Non-linear dynamics and statistical theories for basic geophysical flows
Non-linear dynamics and statistical theories for basic geophysical flows

ANDREW J. MAJDA
New York University

XIAOMING WANG
Florida State University
Contents

Preface xi

1 Barotropic geophysical flows and two-dimensional fluid flows: elementary introduction 1
 1.1 Introduction 1
 1.2 Some special exact solutions 8
 1.3 Conserved quantities 33
 1.4 Barotropic geophysical flows in a channel domain – an important physical model 44
 1.5 Variational derivatives and an optimization principle for elementary geophysical solutions 50
 1.6 More equations for geophysical flows 52
 References 58

2 The response to large-scale forcing 59
 2.1 Introduction 59
 2.2 Non-linear stability with Kolmogorov forcing 62
 Stability of flows with generalized Kolmogorov forcing 76
 References 79

3 The selective decay principle for basic geophysical flows 80
 3.1 Introduction 80
 3.2 Selective decay states and their invariance 82
 3.3 Mathematical formulation of the selective decay principle 84
 3.4 Energy–enstrophy decay 86
 3.5 Bounds on the Dirichlet quotient, \(\Lambda(t) \) 88
 3.6 Rigorous theory for selective decay 90
 3.7 Numerical experiments demonstrating facets of selective decay 95
 References 102
Contents

A.1 Stronger controls on $\Lambda(t)$ 103
A.2 The proof of the mathematical form of the selective decay principle in the presence of the beta-plane effect 107

4 Non-linear stability of steady geophysical flows 115
4.1 Introduction 115
4.2 Stability of simple steady states 116
4.3 Stability for more general steady states 124
4.4 Non-linear stability of zonal flows on the beta-plane 129
4.5 Variational characterization of the steady states 133
References 137

5 Topographic mean flow interaction, non-linear instability, and chaotic dynamics 138
5.1 Introduction 138
5.2 Systems with layered topography 141
5.3 Integrable behavior 145
5.4 A limit regime with chaotic solutions 154
5.5 Numerical experiments 167
References 178
Appendix 1 180
Appendix 2 181

6 Introduction to information theory and empirical statistical theory 183
6.1 Introduction 183
6.2 Information theory and Shannon’s entropy 184
6.3 Most probable states with prior distribution 190
6.4 Entropy for continuous measures on the line 194
6.5 Maximum entropy principle for continuous fields 201
6.6 An application of the maximum entropy principle to geophysical flows with topography 204
6.7 Application of the maximum entropy principle to geophysical flows with topography and mean flow 211
References 218

7 Equilibrium statistical mechanics for systems of ordinary differential equations 219
7.1 Introduction 219
7.2 Introduction to statistical mechanics for ODEs 221
7.3 Statistical mechanics for the truncated Burgers–Hopf equations 229
7.4 The Lorenz 96 model 239
References 255
8 Statistical mechanics for the truncated quasi-geostrophic equations 256
 8.1 Introduction 256
 8.2 The finite-dimensional truncated quasi-geostrophic equations 258
 8.3 The statistical predictions for the truncated systems 262
 8.4 Numerical evidence supporting the statistical prediction 264
 8.5 The pseudo-energy and equilibrium statistical mechanics for fluctuations about the mean 267
 8.6 The continuum limit 270
 8.7 The role of statistically relevant and irrelevant conserved quantities 285
 References 285
 Appendix 1 286

9 Empirical statistical theories for most probable states 289
 9.1 Introduction 289
 9.2 Empirical statistical theories with a few constraints 291
 9.3 The mean field statistical theory for point vortices 299
 9.4 Empirical statistical theories with infinitely many constraints 309
 9.5 Non-linear stability for the most probable mean fields 313
 References 316

10 Assessing the potential applicability of equilibrium statistical theories for geophysical flows: an overview 317
 10.1 Introduction 317
 10.2 Basic issues regarding equilibrium statistical theories for geophysical flows 318
 10.3 The central role of equilibrium statistical theories with a judicious prior distribution and a few external constraints 320
 10.4 The role of forcing and dissipation 322
 10.5 Is there a complete statistical mechanics theory for ESTMC and ESTP? 324
 References 326

11 Predictions and comparison of equilibrium statistical theories 328
 11.1 Introduction 328
 11.2 Predictions of the statistical theory with a judicious prior and a few external constraints for beta-plane channel flow 330
 11.3 Statistical sharpness of statistical theories with few constraints 346
 11.4 The limit of many-constraint theory (ESTMC) with small amplitude potential vorticity 355
 References 360
12 Equilibrium statistical theories and dynamical modeling of flows with forcing and dissipation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>361</td>
</tr>
<tr>
<td>12.2 Meta-stability of equilibrium statistical structures with dissipation and small-scale forcing</td>
<td>362</td>
</tr>
<tr>
<td>12.3 Crude closure for two-dimensional flows</td>
<td>385</td>
</tr>
<tr>
<td>12.4 Remarks on the mathematical justifications of crude closure</td>
<td>405</td>
</tr>
<tr>
<td>References</td>
<td>410</td>
</tr>
</tbody>
</table>

