
CY370/Dean/FM CY370/Dean 0 521 83425 2 December 16, 2003 16:9 Char Count= 0

TALKING WITH
COMPUTERS
Explorations in the Science and
Technology of Computing

THOMAS DEAN
Brown University, Providence, Rhode Island

iii

CY370/Dean/FM CY370/Dean 0 521 83425 2 December 16, 2003 16:9 Char Count= 0

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

C© Thomas Dean 2004

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2004

Printed in the United States of America

Typefaces Stone Serif 9.5/13.5 pt., Optima, and Lucida Typewriter System LATEX 2ε [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Dean, Thomas L., 1950–
Talking with computers : explorations in the science and technology of computing / Thomas Dean.

p. cm.
Includes bibliographical references and index.
ISBN 0-521-83425-2 – ISBN 0-521-54204-9 (pb.)
1. Computer Science. 2. Computer programs. I. Title
QA76.D3333328 2004
946–dc22 2003065531

ISBN 0 521 83425 2 hardback
ISBN 0 521 54204 9 paperback

iv

CY370/Dean/FM CY370/Dean 0 521 83425 2 December 16, 2003 16:9 Char Count= 0

Contents

Preface page ix

Acknowledgments xiii

1 TALKING WITH COMPUTERS 1

1.1 Computers everywhere 2
1.2 Everyday magic 4
1.3 Hacking in mathematics 12
1.4 Programming in logic 13
1.5 Scheming in Lisp 17

2 THE SHELL GAME 22

2.1 Shell programming 24
2.2 Shell variables 29
2.3 Information passing 32
2.4 Asynchronous processes 37

3 KEEPING TRACK OF YOUR STUFF 41

3.1 Finding stuff 42
3.2 Organizing your stuff 47
3.3 Database management 51

4 DON’T SWEAT THE SYNTAX 57

4.1 Specifications and implementations 58
4.2 Syntactic variations across languages 63
4.3 Stylistic variations across implementations 67
4.4 Developing a facility for language 68

v

CY370/Dean/FM CY370/Dean 0 521 83425 2 December 16, 2003 16:9 Char Count= 0

vi
CONTENTS

5 COMPUTATIONAL MUDDLES 70

5.1 Computational models 71
5.2 The substitution model 77
5.3 Syntax and style revisited 81

6 GETTING ORIENTED 85

6.1 Structuring large programs 86
6.2 Procedures that remember 87
6.3 Object-oriented programming 92
6.4 Programming with constraints 95

7 THANKS FOR SHARING 103

7.1 Code for the taking 105
7.2 Class conscious 109
7.3 It’s just syntax 114

8 YOU’VE GOT (JUNK) EMAIL 121

8.1 Artificial intelligence 123
8.2 Machine learning 128
8.3 Learning with probabilities 133
8.4 Learning more about learning 138

9 MODERN ARCHITECTURE 140

9.1 Logic gates 141
9.2 The digital abstraction 144
9.3 Addition and multiplication 146
9.4 Computer memory 149
9.5 Machine language 152

10 DO ROBOTS SLEEP? 162

10.1 Stacks and subroutines 163
10.2 Managing tasks 168
10.3 Multithreaded robots 172
10.4 Allocating resources 178
10.5 Metaphorically speaking 184

11 UNDER THE HOOD 185

11.1 Client-server model 186
11.2 Acronym city 189
11.3 Alphabet soup 191
11.4 Smart milk cartons 193

CY370/Dean/FM CY370/Dean 0 521 83425 2 December 16, 2003 16:9 Char Count= 0

CONTENTS
vii

12 ANALYZE THIS 196

12.1 Analyzing algorithms 197
12.2 Computational limitations 205
12.3 Theory that matters 210

13 FOREST FOR THE TREES 213

13.1 Graph theory 214
13.2 Graph algorithms 217
13.3 File systems as graphs 228
13.4 The web graph 230
13.5 Pianos and robots 232

14 SEARCHING THE WILD WEB 237

14.1 Spiders in the web 237
14.2 Measuring similarity 240
14.3 Measuring authority 248
14.4 Searching for exotic fruit 254

