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1 Probability and Measure

1.1. The Texas Lotto

1.1.1. Introduction

Texans used to play the lotto by selecting six different numbers between 1
and 50, which cost $1 for each combination.1 Twice a week, on Wednesday and
Saturday at 10 .., six ping-pong balls were released without replacement from
a rotating plastic ball containing 50 ping-pong balls numbered 1 through 50.
The winner of the jackpot (which has occasionally accumulated to 60 or more
million dollars!) was the one who had all six drawn numbers correct, where the
order in which the numbers were drawn did not matter. If these conditions were
still being observed, what would the odds of winning by playing one set of six
numbers only?

To answer this question, suppose first that the order of the numbers does
matter. Then the number of ordered sets of 6 out of 50 numbers is 50 possibilities
for the first drawn number times 49 possibilities for the second drawn number,
times 48 possibilities for the third drawn number, times 47 possibilities for the
fourth drawn number, times 46 possibilities for the fifth drawn number, times
45 possibilities for the sixth drawn number:

5∏
j=0

(50 − j) =
50∏

k=45

k =
∏50

k=1 k∏50−6
k=1 k

= 50!

(50 − 6)!
.

1 In the spring of 2000, the Texas Lottery changed the rules. The number of balls was
increased to fifty-four to create a larger jackpot. The official reason for this change was
to make playing the lotto more attractive because a higher jackpot makes the lotto game
more exciting. Of course, the actual intent was to boost the lotto revenues!

1
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2 The Mathematical and Statistical Foundations of Econometrics

The notation n!, read “n factorial,” stands for the product of the natural numbers
1 through n:

n! = 1 × 2 × · · · × (n − 1) × n if n > 0, 0! = 1.

The reason for defining 0! = 1 will be explained in the next section.
Because a set of six given numbers can be permutated in 6! ways, we need

to correct the preceding number for the 6! replications of each unordered set
of six given numbers. Therefore, the number of sets of six unordered numbers
out of 50 is(

50

6

)
def.= 50!

6!(50 − 6)!
= 15,890,700.

Thus, the probability of winning such a lotto by playing only one combination
of six numbers is 1/15,890,700.2

1.1.2. Binomial Numbers

In general, the number of ways we can draw a set of k unordered objects out of
a set of n objects without replacement is

(n

k

)
def.= n!

k!(n − k)!
. (1.1)

These (binomial) numbers,3 read as “n choose k,” also appear as coefficients in
the binomial expansion

(a + b)n =
n∑

k=0

(n

k

)
akbn−k . (1.2)

The reason for defining 0! = 1 is now that the first and last coefficients in this
binomial expansion are always equal to 1:

(n

0

)
=

(n

n

)
= n!

0!n!
= 1

0!
= 1.

For not too large an n, the binomial numbers (1.1) can be computed recursively
by hand using the Triangle of Pascal:

2 Under the new rules (see Note 1), this probability is 1/25,827,165.
3 These binomial numbers can be computed using the “Tools → Discrete distribution

tools” menu of EasyReg International, the free econometrics software package de-
veloped by the author. EasyReg International can be downloaded from Web page
http://econ.la.psu.edu/∼hbierens/EASYREG.HTM
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Probability and Measure 3

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 . . . . . . . . . . . . . . . 1

(1.3)

Except for the 1’s on the legs and top of the triangle in (1.3), the entries are
the sum of the adjacent numbers on the previous line, which results from the
following easy equality:(

n − 1

k − 1

)
+

(
n − 1

k

)
=

(n

k

)
for n ≥ 2, k = 1, . . . , n − 1. (1.4)

Thus, the top 1 corresponds to n = 0, the second row corresponds to n = 1, the
third row corresponds to n = 2, and so on, and for each row n + 1, the entries
are the binomial numbers (1.1) for k = 0, . . . , n. For example, for n = 4 the
coefficients of akbn−k in the binomial expansion (1.2) can be found on row 5
in (1.3): (a + b)4 = 1 × a4 + 4 × a3b + 6 × a2b2 + 4 × ab3 + 1 × b4.

