
CHAPTER ONE

Talking with Computers

Hardly a day goes by that I don’t write at least one short computer program: a
few lines of code to explore an idea or help organize my thoughts. I think of it as
simply talking with my computer, and more and more often there is a computer
available to talk with, often several of them joining in the conversation simulta-
neously. Each time you click on a link in a browser, you cause a sequence of com-
putations involving dozens if not hundreds of computers scattered all over the
world.

Making a computation happen is not, however, the same thing as program-
ming. There are lots of powerful programs written by talented programmers that
you can call up with a click of a mouse or few keystrokes. These programs animate
computers, breathing life and spirit into lumps of metal and plastic. Even if you
know what’s going on inside computers and computer programs, it’s easy to imag-
ine that programs are spells and the programmers who create them are sorcerers.
When you click on the icon for a program, you invoke these spells and the spells
conjure up spirits in the machine. But this book isn’t about invoking the spells
of others; it’s about creating your own spells and conjuring spirits of your own
design.

This is not to say I won’t encourage you to use code written by other program-
mers. Quite the contrary: an important part of the power of computing is that good
spells can be reused as often as needed. Programming is about weaving together
the spells of others, conjuring your own spirits, and animating the computer to
dance to your bidding. This book is about practical conjuring, about revealing
what’s behind some of the magic associated with computing while at the same
time learning to create your own magic. And the best way to begin a book about
computing and computer programming is to sit down in front of a computer and
start programming.

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-83425-4 - Talking with Computers: Explorations in the Science and Technology of Computing
Thomas Dean
Excerpt
More information

http://www.cambridge.org/9780521834254
http://www.cambridge.org
http://www.cambridge.org

2
TALKING WITH COMPUTERS

1.1 COMPUTERS EVERYWHERE

The laptop computer on our breakfast table is connected to a wide-area network
(usually called the World Wide Web or the Internet) through a local-area wireless
network (our house) and a broadband connection supported by a local cable tele-
vision company. I leave the laptop on the table so I can read the headlines from
the online news services or check the weather while I eat breakfast. I also use it to
write and run small programs.

I use a program on my laptop (it’s called ssh for “secure shell”) to tunnel
through the firewall protecting the computers in the computer science department
at Brown and open a shell (a special program that lets me interact more or less
directly with the operating system – a variant of Unix in this case) on the machine
sitting in my office (its name, by the way, is “klee” for the artist Paul Klee – see
Figure 1.1 for the inspiration for this naming – and its symbolic address on the
Internet is “klee.cs.brown.edu”).

When I say “open a shell,” I mean that I make a window appear on my laptop
screen into which I can type commands to be interpreted by the shell program.
When I say that a program “interprets” a command, I mean that the program reads
the command I’ve typed and converts it into instructions that the computer can
carry out, thereby executing the command. The results of executing the command,
usually one or more lines of text, are then displayed in the same window as the
command was typed. The shell lets me write and run programs to do all sorts of
routine tasks from checking football statistics to keeping track of all of my email
messages, digital photos and music files.

The program ssh allows me to work remotely on computers that “trust me” in
such a way that the information sent back and forth between my laptop and klee
can’t be deciphered by someone with access to the wires on which the information
is transmitted and doesn’t allow a malicious hacker to break into either my laptop
or klee. I could open a shell on any of several hundred machines residing within
the firewall, but I generally choose to do it on my own machine rather than slow
down or “steal cycles” from a machine being used by someone else.

The time will soon come however when it won’t make much sense to talk
about “my machine” – computation will become as pervasive as indoor plumbing.
The Internet has blurred the distinction among individual computers. I’m almost
always connected to the Internet, but most of the time I don’t think about what
computer I’m talking with. When I’m in the department at Brown but not in
my office, I walk around with my laptop connected to the department wireless
network, which connects to a wide-area network and then to the Internet. Right
this minute I’m working at my laptop, typing into a shell that’s running on the

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-83425-4 - Talking with Computers: Explorations in the Science and Technology of Computing
Thomas Dean
Excerpt
More information

http://www.cambridge.org/9780521834254
http://www.cambridge.org
http://www.cambridge.org

1.1 COMPUTERS EVERYWHERE
3

Figure 1.1: Paul Klee’s “Twittering Machine” (1922) c©2003 Artist Rights Society (ARS) New
York, VG Bild-Kunst, Bonn Digital Image c©The Museum A Modern Art/Licensed by SCALA/Art
Resource, NY

computer in my home office a few feet away, but in another window running on
my laptop I’m connected to klee. For all I know, the data that’s flowing between
these computers may be circling the globe, zipping through cables under the ocean
and bouncing off satellites along the way. Indeed, I could pretty easily force the
data to go through Zurich, Seattle or Tokyo.