15 DARWIN’S DANGEROUS ALGORITHM 257

15.1 Competing hypotheses 258
15.2 Genetic algorithms 259
15.3 Survival of the fittest 263

16 AIN’T NOBODY HERE BUT US MACHINES 271

16.1 Machine intelligence 272
16.2 Other minds 277
16.3 Freedom to choose 281
16.4 Carrying on 285

Bibliography 289

Index 295

book CY370/Dean 0 521 83425 2 December 11, 2003 18:41 Char Count= 0

CHAPTER ONE

Talking with Computers

Hardly a day goes by that I don’t write at least one short computer program: a
few lines of code to explore an idea or help organize my thoughts. I think of it as
simply talking with my computer, and more and more often there is a computer
available to talk with, often several of them joining in the conversation simulta-
neously. Each time you click on a link in a browser, you cause a sequence of com-
putations involving dozens if not hundreds of computers scattered all over the
world.

Making a computation happen is not, however, the same thing as program-
ming. There are lots of powerful programs written by talented programmers that
you can call up with a click of a mouse or few keystrokes. These programs animate
computers, breathing life and spirit into lumps of metal and plastic. Even if you
know what’s going on inside computers and computer programs, it’s easy to imag-
ine that programs are spells and the programmers who create them are sorcerers.
When you click on the icon for a program, you invoke these spells and the spells
conjure up spirits in the machine. But this book isn’t about invoking the spells
of others; it’s about creating your own spells and conjuring spirits of your own
design.

This is not to say I won’t encourage you to use code written by other program-
mers. Quite the contrary: an important part of the power of computing is that good
spells can be reused as often as needed. Programming is about weaving together
the spells of others, conjuring your own spirits, and animating the computer to
dance to your bidding. This book is about practical conjuring, about revealing
what’s behind some of the magic associated with computing while at the same
time learning to create your own magic. And the best way to begin a book about
computing and computer programming is to sit down in front of a computer and
start programming.

1

book CY370/Dean 0 521 83425 2 December 11, 2003 18:41 Char Count= 0

2
TALKING WITH COMPUTERS

1.1 COMPUTERS EVERYWHERE

The laptop computer on our breakfast table is connected to a wide-area network
(usually called the World Wide Web or the Internet) through a local-area wireless
network (our house) and a broadband connection supported by a local cable tele-
vision company. I leave the laptop on the table so I can read the headlines from
the online news services or check the weather while I eat breakfast. I also use it to
write and run small programs.

I use a program on my laptop (it’s called ssh for “secure shell”) to tunnel
through the firewall protecting the computers in the computer science department
at Brown and open a shell (a special program that lets me interact more or less
directly with the operating system – a variant of Unix in this case) on the machine
sitting in my office (its name, by the way, is “klee” for the artist Paul Klee – see
Figure 1.1 for the inspiration for this naming – and its symbolic address on the
Internet is “klee.cs.brown.edu”).

When I say “open a shell,” I mean that I make a window appear on my laptop
screen into which I can type commands to be interpreted by the shell program.
When I say that a program “interprets” a command, I mean that the program reads
the command I’ve typed and converts it into instructions that the computer can
carry out, thereby executing the command. The results of executing the command,
usually one or more lines of text, are then displayed in the same window as the
command was typed. The shell lets me write and run programs to do all sorts of
routine tasks from checking football statistics to keeping track of all of my email
messages, digital photos and music files.

The program ssh allows me to work remotely on computers that “trust me” in
such a way that the information sent back and forth between my laptop and klee
can’t be deciphered by someone with access to the wires on which the information
is transmitted and doesn’t allow a malicious hacker to break into either my laptop
or klee. I could open a shell on any of several hundred machines residing within
the firewall, but I generally choose to do it on my own machine rather than slow
down or “steal cycles” from a machine being used by someone else.

The time will soon come however when it won’t make much sense to talk
about “my machine” – computation will become as pervasive as indoor plumbing.
The Internet has blurred the distinction among individual computers. I’m almost
always connected to the Internet, but most of the time I don’t think about what
computer I’m talking with. When I’m in the department at Brown but not in
my office, I walk around with my laptop connected to the department wireless
network, which connects to a wide-area network and then to the Internet. Right
this minute I’m working at my laptop, typing into a shell that’s running on the

book CY370/Dean 0 521 83425 2 December 11, 2003 18:41 Char Count= 0

1.1 COMPUTERS EVERYWHERE
3

Figure 1.1: Paul Klee’s “Twittering Machine” (1922) c©2003 Artist Rights Society (ARS) New
York, VG Bild-Kunst, Bonn Digital Image c©The Museum A Modern Art/Licensed by SCALA/Art
Resource, NY

computer in my home office a few feet away, but in another window running on
my laptop I’m connected to klee. For all I know, the data that’s flowing between
these computers may be circling the globe, zipping through cables under the ocean
and bouncing off satellites along the way. Indeed, I could pretty easily force the
data to go through Zurich, Seattle or Tokyo.

