Cambridge University Press 978-0-521-83441-4 — Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows Andrew Majda, Xiaoming Wang Frontmatter <u>More Information</u>

> Non-linear dynamics and statistical theories for basic geophysical flows

Cambridge University Press 978-0-521-83441-4 — Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows Andrew Majda, Xiaoming Wang Frontmatter <u>More Information</u>

Non-linear dynamics and statistical theories for basic geophysical flows

ANDREW J. MAJDA New York University

XIAOMING WANG Florida State University

Cambridge University Press 978-0-521-83441-4 — Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows Andrew Majda, Xiaoming Wang Frontmatter More Information

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521834414

© Cambridge University Press 2006

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2006

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-83441-4 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Cambridge University Press 978-0-521-83441-4 — Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows Andrew Majda, Xiaoming Wang Frontmatter <u>More Information</u>

Contents

Preface page			<i>page</i> xi	
1	Barotropic geophysical flows and two-dimensional fluid flows: elementary introduction			
	1.1	Introduction	1	
	1.2	Some special exact solutions	8	
	1.3	Conserved quantities	33	
	1.4	Barotropic geophysical flows in a channel domain – an importan physical model	t 44	
	1.5	Variational derivatives and an optimization principle for		
		elementary geophysical solutions	50	
	1.6	More equations for geophysical flows	52	
		References	58	
2	2 The response to large-scale forcing		59	
	2.1	Introduction	59	
	2.2	Non-linear stability with Kolmogorov forcing	62	
	2.3	Stability of flows with generalized Kolmogorov forcing	76	
		References	79	
3 The selective decay principle for basic geophysical flows		selective decay principle for basic geophysical flows	80	
	3.1	Introduction	80	
	3.2	Selective decay states and their invariance	82	
	3.3	Mathematical formulation of the selective decay principle	84	
	3.4	Energy-enstrophy decay	86	
	3.5	Bounds on the Dirichlet quotient, $\Lambda(t)$	88	
	3.6	Rigorous theory for selective decay	90	
	3.7	Numerical experiments demonstrating facets of selective decay	95	
		References	102	

Cambridge University Press
978-0-521-83441-4 - Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows
Andrew Majda, Xiaoming Wang
Frontmatter
More Information

vi		Contents	
	A.1	Stronger controls on $\Lambda(t)$	103
	A.2	The proof of the mathematical form of the selective decay	107
		principle in the presence of the beta-plane effect	107
4	Non	-linear stability of steady geophysical flows	115
	4.1	Introduction	115
	4.2	Stability of simple steady states	116
	4.3	Stability for more general steady states	124
	4.4	Non-linear stability of zonal flows on the beta-plane	129
	4.5	Variational characterization of the steady states	133
		References	137
5	Торо	ographic mean flow interaction, non-linear instability,	
	an	id chaotic dynamics	138
	5.1	Introduction	138
	5.2	Systems with layered topography	141
	5.3	Integrable behavior	145
	5.4	A limit regime with chaotic solutions	154
	5.5	Numerical experiments	167
		References	178
		Appendix 1	180
		Appendix 2	181
6	Intro	oduction to information theory and empirical statistical theory	183
	6.1	Introduction	183
	6.2	Information theory and Shannon's entropy	184
	6.3	Most probable states with prior distribution	190
	6.4	Entropy for continuous measures on the line	194
	6.5	Maximum entropy principle for continuous fields	201
	6.6	An application of the maximum entropy principle to	
		geophysical flows with topography	204
	6.7	Application of the maximum entropy principle to geophysical	
		flows with topography and mean flow	211
		References	218
7	Equi	ilibrium statistical mechanics for systems of ordinary	
	di	fferential equations	219
	7.1	Introduction	219
	7.2	Introduction to statistical mechanics for ODEs	221
	7.3	Statistical mechanics for the truncated Burgers-Hopf equations	229
	7.4	The Lorenz 96 model	239
		References	255

Cambridge University Press 978-0-521-83441-4 — Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows Andrew Majda, Xiaoming Wang Frontmatter <u>More Information</u>

		Contents	vii
8	Stati	stical mechanics for the truncated quasi-geostrophic equations	256
	8.1	Introduction	256
	8.2	The finite-dimensional truncated quasi-geostrophic equations	258
	8.3	The statistical predictions for the truncated systems	262
	8.4	Numerical evidence supporting the statistical prediction	264
	8.5	The pseudo-energy and equilibrium statistical mechanics for	
		fluctuations about the mean	267
	8.6	The continuum limit	270
	8.7	The role of statistically relevant and irrelevant	
		conserved quantities	285
		References	285
		Appendix 1	286
9	Emp	irical statistical theories for most probable states	289
	9.1	Introduction	289
	9.2	Empirical statistical theories with a few constraints	291
	9.3	The mean field statistical theory for point vortices	299
	9.4	Empirical statistical theories with infinitely many constraints	309
	9.5	Non-linear stability for the most probable mean fields	313
		References	316
10	Asse	ssing the potential applicability of equilibrium statistical	
10	th	eories for geophysical flows: an overview	317
	10.1	Introduction	317
	10.2	Basic issues regarding equilibrium statistical theories	
		for geophysical flows	318
	10.3	The central role of equilibrium statistical theories with a	
		judicious prior distribution and a few external constraints	320
	10.4	The role of forcing and dissipation	322
	10.5	Is there a complete statistical mechanics theory for ESTMC	
		and ESTP?	324
		References	326
11	Pred	lictions and comparison of equilibrium statistical theories	328
	11.1	Introduction	328
	11.2	Predictions of the statistical theory with a judicious prior and a	
		few external constraints for beta-plane channel flow	330
	11.3	Statistical sharpness of statistical theories with few constraints	346
	11.4	The limit of many-constraint theory (ESTMC) with small	
		amplitude potential vorticity	355
		References	360

