objects in mathematics itself, playing crucial roles in understanding general plane curves.

¹ Elementary Geometry of Algebraic Curves and Elementary Geometry of Differentiable Curves, published by Cambridge University Press, and henceforth referred to as *EGAC* and *EGDC* respectively. The present text will be designated as *EEG*.

Preface

In this respect *EEG* should be of solid practical value to students and teachers alike. On such a basis, students can develop their geometry with a degree of confidence, and a useful portfolio of down-to-earth examples. For teachers, *EEG* provides a source of carefully worked out material from which to make a selection appropriate to their objectives. Such a selection will depend on several factors, such as the attainment level of the students, the teaching time available, and the intended integration with other courses.

I make no apology for the fact that some sections overlap the material of EGAC and EGDC. On the contrary, I saw close integration as a positive advantage. This book is a convenient stepping stone to those texts, taking one further down the geometry road, and bringing more advanced treatments within reach. In this way *EEG* can be viewed as the base of a trilogy, sharing a common format. In particular, the book is unashamedly example based. The material is separated into short chapters, each revolving around a single idea. That is done for good pedagogical reasons. First, students find mathematics easier to digest when it is split into a bite-sized chunks: the overall structure becomes clearer, and the end of each chapter provides a welcome respite from the mental effort demanded by the subject. Second, by pigeon-holing the material in this way the lecturer gains flexibility in choosing course material, without damaging the overall integrity. On a smaller scale, the same philosophy is pursued within individual chapters. Each chapter is divided into a number of sections, and in turn each section is punctuated by a series of 'examples', culminating in 'exercises' designed to illustrate the material, and to give the reader plenty of opportunity to master computational techniques and gain confidence.

Axioms for Writing

The material is designed to be accessible to those with minimal mathematical preparation. Basic linear algebra is the one area where some familiarity is assumed: the material of a single semester course should suffice. And it would be an advantage for the reader to feel comfortable with the concept of an equivalence relation.

One of my guiding axioms was that the content should provide the reader with a secure foundation for further study. Though elementary, it is coherent mathematics, not just a mishmash of calculations posing as geometry. There are new ways of viewing old things, concepts to be absorbed, results to contemplate, proofs to be understood, and computational techniques to master, all of which further the student's overall mathematical development. In this respect I feel it is important for the student to recognise that although geometric intuition points one in the right direction, it is no substitute for formal proof. xiv

Preface

To be consistent with that philosophy, it is necessary to provide intrinsic definitions and argue coherently from them.

There is something to be said for ring-fencing the content of a foundational course from the outset. In the present context, I felt there was a good case for restricting the geometry entirely to the real Euclidean plane. For instance, even with that restriction there is more than enough material from which to choose. Also, at the foundational level it may be unwise to develop too many concepts. Thus complex conics are probably best left till students feel comfortable with the mechanics of handling complex numbers. Likewise, my experience suggests it is sensible to leave the projective plane till a little later in life.

The Development

One has to maintain a careful balance between theory and practice. For instance, the initial discussion of lines emphasizes the difference between a linear function on the plane and its zero set. To the student that may seem unduly pedantic, but failure to make the distinction introduces a potential source of confusion. On the other hand, since lines are quite fundamental to the development, a whole section is devoted to the practicalities of handling them efficiently. The Euclidean structure on the plane may well be familiar from a linear algebra course: nevertheless, there is a self–contained treatment, leading to the formula for the distance from a point to a line which underlies the focal constructions of conics.

Circles provide the first examples of general conics, and of the fact that a conic may not be determined by its zero set. However, we follow the pattern for lines by showing that the zero sets of *real* circles do determine the equation, a result extended (in the final chapter) to general conics with infinite zero sets. From circles it is but a short step to general conics. The classical invariants are introduced at an early stage, yielding a first broad subdivision into types, a prelude to the later congruence classification. Despite their uninteresting geometry, degenerate conics do arise naturally in families of conics as transitional types: and for that reason, a chapter is devoted to them. Likewise, a chapter is reserved for centres, since they provide basic geometric distinctions exploited in the congruence classification.

A recurring theme in the development is the way in which lines intersect conics. From single lines we progress to parallel pencils, leading to the classical midpoint locus, and the concepts of axis and asymptotic direction. In the same vein we study pencils of lines through a point on a conic, leading to the central geometric concepts of tangent and normal. Finally, the question of how Preface

xv

a general pencil of lines interesects a conic gives rise to the classical concepts of pole and polar, and the interesting idea of the orthoptic locus.

This text has two distinctive features. The first is that despite its intrinsic importance to the metric geometry, the classical focal construction appears later in the development than is usual. That is quite deliberate. One reason is that it aids clarity of thought. But there is also a technical reason. I wanted a method for finding foci and directrices *independent of the congruence classification*. That not only enables the student to handle a wider range of examples, but also clarifies the uniqueness question for focal constructions, a surprising omission in most texts. Another distinctive feature is that the congruence classification is left till the end. Again, that is quite deliberate. To my way of thinking, the geometry is more interesting than the listing process, so deserves to be developed first. Also, the congruence classification is a natural resting point in the student's geometric progression. Looking back, it lends cohesion to the range of examples met in the text: and looking forward, it raises fundamental questions which are better left to final year courses.

Acknowledgements

I would like to express my profound thanks to my colleagues Bill Bruce, Alex Dimca, Wendy Hawes and Ton Marar and who very kindly took the trouble to read the typescript and make detailed comment. They removed many of the errors and inconsistencies, and made innumerable constructive suggestions for improvement. In their own way they have demonstrated their own commitment to geometry.