Given the current state of the art, though, I do have to think a bit about where I
am, or rather where the program is that’s currently interpreting my keystrokes. The
reason I have to know which computer I’m working on is that different machines

book CY370/Dean 0 521 83425 2 December 11, 2003 18:41 Char Count= 0

4
TALKING WITH COMPUTERS

have different software, offer different services and have access to different sources
of data. I’m pretty confident that I won’t lose data that’s stored on the machines
in the department because I trust the folks who maintain those machines and
perform the backups on the file system there. But I have to do the backups on my
laptop and the machine in my home office myself, and I know I’m not very careful
about doing them.

Eventually, with the exception of very specialized programs and services, I
won’t have to worry about what computers are running the programs I need. This
is already true to a certain extent if you restrict your computing to what you can
do within a web browser, and yes, you can do a lot of useful computing within a
web browser. Some people don’t even distinguish between their web browser and
their computer; they do everything – email, news, shopping, entertainment and
education – from within their web browser.

For the last twenty years, I’ve been using programs to work on computers
thousands of miles away. In the early ’90s, it seemed miraculous to be sitting in a
Paris hotel room running programs on the computer in my office in Providence
or telling a computer at Stanford to transfer files to the portable computer on my
bed in the hotel room. Today, most “netizens” take this amazing connectivity for
granted and, though they may not know the magic incantations that animate
these processes, they routinely run programs on remote computers and fetch files
with the click of a mouse.

1.2 EVERYDAY MAGIC

I want to give you some examples of everyday programming, not fancy program-
ming, just examples of talking with computers and getting them to do interesting
things. I’ll use the phrase “invoking a program” to mean making a program run,
usually by typing its name and then zero or more expressions or “arguments”
that provide additional direction or information. Invoking programs with specific
arguments is one of the simplest ways to talk with a computer.

In summer 2002, I kept a journal to record ideas for this book. I put the journal
entries in a collection of files and directories on klee. Here I’m invoking a program
called wc (for “word count”) by typing into a shell running on klee in order to see
how much I wrote in my journal during August:

/u/tld/email/book % wc -l ./journal/02/08/*/*.txt

465 ./journal/02/08/01/day.txt

323 ./journal/02/08/02/day.txt

207 ./journal/02/08/04/day.txt

book CY370/Dean 0 521 83425 2 December 11, 2003 18:41 Char Count= 0

1.2 EVERYDAY MAGIC
5

445 ./journal/02/08/08/day.txt

215 ./journal/02/08/12/day.txt

299 ./journal/02/08/16/day.txt

700 ./journal/02/08/24/day.txt

335 ./journal/02/08/30/day.txt

857 ./journal/02/08/31/day.txt

3846 total

The /u/tld/email/book % part was printed by the shell. It’s called the
“prompt” and when I’m in the shell window (the portion of my computer screen
dedicated to the shell) the cursor is positioned at the end of the prompt waiting for
me to type something. I’ve modified the shell – the shell is itself programmable –
so that the prompt always displays the default directory in which the shell looks
for files.

When I’m finished typing I signal the shell, usually by hitting the “return”
(or “enter”) key on my keyboard, to interpret what I just typed. The directory
/u/tld/email/ is where I generally store files related to my daily activities.
/u/tld/email/book/ is the temporary directory I created for files related to work-
ing on this book.

I typed wc -l ./journal/02/08/*/*.txt and then hit the return key as
part of my conversation with the shell and so indirectly with the operating system
running on klee. More often than not when you invoke one program, that pro-
gram invokes another program, and that program another, and so on, with some
programs possibly invoking several other programs at once. A computer operating
system is just another program, really a collection of many programs written (and
rewritten) by many different people. You can think of the operating system as the
accumulated wisdom of a host of very clever programmers who packed it with
everything they felt was fundamentally useful for building other programs.