Given the current state of the art, though, I do have to think a bit about where I
am, or rather where the program is that’s currently interpreting my keystrokes. The
reason I have to know which computer I’m working on is that different machines

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-83425-4 - Talking with Computers: Explorations in the Science and Technology of Computing
Thomas Dean
Excerpt
More information

http://www.cambridge.org/9780521834254
http://www.cambridge.org
http://www.cambridge.org

4
TALKING WITH COMPUTERS

have different software, offer different services and have access to different sources
of data. I’m pretty confident that I won’t lose data that’s stored on the machines
in the department because I trust the folks who maintain those machines and
perform the backups on the file system there. But I have to do the backups on my
laptop and the machine in my home office myself, and I know I’m not very careful
about doing them.

Eventually, with the exception of very specialized programs and services, I
won’t have to worry about what computers are running the programs I need. This
is already true to a certain extent if you restrict your computing to what you can
do within a web browser, and yes, you can do a lot of useful computing within a
web browser. Some people don’t even distinguish between their web browser and
their computer; they do everything – email, news, shopping, entertainment and
education – from within their web browser.

For the last twenty years, I’ve been using programs to work on computers
thousands of miles away. In the early ’90s, it seemed miraculous to be sitting in a
Paris hotel room running programs on the computer in my office in Providence
or telling a computer at Stanford to transfer files to the portable computer on my
bed in the hotel room. Today, most “netizens” take this amazing connectivity for
granted and, though they may not know the magic incantations that animate
these processes, they routinely run programs on remote computers and fetch files
with the click of a mouse.

1.2 EVERYDAY MAGIC

I want to give you some examples of everyday programming, not fancy program-
ming, just examples of talking with computers and getting them to do interesting
things. I’ll use the phrase “invoking a program” to mean making a program run,
usually by typing its name and then zero or more expressions or “arguments”
that provide additional direction or information. Invoking programs with specific
arguments is one of the simplest ways to talk with a computer.

In summer 2002, I kept a journal to record ideas for this book. I put the journal
entries in a collection of files and directories on klee. Here I’m invoking a program
called wc (for “word count”) by typing into a shell running on klee in order to see
how much I wrote in my journal during August:

/u/tld/email/book % wc -l ./journal/02/08/*/*.txt

465 ./journal/02/08/01/day.txt

323 ./journal/02/08/02/day.txt

207 ./journal/02/08/04/day.txt

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-83425-4 - Talking with Computers: Explorations in the Science and Technology of Computing
Thomas Dean
Excerpt
More information

http://www.cambridge.org/9780521834254
http://www.cambridge.org
http://www.cambridge.org

1.2 EVERYDAY MAGIC
5

445 ./journal/02/08/08/day.txt

215 ./journal/02/08/12/day.txt

299 ./journal/02/08/16/day.txt

700 ./journal/02/08/24/day.txt

335 ./journal/02/08/30/day.txt

857 ./journal/02/08/31/day.txt

3846 total

The /u/tld/email/book % part was printed by the shell. It’s called the
“prompt” and when I’m in the shell window (the portion of my computer screen
dedicated to the shell) the cursor is positioned at the end of the prompt waiting for
me to type something. I’ve modified the shell – the shell is itself programmable –
so that the prompt always displays the default directory in which the shell looks
for files.

When I’m finished typing I signal the shell, usually by hitting the “return”
(or “enter”) key on my keyboard, to interpret what I just typed. The directory
/u/tld/email/ is where I generally store files related to my daily activities.
/u/tld/email/book/ is the temporary directory I created for files related to work-
ing on this book.

I typed wc -l ./journal/02/08/*/*.txt and then hit the return key as
part of my conversation with the shell and so indirectly with the operating system
running on klee. More often than not when you invoke one program, that pro-
gram invokes another program, and that program another, and so on, with some
programs possibly invoking several other programs at once. A computer operating
system is just another program, really a collection of many programs written (and
rewritten) by many different people. You can think of the operating system as the
accumulated wisdom of a host of very clever programmers who packed it with
everything they felt was fundamentally useful for building other programs.

Other programs, applications such as web browsers and word processors, are
run “on top of” or “under the control of” the operating system. The operating
system sees all and controls all; it’s only through the operating system that your
programs can get information from the outside world (through a local network or
the World Wide Web) or send files to printers or grab data stored on disks or CDs.
If this seems mysterious, don’t worry; it really is complicated. The good news is
that for the most part you don’t have to understand the details, since the operat-
ing system hides a lot of the computer’s complexities from the programmer. This
ability to hide complexity is essential in developing large complicated programs
and makes learning to program much easier.

The specific command I typed told the shell to run the program wc to
count lines (the -l argument) in the files specified by the pattern ./journal/

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-83425-4 - Talking with Computers: Explorations in the Science and Technology of Computing
Thomas Dean
Excerpt
More information

http://www.cambridge.org/9780521834254
http://www.cambridge.org
http://www.cambridge.org

6
TALKING WITH COMPUTERS

02/08/*/*.txt, where * is a “wildcard” that matches any string of characters.
With no perceptible pause, the shell printed out the next ten lines, which you
can think of as the answer to my question or the result of the computation. The
specified pattern matched nine files. Each of the first nine lines contains the name
of a file that matched the pattern preceded by the number of lines of text in that
file. For the first file listed, the first * matched 01 and the second * matched day.
The last line is the total number of lines of text in all of the files.