Cambridge University Press 978-0-521-83441-4 — Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows Andrew Majda, Xiaoming Wang Frontmatter <u>More Information</u>

viii		Contents	
12	Equi	librium statistical theories and dynamical modeling of	264
	10 1	by with forcing and dissipation	361
	12.1	Introduction	361
	12.2	Meta-stability of equilibrium statistical structures with	202
	10.0	Condension and small-scale forcing	302 205
	12.3	Crude closure for two-dimensional flows	385
	12.4	References	405 410
13	Pred	icting the jets and spots on Jupiter by equilibrium	
	sta	ntistical mechanics	411
	13.1	Introduction	411
	13.2	The quasi-geostrophic model for interpreting observations	
		and predictions for the weather layer of Jupiter	417
	13.3	The ESTP with physically motivated prior distribution	419
	13.4	Equilibrium statistical predictions for the jets and spots	
		on Jupiter	423
		References	426
14	The	statistical relevance of additional conserved quantities for	405
	tr	incated geophysical flows	427
	14.1	Introduction	427
	14.2	A numerical laboratory for the role of higher-order invariants	430
	14.3	Comparison with equilibrium statistical predictions	120
	1 4 4	with a judicious prior	438
	14.4	Statistically relevant conserved quantities for the	140
		truncated Burgers–Hopt equation	440
	A 1	References	442
	A.I	Spectral truncations of quasi-geostrophic flow with additional	440
		conserved quantities	442
15	A m	athematical framework for quantifying predictability	
	ut	ilizing relative entropy	452
	15.1	Ensemble prediction and relative entropy as a measure of	
		predictability	452
	15.2	Quantifying predictability for a Gaussian	
		prior distribution	459
	15.3	Non-Gaussian ensemble predictions in the Lorenz 96 model	466
	15.4	Information content beyond the climatology in ensemble	
		predictions for the truncated Burgers–Hopf model	472

Cambridge University Press 978-0-521-83441-4 — Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows Andrew Majda, Xiaoming Wang Frontmatter <u>More Information</u>

		Contents	ix
	15.5	Further developments in ensemble predictions and	
		information theory	478
		References	480
16	Baro	tropic quasi-geostrophic equations on the sphere	482
	16.1	Introduction	482
	16.2	Exact solutions, conserved quantities, and non-linear stability	490
	16.3	The response to large-scale forcing	510
	16.4	Selective decay on the sphere	516
	16.5	Energy enstrophy statistical theory on the unit sphere	524
	16.6	Statistical theories with a few constraints and statistical theories	
		with many constraints on the unit sphere	536
		References	542
		Appendix 1	542
		Appendix 2	546
Inde	ex		550

Cambridge University Press 978-0-521-83441-4 — Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows Andrew Majda, Xiaoming Wang Frontmatter <u>More Information</u>

Preface

This book is an introduction to the fascinating and important interplay between non-linear dynamics and statistical theories for geophysical flows. The book is designed for a multi-disciplinary audience ranging from beginning graduate students to senior researchers in applied mathematics as well as theoretically inclined graduate students and researchers in atmosphere/ocean science. The approach in this book emphasizes the serendipity between physical phenomena and modern applied mathematics, including rigorous mathematical analysis, qualitative models, and numerical simulations. The book includes more conventional topics for non-linear dynamics applied to geophysical flows, such as long time selective decay, the effect of large-scale forcing, non-linear stability and fluid flow on the sphere, as well as emerging contemporary research topics involving applications of chaotic dynamics, equilibrium statistical mechanics, and information theory. The various competing approaches for equilibrium statistical theories for geophysical flows are compared and contrasted systematically from the viewpoint of modern applied mathematics, including an application for predicting the Great Red Spot of Jupiter in a fashion consistent with the observational record. Novel applications of information theory are utilized to simplify, unify, and compare the equilibrium statistical theories and also to quantify aspects of predictability in non-linear dynamical systems with many degrees of freedom. No previous background in geophysical flows, probability theory, information theory, or equilibrium statistical mechanics is needed to read the text. These topics and related background concepts are all introduced and developed through elementary examples and discussion throughout the text as they arise. The book is also of wider interest to applied mathematicians and other scientists to illustrate how ideas from statistical physics can be applied in novel ways to inhomogeneous large-scale complex non-linear systems.

The material in the book is based on lectures of the first author given at the Courant Institute in 1995, 1997, 2001, and 2004. The first author thanks Professor

Cambridge University Press 978-0-521-83441-4 — Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows Andrew Majda, Xiaoming Wang Frontmatter <u>More Information</u>

xii

Preface

Pedro Embid as well as his former Ph.D. students Professor Pete Kramer and Seuyung Shim for their help with early versions of Chapters 1, 2, 3, 4, and 6 of the present book. Joint research work with Professors Richard Kleeman and Bruce Turkington as well as Majdas former Courant post docs, Professors Marcus Grote, Ilya Timofeyev, Rafail Abramov, and Mark DeBattista have been incorporated into the book; their explicit and implicit contributions are acknowledged warmly. The authors acknowledge generous support of the National Science Foundation and the Office of Naval Research during the development of this book, including partial salary support for Xiaoming Wangs visit to Courant in the spring semester of 2001.