Other programs, applications such as web browsers and word processors, are
run “on top of” or “under the control of” the operating system. The operating
system sees all and controls all; it’s only through the operating system that your
programs can get information from the outside world (through a local network or
the World Wide Web) or send files to printers or grab data stored on disks or CDs.
If this seems mysterious, don’t worry; it really is complicated. The good news is
that for the most part you don’t have to understand the details, since the operat-
ing system hides a lot of the computer’s complexities from the programmer. This
ability to hide complexity is essential in developing large complicated programs
and makes learning to program much easier.

The specific command I typed told the shell to run the program wc to
count lines (the -l argument) in the files specified by the pattern ./journal/

book CY370/Dean 0 521 83425 2 December 11, 2003 18:41 Char Count= 0

6
TALKING WITH COMPUTERS

02/08/*/*.txt, where * is a “wildcard” that matches any string of characters.
With no perceptible pause, the shell printed out the next ten lines, which you
can think of as the answer to my question or the result of the computation. The
specified pattern matched nine files. Each of the first nine lines contains the name
of a file that matched the pattern preceded by the number of lines of text in that
file. For the first file listed, the first * matched 01 and the second * matched day.
The last line is the total number of lines of text in all of the files.

Let me say a few words about file systems and the strange strings of characters
containing slashes (/). A slash with no preceding text indicates the “root” directory;
as far we’re concerned, everything is stored under the root of the file system. The u
in /u/ is a symbolic link to the /home/ directory on the Brown file system where
the directories and files of computer users like me are stored. For the most part,
symbolic links are invisible to users but allow system managers to handle large
file systems more efficiently and transparently. The /u/tld/ designates my home
directory, where all my files are stored; my login name is tld for the initials of my
name, Thomas Linus Dean.

Most computer file systems are organized hierarchically. So, for instance, my
email directory /u/tld/email/ is one of many files and directories stored in my
home directory, and the directory /u/tld/email/book/ is one of many files and
directories stored in my email directory.

Files can be named absolutely with respect to the root directory or relatively
with respect to some other starting directory. When you’re in the directory
/u/tld/email/book/, ./journal/02/08/30/day.txt is a shorthand refer-
ence (or relative path name) for /u/tld/email/book/journal/02/08/30/day.
txt, which is the full name (or absolute path name) for the file. I keep all files for jour-
nal entries written in 2002 in ./journal/02/, all files for August 2002 in ./jour-

nal/02/08/, and all files for 30 August 2002 in ./journal/02/08/30/. If I
had typed wc -l ./journal/02/*/01/*.txt, the shell would have reported on
all journal entries written on the first day of some month in 2002.

Absolute and relative path names can be confusing until you’ve played with
them a bit, and even then you can easily get lost in a file system consisting of
thousands of directories, in the same way that you can get lost navigating in a col-
lection of web pages. For the most part, however, the nested, hierarchical directory
structure makes it relatively easy to keep track of where you are and is a useful way
to organize all sorts of data (including web pages). Consider these files from my
journal directory:

/u/tld/email/book/journal/02/year.txt

/u/tld/email/book/journal/02/year.htm

/u/tld/email/book/journal/02/08/month.txt

book CY370/Dean 0 521 83425 2 December 11, 2003 18:41 Char Count= 0

1.2 EVERYDAY MAGIC
7

/u/tld/email/book/journal/02/08/month.htm

/u/tld/email/book/journal/02/08/30/day.txt

/u/tld/email/book/journal/02/08/30/day.htm

/u/tld/email/book/journal/02/08/31/day.txt

/u/tld/email/book/journal/02/08/31/day.htm

/u/tld/email/book/journal/02/09/month.txt

/u/tld/email/book/journal/02/09/month.htm

/u/tld/email/book/journal/02/09/01/day.txt

/u/tld/email/book/journal/02/09/01/day.htm

/u/tld/email/book/journal/02/09/02/day.txt

/u/tld/email/book/journal/02/09/02/day.htm

When listed this way, it’s hard to discern the organizational structure inherent
in calendars, though it’s there in the absolute path names if you look hard enough.
The underlying structure is similar to a tree, with files corresponding to leaves
and directories corresponding to branches. Figure 1.2 shows these files as a tree
(or, rather, the branch of the tree called /u/tld/email/book/journal/02/).
You can think of Figure 1.2 as grafted onto the tree rooted at / at the branch
/u/tld/email/journal/. The same basic tree-like structure that underlies hier-
archical file systems in most modern operating systems appears again and again in
computer science.