1.1.3. Sample Space

The Texas lotto is an example of a statistical experiment. The set of possible
outcomes of this statistical experiment is called the sample space and is usually
denoted by �. In the Texas lotto case, � contains N = 15,890,700 elements:
� = {ω1, . . . , ωN }, where each element ω j is a set itself consisting of six dif-
ferent numbers ranging from 1 to 50 such that for any pair ωi , ω j with i �= j ,
ωi �= ω j . Because in this case the elements ω j of � are sets themselves, the
condition ωi �= ω j for i �= j is equivalent to the condition that ωi ∩ ω j /∈ �.

1.1.4. Algebras and Sigma-Algebras of Events

A set {ω j1 , . . . , ω jk} of different number combinations you can bet on is called
an event. The collection of all these events, denoted by ö, is a “family” of
subsets of the sample space �. In the Texas lotto case the collection ö consists
of all subsets of �, including � itself and the empty set ∅.4 In principle, you
could bet on all number combinations if you were rich enough (it would cost
you $15,890,700). Therefore, the sample space � itself is included in ö. You
could also decide not to play at all. This event can be identified as the empty
set ∅. For the sake of completeness, it is included in ö as well.

4 Note that the latter phrase is superfluous because � ⊂ � signifies that every element of �

is included in �, which is clearly true, and ∅ ⊂ � is true because ∅ ⊂ ∅ ∪ � = �.
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4 The Mathematical and Statistical Foundations of Econometrics

Because, in the Texas lotto case, the collection ö contains all subsets of �,
it automatically satisfies the conditions

If A ∈ ö then Ã = �\A ∈ ö, (1.5)

where Ã = �\A is the complement of the set A (relative to the set �), that is,
the set of all elements of � that are not contained in A, and

If A, B ∈ ö then A ∪ B ∈ ö. (1.6)

By induction, the latter condition extends to any finite union of sets in ö: If
Aj ∈ ö for j = 1, 2, . . . , n, then ∪n

j=1 A j ∈ ö.

Definition 1.1: A collection ö of subsets of a nonempty set � satisfying the
conditions (1.5) and (1.6) is called an algebra.5

In the Texas lotto example, the sample space � is finite, and therefore the
collection ö of subsets of � is finite as well. Consequently, in this case the
condition (1.6) extends to

If A j ∈ ö for j = 1, 2, 3, . . . then
∞∪
j=1

A j ∈ ö. (1.7)

However, because in this case the collection ö of subsets of � is finite, there
are only a finite number of distinct sets Aj ∈ ö. Therefore, in the Texas lotto
case the countable infinite union ∪∞

j=1 A j in (1.7) involves only a finite number
of distinct sets Aj; the other sets are replications of these distinct sets. Thus,
condition (1.7) does not require that all the sets Aj ∈ ö are different.

Definition 1.2: A collection ö of subsets of a nonempty set � satisfying the
conditions (1.5) and (1.7) is called a σ -algebra.6

1.1.5. Probability Measure

Let us return to the Texas lotto example. The odds, or probability, of winning
are 1/N for each valid combination ω j of six numbers; hence, if you play n
different valid number combinations {ω j1 , . . . , ω jn}, the probability of winning
is n/N :P({ω j1 , . . . , ω jn }) = n/N . Thus, in the Texas lotto case the probability
P(A), A ∈ ö, is given by the number n of elements in the set A divided by the
total number N of elements in �. In particular we have P(�) = 1, and if you do
not play at all the probability of winning is zero: P(∅) = 0.

5 Also called a field.
6 Also called a σ -field or a Borel field.
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The function P(A), A ∈ö, is called a probability measure. It assigns a number
P(A) ∈ [0, 1] to each set A ∈ ö. Not every function that assigns numbers in
[0, 1] to the sets inö is a probability measure except as set forth in the following
definition:

Definition 1.3: A mapping P: ö → [0, 1] from a σ -algebra ö of subsets of
a set � into the unit interval is a probability measure on {�, ö} if it satisfies
the following three conditions:

For all A ∈ ö, P(A) ≥ 0, (1.8)

P(�) = 1, (1.9)

For disjoint sets A j ∈ ö, P

(
∞∪
j=1

A j

)
=

∞∑
j=1

P(A j ). (1.10)

Recall that sets are disjoint if they have no elements in common: their inter-
sections are the empty set.