13 Predicting the jets and spots on Jupiter by equilibrium statistical mechanics

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Introduction</td>
<td>411</td>
</tr>
<tr>
<td>13.2 The quasi-geostrophic model for interpreting observations and predictions for the weather layer of Jupiter</td>
<td>417</td>
</tr>
<tr>
<td>13.3 The ESTP with physically motivated prior distribution</td>
<td>419</td>
</tr>
<tr>
<td>13.4 Equilibrium statistical predictions for the jets and spots on Jupiter</td>
<td>423</td>
</tr>
<tr>
<td>References</td>
<td>426</td>
</tr>
</tbody>
</table>

14 The statistical relevance of additional conserved quantities for truncated geophysical flows

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Introduction</td>
<td>427</td>
</tr>
<tr>
<td>14.2 A numerical laboratory for the role of higher-order invariants</td>
<td>430</td>
</tr>
<tr>
<td>14.3 Comparison with equilibrium statistical predictions with a judicious prior</td>
<td>438</td>
</tr>
<tr>
<td>14.4 Statistically relevant conserved quantities for the truncated Burgers–Hopf equation</td>
<td>440</td>
</tr>
<tr>
<td>References</td>
<td>442</td>
</tr>
</tbody>
</table>

A.1 Spectral truncations of quasi-geostrophic flow with additional conserved quantities

15 A mathematical framework for quantifying predictability utilizing relative entropy

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Ensemble prediction and relative entropy as a measure of predictability</td>
<td>452</td>
</tr>
<tr>
<td>15.2 Quantifying predictability for a Gaussian prior distribution</td>
<td>459</td>
</tr>
<tr>
<td>15.3 Non-Gaussian ensemble predictions in the Lorenz 96 model</td>
<td>466</td>
</tr>
<tr>
<td>15.4 Information content beyond the climatology in ensemble predictions for the truncated Burgers–Hopf model</td>
<td>472</td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>15.5 Further developments in ensemble predictions and information theory</td>
<td>478</td>
</tr>
<tr>
<td>References</td>
<td>480</td>
</tr>
<tr>
<td>16 Barotropic quasi-geostrophic equations on the sphere</td>
<td>482</td>
</tr>
<tr>
<td>16.1 Introduction</td>
<td>482</td>
</tr>
<tr>
<td>16.2 Exact solutions, conserved quantities, and non-linear stability</td>
<td>490</td>
</tr>
<tr>
<td>16.3 The response to large-scale forcing</td>
<td>510</td>
</tr>
<tr>
<td>16.4 Selective decay on the sphere</td>
<td>516</td>
</tr>
<tr>
<td>16.5 Energy enstrophy statistical theory on the unit sphere</td>
<td>524</td>
</tr>
<tr>
<td>16.6 Statistical theories with a few constraints and statistical theories with many constraints on the unit sphere</td>
<td>536</td>
</tr>
<tr>
<td>References</td>
<td>542</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>542</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>546</td>
</tr>
</tbody>
</table>

Index | 550
Preface

This book is an introduction to the fascinating and important interplay between non-linear dynamics and statistical theories for geophysical flows. The book is designed for a multi-disciplinary audience ranging from beginning graduate students to senior researchers in applied mathematics as well as theoretically inclined graduate students and researchers in atmosphere/ocean science. The approach in this book emphasizes the serendipity between physical phenomena and modern applied mathematics, including rigorous mathematical analysis, qualitative models, and numerical simulations. The book includes more conventional topics for non-linear dynamics applied to geophysical flows, such as long time selective decay, the effect of large-scale forcing, non-linear stability and fluid flow on the sphere, as well as emerging contemporary research topics involving applications of chaotic dynamics, equilibrium statistical mechanics, and information theory. The various competing approaches for equilibrium statistical theories for geophysical flows are compared and contrasted systematically from the viewpoint of modern applied mathematics, including an application for predicting the Great Red Spot of Jupiter in a fashion consistent with the observational record. Novel applications of information theory are utilized to simplify, unify, and compare the equilibrium statistical theories and also to quantify aspects of predictability in non-linear dynamical systems with many degrees of freedom. No previous background in geophysical flows, probability theory, information theory, or equilibrium statistical mechanics is needed to read the text. These topics and related background concepts are all introduced and developed through elementary examples and discussion throughout the text as they arise. The book is also of wider interest to applied mathematicians and other scientists to illustrate how ideas from statistical physics can be applied in novel ways to inhomogeneous large-scale complex non-linear systems.

The material in the book is based on lectures of the first author given at the Courant Institute in 1995, 1997, 2001, and 2004. The first author thanks Professor
Preface

Pedro Embid as well as his former Ph.D. students Professor Pete Kramer and Seuyung Shim for their help with early versions of Chapters 1, 2, 3, 4, and 6 of the present book. Joint research work with Professors Richard Kleeman and Bruce Turkington as well as Majdas former Courant post docs, Professors Marcus Grote, Ilya Timofeyev, Rafail Abramov, and Mark DeBattista have been incorporated into the book; their explicit and implicit contributions are acknowledged warmly. The authors acknowledge generous support of the National Science Foundation and the Office of Naval Research during the development of this book, including partial salary support for Xiaoming Wangs visit to Courant in the spring semester of 2001.