The incantation wc -l ./journal/02/08/*/*.txt really is a program of
sorts, albeit a short and rather cryptic one. That this short program called an-
other program wc is not at all unusual: most programming languages provide ac-
cess to all sorts of specialized programs. Even + in a language that allows 1 +

2 is a program (and not a simple one if you understand how computers handle
arithmetic).

Shells and other means of interacting with operating systems offer a wide range
of powerful programs that can be orchestrated to perform tasks. For example, the
next program (called a shell script) renames all files with the extension html to
have the extension htm. The HTML (“hypertext markup language”) files that com-
prise web sites are conventionally identified using either the three-letter extension
htm or the four-letter extension html. Both conventions are common in practice.
Unfortunately, some programs require one or the other exclusively and if your files
are in the wrong format, you have to convert them. I used the program ls (for “list
directory contents”) to list all of the files in the current directory prior to executing
the program to rename the files. After executing the program, I used ls again to
show that the shell script worked as advertised. In the remainder of this chapter,
I’ve simplified the prompt to just %; each appearance of % signals the beginning of
another typed command.

book CY370/Dean 0 521 83425 2 December 11, 2003 18:41 Char Count= 0

8
TALKING WITH COMPUTERS

year.txt year.htm

02/

day.txt

day.htm

month.txt

month.htm

30/

31/

08/

day.txt

day.htm

01/

02/

09/

month.txt

month.htm

day.txt

day.htm

day.txt

day.htm

Figure 1.2: Files and directories organized hierarchically in a tree-like structure

% ls

home.html syllabus.html

% ls | sed ’s/html//’ | awk ’{print ”mv ” $1 ”html ” $1 ”htm”}’ | sh

% ls

home.htm syllabus.htm

The program starts by listing the set of files with the extension html.1 Unix
programmers call the vertical bars (|) “pipes”: they convert the output of one pro-
gram, ls in this case, into the input to another program. The sed ’s/html//’

1 In this example, all the files in the current directory have the extension html. If they didn’t, we could
modify the shell script by telling ls to list only files with the extension html. For example, substituting
ls *.html for ls would do the trick here. We’ll learn more about shells and shell scripts in Chapter 2.

book CY370/Dean 0 521 83425 2 December 11, 2003 18:41 Char Count= 0

1.2 EVERYDAY MAGIC
9

home.htmlsyllabus.html

sed 's/html//'home. syllabus.

awk '{print "mv " $1 "html " $1 "htm"}'

mv home.html home.htm

mv syllabus.html syllabus.htm

sh

ls

Figure 1.3: Intermediate results flowing through pipes connecting one command to the next
in a shell script

part of the program takes each file name in turn and rips off the html part; the out-
put of sed ’s/html//’ is two truncated file names home. and syllabus.. The
next | causes these file names to be piped into the program fragment awk ’{print

”mv ” $1 ”html ” $1 ”htm”}’ that essentially writes two little programs that
are themselves shell scripts and look like mv home.html home.htm and mv syl-

labus.html syllabus.htm (mv is the “move” or “rename” command and re-
quires you to specify both the original and the new names of the file you’re renam-
ing). The output of awk ’{print ”mv ” $1 ”html ” $1 ”htm”}’ is fed into
the program sh (yet another shell – remember we’re already typing to one shell)
via the last | . Figure 1.3 illustrates how the intermediate results from the different
steps in this computation are piped from one step to the next.

If you think about it, this little program is pretty interesting despite its simple
task. The program actually wrote a couple of littler programs, started up a shell and
submitted those programs to the new shell to run, producing the desired outcome.
Programs that write and run other programs and even replicate or improve upon
themselves are relatively common, for example, computer viruses.

book CY370/Dean 0 521 83425 2 December 11, 2003 18:41 Char Count= 0

10
TALKING WITH COMPUTERS

With a few simple modifications, this program could change the names of
thousands of files stored in any number of directories and on any number of com-
puters. With just a little more work, you could write a program that would go inside
each of these files and change any reference in the text to a file with extension html

to have the extension htm. If you were maintaining a web site with thousands of
web pages spread across hundreds of directories, you might end up writing and
running similar programs frequently.