The conditions (1.8) and (1.9) are clearly satisfied for the case of the Texas
lotto. On the other hand, in the case under review the collection ö of events
contains only a finite number of sets, and thus any countably infinite sequence of
sets in ö must contain sets that are the same. At first sight this seems to conflict
with the implicit assumption that countably infinite sequences of disjoint sets
always exist for which (1.10) holds. It is true indeed that any countably infinite
sequence of disjoint sets in a finite collection ö of sets can only contain a finite
number of nonempty sets. This is no problem, though, because all the other sets
are then equal to the empty set ∅. The empty set is disjoint with itself, ∅ ∩ ∅ = ∅,
and with any other set, A ∩ ∅ = ∅. Therefore, if ö is finite, then any countable
infinite sequence of disjoint sets consists of a finite number of nonempty sets
and an infinite number of replications of the empty set. Consequently, if ö is
finite, then it is sufficient to verify condition (1.10) for any pair of disjoint sets
A1, A2 in ö, P(A1 ∪ A2) = P(A1) + P(A2). Because, in the Texas lotto case
P(A1 ∪ A2) = (n1 + n2)/N , P(A1) = n1/N , and P(A2) = n2/N , where n1 is
the number of elements of A1 and n2 is the number of elements of A2, the latter
condition is satisfied and so is condition (1.10).

The statistical experiment is now completely described by the triple {�, ö,
P}, called the probability space, consisting of the sample space � (i.e., the set
of all possible outcomes of the statistical experiment involved), a σ -algebra
ö of events (i.e., a collection of subsets of the sample space � such that the
conditions (1.5) and (1.7) are satisfied), and a probability measure P: ö →
[0, 1] satisfying the conditions (1.8)–(1.10).

In the Texas lotto case the collection ö of events is an algebra, but because
ö is finite it is automatically a σ -algebra.
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6 The Mathematical and Statistical Foundations of Econometrics

1.2. Quality Control

1.2.1. Sampling without Replacement

As a second example, consider the following case. Suppose you are in charge of
quality control in a light bulb factory. Each day N light bulbs are produced. But
before they are shipped out to the retailers, the bulbs need to meet a minimum
quality standard such as not allowing more than R out of N bulbs to be defective.
The only way to verify this exactly is to try all the N bulbs out, but that will
be too costly. Therefore, the way quality control is conducted in practice is to
randomly draw n bulbs without replacement and to check how many bulbs in
this sample are defective.

As in the Texas lotto case, the number M of different samples sj of size n you
can draw out of a set of N elements without replacement is

M =
(

N

n

)
.

Each sample sj is characterized by a number kj of defective bulbs in the sample
involved. Let K be the actual number of defective bulbs. Then kj ∈ {0, 1, . . . ,
min(n, K)}.

Let � = {0, 1, . . . , n} and let the σ -algebra ö be the collection of all subsets
of �. The number of samples sj with kj = k ≤ min(n, K) defective bulbs is(

K

k

)(
N − K

n − k

)

because there are “K choose k” ways to draw k unordered numbers out of K
numbers without replacement and “N − K choose n − k” ways to draw n − k
unordered numbers out of N − K numbers without replacement. Of course,
in the case that n > K the number of samples s j with k j = k > min(n, K)
defective bulbs is zero. Therefore, let

P({k}) =
(

K
k

) (
N − K
n − k

)
(

N
n

) if 0 ≤ k ≤ min(n, K ),

P({k}) = 0 elsewhere, (1.11)

and for each set A = {k1, . . . , km} ∈ ö, let P(A) = ∑m
j=1 P({k j }). (Exercise:

Verify that this function P satisfies all the requirements of a probability mea-
sure.) The triple {�, ö, P} is now the probability space corresponding to this
statistical experiment.