By the way, there’s always more than one way to solve any given programming
problem, and I certainly don’t claim that this shell script is the most elegant or
efficient way of handling renaming. We could, for example, eliminate awk from our
script and manage everything using sed, as in ls | sed ’s/\(.*\)html/mv

\1html \1htm/’ | sh. However, the most compact program is not always the
best: I find the original script clearer and more appealing, though I admit this is
an aesthetic judgment.

Let’s try something a little more complicated. Many web masters use a language
called Perl both to maintain web pages and to do computations for visitors to their
web pages. Suppose a bunch of your text files refer to dates in the format mm/dd/yy
and you want to change them so as to name months explicitly, perhaps to avoid
confusion with the alternative format dd/mm/yy. You might also want to try to
clear up the ambiguity of the century implied when only two digits are used for
the year. I just created a short text file of the sort I’d like to modify and I’ll get
the shell to print it out using cat, a Unix command for creating, displaying and
stringing together (or concatenating) files:

% cat dates.txt

The date 1/1/00 should be changed,

as should 12/31/1999 and 1/1/2002,

but not the file /usr/local/bin/.

I’ve written a little Perl program in a file called program.pl to perform the
conversion, and again I get the shell to print it out:

% cat program.pl

@month = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);

while ($_ = <ARGV>) {

s”\b(\d\d?)/(\d\d?)/(?:19)?(\d\d)\b”$month[$1-1] $2, 19$3”;

s”\b(\d\d?)/(\d\d?)/(?:20)(\d\d)\b”$month[$1-1] $2, 20$3”;

print ”$_”;

}

book CY370/Dean 0 521 83425 2 December 11, 2003 18:41 Char Count= 0

1.2 EVERYDAY MAGIC
11

Finally, I invoke my program indirectly by calling a program called perl with
the name of the file in which I’ve stored my program as an argument. The perl
program knows how to interpret programs written in the Perl language and pro-

gram.pl has become another command that I can execute from the shell. Now I
tell perl and the shell – in some cases several programs are reading and processing
what I type – to take as input the contents of the file dates.txt and to store the
output of the program, the result of executing the print statement in program.pl

multiple times, in a file called dates.out:

% perl program.pl dates.txt > dates.out

I’ll tell the shell to print dates.out so we can see what the program did:

% cat dates.out

The date Jan 1, 1900 should be changed,

as should Dec 31, 1999 and Jan 1, 2002,

but not the file /usr/local/bin/.

Not too exciting, and I’ll bet that program.pl will get the year wrong as
often as it gets it right, but you get the general idea. It’s not important that you
understand the exact syntax of the Perl program except to note that it uses a
loop (the part of the program that begins with while) to read each line of the
file, makes substitutions where appropriate and then prints out the line with the
substitutions. The syntax for specifying substitutions is particularly terse in large
part because Perl programmers use it so often. Programming languages, like natural
languages, typically have short ways of saying things you want to say often.

My Perl program was long enough that I couldn’t type it out on a single line,
or at least not conveniently, so I put it in a file and submitted the file to the Perl
interpreter, perl. The Perl interpreter is a program that converts programs written
in Perl into commands that are carried out by other programs (such as those com-
prising the operating system) and ultimately into instructions that run directly on
the hardware of a particular machine. You may have heard that computer pro-
grams have to be “compiled” into some other form before they can be “executed”
but, while this is true, it’s largely beside the point. The exact manner in which
a piece of syntax such as while ($_ = <ARGV>) { ... } is converted into a
form that can be handled by the primitive hardware of a particular machine is very
complicated, and you don’t need to know it in order to be an effective programmer.

Some people distinguish between programs called compilers and programs
called interpreters. However, they both do basically the same thing: convert pro-
grams in one format into a different format that is more readily available for

book CY370/Dean 0 521 83425 2 December 11, 2003 18:41 Char Count= 0

12
TALKING WITH COMPUTERS

performing computations. Usually a programmer works in a programming envi-
ronment made up of tools for editing, debugging, testing, using, and packaging
programs. I prefer programming environments that let me interact easily with my
programs while I’m developing them. Most modern programming environments
allow some sort of interaction, and often there is little distinction between writing,
running and using programs. Writing programs and using the tools that are part of
a programming environment are just how you get your work done, whether you’re
working in biotechnology, analyzing data from an archaeological dig, or building
a web site for your startup.