The probabilities (1.11) are known as the hypergeometric (N, K, n) pro-
babilities.
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1.2.2. Quality Control in Practice7

The problem in applying this result in quality control is that K is unknown.
Therefore, in practice the following decision rule as to whether K ≤ R or not
is followed. Given a particular number r ≤ n, to be determined at the end of
this subsection, assume that the set of N bulbs meets the minimum quality
requirement K ≤ R if the number k of defective bulbs in the sample is less than
or equal to r. Then the set A(r) = {0, 1, . . . , r} corresponds to the assumption
that the set of N bulbs meets the minimum quality requirement K ≤ R, hereafter
indicated by “accept,” with probability

P(A(r )) =
r∑

k=0

P({k}) = pr (n, K ), (1.12)

say, whereas its complement Ã(r ) = {r + 1, . . . , n} corresponds to the assump-
tion that this set of N bulbs does not meet this quality requirement, hereafter
indicated by “reject,” with corresponding probability

P( Ã(r )) = 1 − pr (n, K ).

Given r, this decision rule yields two types of errors: a Type I error with prob-
ability 1 − pr (n, K ) if you reject, whereas in reality K ≤ R, and a Type II
error with probability pr (K , n) if you accept, whereas in reality K > R. The
probability of a Type I error has upper bound

p1(r, n) = 1 − min
K≤R

pr (n, K ), (1.13)

and the probability of a Type II error upper bound

p2(r, n) = max
K>R

pr (n, K ). (1.14)

To be able to choose r, one has to restrict either p1(r, n) or p2(r, n), or both.
Usually it is the former option that is restricted because a Type I error may
cause the whole stock of N bulbs to be trashed. Thus, allow the probability of
a Type I error to be a maximal α such as α = 0.05. Then r should be chosen
such that p1(r, n) ≤ α. Because p1(r, n) is decreasing in r, due to the fact that
(1.12) is increasing in r, we could in principle choose r arbitrarily large. But
because p2(r, n) is increasing in r, we should not choose r unnecessarily large.
Therefore, choose r = r (n|α), where r (n|α) is the minimum value of r for
which p1(r, n) ≤ α. Moreover, if we allow the Type II error to be maximal β,
we have to choose the sample size n such that p2(r (n|α), n) ≤ β.

As we will see in Chapters 5 and 6, this decision rule is an example of a
statistical test, where H0 : K ≤ R is called the null hypothesis to be tested at

7 This section may be skipped.



P1: JPJ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

0521834317c01 CB728-Bierens-v1 May 21, 2004 20:27

8 The Mathematical and Statistical Foundations of Econometrics

the α × 100% significance level against the alternative hypothesis H1 : K > R.
The number r (n|α) is called the critical value of the test, and the number k of
defective bulbs in the sample is called the test statistic.

1.2.3. Sampling with Replacement

As a third example, consider the quality control example in the previous section
except that now the light bulbs are sampled with replacement: After a bulb is
tested, it is put back in the stock of N bulbs even if the bulb involved proves to
be defective. The rationale for this behavior may be that the customers will at
most accept a fraction R/N of defective bulbs and thus will not complain as
long as the actual fraction K/N of defective bulbs does not exceed R/N . In
other words, why not sell defective light bulbs if doing so is acceptable to the
customers?

The sample space � and the σ -algebra ö are the same as in the case of
sampling without replacement, but the probability measure P is different. Con-
sider again a sample s j of size n containing k defective light bulbs. Because the
light bulbs are put back in the stock after being tested, there are K k ways of
drawing an ordered set of k defective bulbs and (N − K )n−k ways of drawing
an ordered set of n − k working bulbs. Thus, the number of ways we can draw,
with replacement, an ordered set of n light bulbs containing k defective bulbs is
K k(N − K )n−k . Moreover, as in the Texas lotto case, it follows that the number
of unordered sets of k defective bulbs and n − k working bulbs is “n choose
k.” Thus, the total number of ways we can choose a sample with replacement
containing k defective bulbs and n − k working bulbs in any order is(n

k

)
K k(N − K )n−k .

Moreover, the number of ways we can choose a sample of size n with replace-
ment is N n . Therefore,

P({k}) =
(n

k

) K k(N − K )n−k

N n

=
(n

k

)
pk(1 − p)n−k, k = 0, 1, 2, . . . , n, (1.15)

where p = K/N , and again for each set A = {k1, . . . , km} ∈ ö, P(A) =∑m
j=1 P({k j }). Of course, if we replace P({k}) in (1.11) by (1.15), the argument

in Section 1.2.2 still applies.
The probabilities (1.15) are known as the binomial (n, p) probabilities.