Different programming languages and programming environments support
different styles of programming, different modes of interaction and different ways
of thinking about computation. Here are some other languages and environments
I use frequently.

1.3 HACKING IN MATHEMATICS

I use the Mathematica programming environment for all sorts of programming
that involves mathematics. Most of the time I use the fancy graphical front end
that lets me create two- and three-dimensional graphics. It’s great for visualizing
mathematical functions and analyzing data. But I also occasionally invoke Math-
ematica in a shell and use it as a fancy calculator. Mathematica can solve algebraic
equations much better than I can with paper and pencil, and it can do symbolic
differentiation and integration in a snap. It doesn’t replace a good mathematics
education so much as it augments it.

When I invoke the Mathematica program, called mathematica on my com-
puter, it takes over from the shell and interprets what I type. Mathematica displays
the prompt, In[n]:=, after interpreting the first n − 1 commands, thereby invit-
ing me to type my nth command, and it then reads each subsequent line I type
until it encounters a “shift return” (hold down the shift key and simultaneously
hit the return key). At this point Mathematica attempts to make sense of my com-
mand, prints out the prefix Out[n]=, and displays the result of interpreting the
nth command:

% mathematica

In[1]:= Solve[xˆ2 - 4 == 0, x]

Out[1]= {{x -> -2}, {x -> 2}}

In[2]:= Solve[xˆ2 + 2 x - 7 == 0, x]

Out[2]= {{x -> -1 - 2 Sqrt[2]}, {x -> -1 + 2 Sqrt[2]}}

book CY370/Dean 0 521 83425 2 December 11, 2003 18:41 Char Count= 0

1.4 PROGRAMMING IN LOGIC
13

In[3]:= D[xˆ3, x]

Out[3]= 3 xˆ2

In[4]:= Integrate[Cos[x], x]

Out[4]= Sin[x]

This exchange doesn’t begin to show off what Mathematica can do, and the
standard graphical user interface that most people use to interact with Mathematica
is amazingly powerful; other products such as Maple and Matlab provide similar
functionality. The neat thing about all these programs is that some very smart
programmers have developed powerful tools that let us exploit their knowledge of
mathematics.

You may have heard some pontificating math instructor berate students with
“I’ve forgotten more mathematics than you’ll ever learn,” but at times I feel I’ve
forgotten more mathematics than I ever learned. I barely remember that the indef-
inite integral

∫
cos θ dθ is equal to sin θ and I have to think for a minute to calculate

the roots of equations like x2 + 2x − 7 = 0, but programs like Mathematica allow
me to handle these problems and all sorts of mathematical gymnastics without
retaining tomes of esoteric mathematical knowledge. Using Mathematica doesn’t
make me as good as a practicing mathematician, but I’m a lot better off than I
would be with just a library of math textbooks.

Programs like Mathematica act as intelligence amplifiers, combining the func-
tionality of supercalculators with that of electronic encyclopedias that place huge
amounts of knowledge at your fingertips.2 Just as a diesel engine amplifies physi-
cal strength and a telescope amplifies visual acuity, so carefully crafted programs
can amplify intellectual power. We’ll see several examples in the following chap-
ters of how programs like Mathematica can help in writing programs that rely on
mathematical concepts.

1.4 PROGRAMMING IN LOGIC

Prolog is a programming language in which programs are specified using state-
ments in logic. Prolog is great for writing programs that depend on complex rules

2 In 1945, Vannevar Bush, Director of the United States Office of Scientific Research and Development,
wrote an Atlantic Monthly article called “As We May Think” that, anticipating the Internet, outlined
how computers could be used to supplement our memories, provide ready access to all human knowl-
edge, and amplify our mental abilities. J. C. R. Licklider (1960) espoused a similar view with further
embellishment in his very readable “Man-Computer Symbiosis.” Both these articles are now available
in several history-of-computing archives on the World Wide Web, as anticipated by Bush and Licklider.

book CY370/Dean 0 521 83425 2 December 11, 2003 18:41 Char Count= 0

14
TALKING WITH COMPUTERS

and relationships. If I were writing a program that computed employees’ medi-
cal benefits or depended on the tax laws, I’d definitely write it in Prolog. Even if
you never use Prolog to write a practical program, learning about it teaches you
strategies for solving problems such as those involving complex rules. Indeed, pro-
grammers working on large programs written in Java or C++ often write a mini
version of Prolog as part of the large program just to handle the parts of the prob-
lem involving complex rules. It’s also not uncommon for a program written in one
language to provide input to and accept output from a program written in another
language; in this way a programmer can use the most appropriate language for the
problem at hand.