1.2.4. Limits of the Hypergeometric and Binomial Probabilities

Note that if N and K are large relative to n, the hypergeometric probability (1.11)
and the binomial probability (1.15) will be almost the same. This follows from
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the fact that, for fixed k and n,

P({k}) =
(

K
k

) (
N − K
n − k

)
(

N
n

) =
K !(N − K )!

K !(K − k)!(n − k)!(N − K − n + k)!
N !

n!(N−n)!

= n!

k!(n − k)!
×

K !(N − K )!
(K − k)!(N − K − n + k)!

N !
(N − n)!

=
(n

k

)
×

K !
(K − k)! × (N − K )!

(N − K − n + k)!
N !

(N − n)!

=
(n

k

)
×

(∏k
j=1(K − k + j)

)
×

(∏n−k
j=1(N − K − n + k + j)

)
∏n

j=1(N − n + j)

=
(n

k

)
×

[∏k
j=1

(
K
N − k

N + j
N

)]
×

[∏n−k
j=1

(
1 − K

N − n
N + k

N + j
N

)]
∏n

j=1

(
1 − n

N + j
N

)
→

(n

k

)
pk(1 − p)n−k if N → ∞ and K/N → p.

Thus, the binomial probabilities also arise as limits of the hypergeometric prob-
abilities.

Moreover, if in the case of the binomial probability (1.15) p is very small
and n is very large, the probability (1.15) can be approximated quite well by
the Poisson(λ) probability:

P({k}) = exp(−λ)
λk

k!
, k = 0, 1, 2, . . . , (1.16)

where λ = np. This follows from (1.15) by choosing p = λ/n for n > λ, with
λ > 0 fixed, and letting n → ∞ while keeping k fixed:

P({k}) =
(n

k

)
pk(1 − p )n−k

= n!

k!(n − k)!
(λ/n)k (1 − λ/n)n−k = λk

k!
× n!

nk(n − k)!

× (1 − λ/n)n

(1 − λ/n)k
→ exp(−λ)

λk

k!
for n → ∞,

because for n → ∞,

n!

nk(n − k)!
=

∏k
j=1(n − k + j)

nk
=

k∏
j=1

(
1 − k

n
+ j

n

)
→

k∏
j=1

1 = 1

(1 − λ/n)k → 1
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and

(1 − λ/n)n → exp(−λ). (1.17)

Due to the fact that (1.16) is the limit of (1.15) for p = λ/n ↓ 0 as n → ∞,
the Poisson probabilities (1.16) are often used to model the occurrence of rare
events.

Note that the sample space corresponding to the Poisson probabilities is
� = {0, 1, 2, . . .} and that the σ -algebra ö of events involved can be chosen
to be the collection of all subsets of � because any nonempty subset A of � is
either countable infinite or finite. If such a subset A is countable infinite, it takes
the form A = {k1, k2, k3, . . .}, where the k j ’s are distinct nonnegative integers;
hence, P(A) = ∑∞

j=1 P({k j }) is well-defined. The same applies of course if
A is finite: if A = {k1, . . . , km}, then P(A) = ∑m

j=1 P({k j }). This probability
measure clearly satisfies the conditions (1.8)–(1.10).

1.3. Why Do We Need Sigma-Algebras of Events?

In principle we could define a probability measure on an algebra ö of sub-
sets of the sample space rather than on a σ -algebra. We only need to change
condition (1.10) as follows: For disjoint sets A j ∈ ö such that ∪∞

j=1 A j ∈ ö,

P(∪∞
j=1 A j ) = ∑∞

j=1 P(A j ). By letting all but a finite number of these sets
be equal to the empty set, this condition then reads as follows: For disjoint
sets A j ∈ ö, j = 1, 2, . . . , n < ∞, P(∪n

j=1 A j ) = ∑n
j=1 P(A j ). However, if

we confined a probability measure to an algebra, all kinds of useful results
would no longer apply. One of these results is the so-called strong law of large
numbers (see Chapter 6).