Here we’ll create a Prolog database by first asserting three simple facts: Fred
is one of Anne’s parents, Anne is one of Lucy’s parents and Lucy is one of Bill’s
parents. Next we specify two general rules indicating that your parents are your
ancestors, as are their parents. Then we query the database to see if Prolog gets it
right.

Terms that begin with lowercase letters, like fred, are constants and those that
begin with uppercase letters, like X, are variables. If you don’t know the difference
between constants and variables, think back to when you learned algebra: con-
stants were typically numbers and variables were often denoted by letters like x or
y. Variables in Prolog don’t behave exactly like the variables in algebraic formulas
(nor, for that matter, like the variables in other programming languages), but the
analogy to algebra will work for our present purposes. Instead of x and y, in Prolog
we’ll use X and Y.

In the next interaction, the part corresponding to the assertion of the three
facts and two rules should be pretty clear – I typed the strings beginning with
assert and ending with a period. The period tells Prolog that I’m finished typing
and that it should go ahead and try to interpret whatever preceded the period.
Statements of the form assert(expression) correspond to assertions that end
up in the Prolog database, and all other statements are interpreted as queries or
requests for Prolog to answer questions about the information contained in its
database.

Prolog responds to each individual assertion with “yes.” The rule ances-

tor(X, Y) :- parent(X, Y)) can be read as “X is the ancestor of Y if X is the
parent of Y”. The :- corresponds to “if.” Similarly, ancestor(X, Y) :- par-

ent(X, Z), parent(Z, Y) can be read as “X is the ancestor of Y if X is the
parent of Z and Z is the parent of Y”. The comma separating parent(X, Z) and
parent(Z, Y) means “and.”

The line ancestor(fred, X) is a query requesting Prolog to find assign-
ments to the variable X, for example, assigning X the constant anne, so that, if you

book CY370/Dean 0 521 83425 2 December 11, 2003 18:41 Char Count= 0

1.4 PROGRAMMING IN LOGIC
15

substitute the assigned constants for the indicated variables, the resulting expres-
sion, say ancestor(fred, anne), would be true. We use this query to ask Prolog
to list all Fred’s descendants.3 In response to this line, Prolog prints out a variable
assignment, say X = anne, followed by a ? asking if this assignment is the one I
was looking for. In response to each ?, I typed “no” and thereby made Prolog look
for another assignment.

% prolog

| ?- assert(parent(fred, anne)).

yes

| ?- assert(parent(anne, lucy)).

yes

| ?- assert(parent(lucy, bill)).

yes

| ?- assert((ancestor(X, Y) :- parent(X, Y))).

yes

| ?- assert((ancestor(X, Y) :- parent(X, Z), parent(Z, Y))).

yes

| ?- ancestor(fred, X).

X = anne ? no

X = lucy ? no

no

By repeatedly typing “no” to each assignment, I forced Prolog to print out all
the answers to my query that it could find as facts in the database or derive from
the rules. The final “no” printed by Prolog indicates that it couldn’t find any more
assignments. Did it get them all? Almost, but our second rule wasn’t as general as it
could have been. We expect Fred to be one of Bill’s ancestors, but our rule doesn’t
cover this case. A query containing no variables, for example, ancestor(fred,
bill), just asks Prolog to verify if the statement corresponding to the query is
true. So if we ask Prolog about Fred and Bill, it simply returns “no”:

| ?- ancestor(fred, bill).

no

3 The relations “ancestor” and “descendant” are said to be inverses of one another. We could have written
descendant(anne, fred) instead of ancestor(fred, anne) but it’s not necessary to assert both
facts: The query ancestor(X, anne) finds all of Anne’s ancestors and the query ancestor(anne,

X) finds all of Anne’s descendants. If you really want to use both the ancestor and descendant relation
explicitly, you can define the descendant relation in terms of the ancestor relation by adding the rule
descendant(X, Y) :- ancestor(Y, X). This is a good example of how Prolog makes it easy to
think about logical relationships.