As an example, consider the following game. Toss a fair coin infinitely many
times and assume that after each tossing you will get one dollar if the outcome
is heads and nothing if the outcome is tails. The sample space � in this case
can be expressed in terms of the winnings, that is, each element ω of � takes
the form of a string of infinitely many zeros and ones, for example, ω = (1, 1,
0, 1, 0, 1 . . .). Now consider the event: “After n tosses the winning is k dollars.”
This event corresponds to the set Ak,n of elements ω of � for which the sum
of the first n elements in the string involved is equal to k. For example, the set
A1,2 consists of all ω of the type (1, 0, . . .) and (0, 1, . . .). As in the example in
Section 1.2.3, it can be shown that

P(Ak,n) =
(n

k

)
(1/2 )n for k = 0, 1, 2, . . . , n,

P(Ak,n) = 0 for k > n or k < 0.

Next, for q = 1, 2, . . . , consider the events after n tosses the average winning
k/n is contained in the interval [0.5 − 1/q, 0.5 + 1/q]. These events corre-
spond to the sets Bq,n = ∪[n/2+n/q]

k=[n/2−n/q)]+1 Ak,n, where [x] denotes the smallest
integer ≥ x. Then the set ∩∞

m=n Bq,m corresponds to the following event:
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From the nth tossing onwards the average winning will stay in the interval
[0.5 − 1/q, 0.5 + 1/q]; the set ∪∞

n=1 ∩∞
m=n Bq,m corresponds to the event there

exists an n (possibly depending on ω) such that from the nth tossing onwards the
average winning will stay in the interval [0.5 − 1/q, 0.5 + 1/q]. Finally, the set
∩∞

q=1 ∪∞
n=1 ∩∞

m=n Bq,m corresponds to the event the average winning converges
to 1/2 as n converges to infinity. Now the strong law of large numbers states
that the latter event has probability 1: P[∩∞

q=1 ∪∞
n=1 ∩∞

m=n Bq,m] = 1. However,
this probability is only defined if ∩∞

q=1 ∪∞
n=1 ∩∞

m=n Bq,m ∈ ö. To guarantee this,
we need to require that ö be a σ -algebra.

1.4. Properties of Algebras and Sigma-Algebras

1.4.1. General Properties

In this section I will review the most important results regarding algebras, σ -
algebras, and probability measures.

Our first result is trivial:

Theorem 1.1: If an algebra contains only a finite number of sets, then it is a
σ -algebra. Consequently, an algebra of subsets of a finite set � is a σ -algebra.

However, an algebra of subsets of an infinite set � is not necessarily a σ -
algebra. A counterexample is the collection ö∗ of all subsets of � = (0, 1]
of the type (a, b], where a < b are rational numbers in [0, 1] together with
their finite unions and the empty set ∅. Verify that ö∗ is an algebra. Next,
let pn = [10nπ ]/10n and an = 1/pn , where [x] means truncation to the near-
est integer ≤ x. Note that pn ↑ π ; hence, an ↓ π−1 as n → ∞. Then, for
n = 1, 2, 3, . . . , (an, 1] ∈ ö∗, but ∪∞

n=1(an, 1] = (π−1, 1] /∈ ö∗ because π−1

is irrational. Thus, ö∗ is not a σ -algebra.

Theorem 1.2: If ö is an algebra, then A, B ∈ö implies A ∩ B ∈ö; hence, by
induction, Aj ∈ ö for j = 1, . . . , n < ∞ implies ∩n

j=1 A j ∈ ö. A collection
ö of subsets of a nonempty set � is an algebra if it satisfies condition (1.5) and
the condition that, for any pair A, B ∈ ö, A ∩ B ∈ ö.

Proof: Exercise.
Similarly, we have

Theorem 1.3: If ö is a σ -algebra, then for any countable sequence of sets
A j ∈ ö, ∩∞

j=1 A j ∈ ö. A collection ö of subsets of a nonempty set � is a
σ -algebra if it satisfies condition (1.5) and the condition that, for any countable
sequence of sets A j ∈ ö, ∩∞

j=1 A j ∈ ö.