Let me say a few words about file systems and the strange strings of characters
containing slashes (/). A slash with no preceding text indicates the “root” directory;
as far we’re concerned, everything is stored under the root of the file system. The u
in /u/ is a symbolic link to the /home/ directory on the Brown file system where
the directories and files of computer users like me are stored. For the most part,
symbolic links are invisible to users but allow system managers to handle large
file systems more efficiently and transparently. The /u/tld/ designates my home
directory, where all my files are stored; my login name is tld for the initials of my
name, Thomas Linus Dean.

Most computer file systems are organized hierarchically. So, for instance, my
email directory /u/tld/email/ is one of many files and directories stored in my
home directory, and the directory /u/tld/email/book/ is one of many files and
directories stored in my email directory.

Files can be named absolutely with respect to the root directory or relatively
with respect to some other starting directory. When you’re in the directory
/u/tld/email/book/, ./journal/02/08/30/day.txt is a shorthand refer-
ence (or relative path name) for /u/tld/email/book/journal/02/08/30/day.
txt, which is the full name (or absolute path name) for the file. I keep all files for jour-
nal entries written in 2002 in ./journal/02/, all files for August 2002 in ./jour-

nal/02/08/, and all files for 30 August 2002 in ./journal/02/08/30/. If I
had typed wc -l ./journal/02/*/01/*.txt, the shell would have reported on
all journal entries written on the first day of some month in 2002.

Absolute and relative path names can be confusing until you’ve played with
them a bit, and even then you can easily get lost in a file system consisting of
thousands of directories, in the same way that you can get lost navigating in a col-
lection of web pages. For the most part, however, the nested, hierarchical directory
structure makes it relatively easy to keep track of where you are and is a useful way
to organize all sorts of data (including web pages). Consider these files from my
journal directory:

/u/tld/email/book/journal/02/year.txt

/u/tld/email/book/journal/02/year.htm

/u/tld/email/book/journal/02/08/month.txt

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-83425-4 - Talking with Computers: Explorations in the Science and Technology of Computing
Thomas Dean
Excerpt
More information

http://www.cambridge.org/9780521834254
http://www.cambridge.org
http://www.cambridge.org

1.2 EVERYDAY MAGIC
7

/u/tld/email/book/journal/02/08/month.htm

/u/tld/email/book/journal/02/08/30/day.txt

/u/tld/email/book/journal/02/08/30/day.htm

/u/tld/email/book/journal/02/08/31/day.txt

/u/tld/email/book/journal/02/08/31/day.htm

/u/tld/email/book/journal/02/09/month.txt

/u/tld/email/book/journal/02/09/month.htm

/u/tld/email/book/journal/02/09/01/day.txt

/u/tld/email/book/journal/02/09/01/day.htm

/u/tld/email/book/journal/02/09/02/day.txt

/u/tld/email/book/journal/02/09/02/day.htm

When listed this way, it’s hard to discern the organizational structure inherent
in calendars, though it’s there in the absolute path names if you look hard enough.
The underlying structure is similar to a tree, with files corresponding to leaves
and directories corresponding to branches. Figure 1.2 shows these files as a tree
(or, rather, the branch of the tree called /u/tld/email/book/journal/02/).
You can think of Figure 1.2 as grafted onto the tree rooted at / at the branch
/u/tld/email/journal/. The same basic tree-like structure that underlies hier-
archical file systems in most modern operating systems appears again and again in
computer science.

The incantation wc -l ./journal/02/08/*/*.txt really is a program of
sorts, albeit a short and rather cryptic one. That this short program called an-
other program wc is not at all unusual: most programming languages provide ac-
cess to all sorts of specialized programs. Even + in a language that allows 1 +

2 is a program (and not a simple one if you understand how computers handle
arithmetic).

Shells and other means of interacting with operating systems offer a wide range
of powerful programs that can be orchestrated to perform tasks. For example, the
next program (called a shell script) renames all files with the extension html to
have the extension htm. The HTML (“hypertext markup language”) files that com-
prise web sites are conventionally identified using either the three-letter extension
htm or the four-letter extension html. Both conventions are common in practice.
Unfortunately, some programs require one or the other exclusively and if your files
are in the wrong format, you have to convert them. I used the program ls (for “list
directory contents”) to list all of the files in the current directory prior to executing
the program to rename the files. After executing the program, I used ls again to
show that the shell script worked as advertised. In the remainder of this chapter,
I’ve simplified the prompt to just %; each appearance of % signals the beginning of
another typed command.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-83425-4 - Talking with Computers: Explorations in the Science and Technology of Computing
Thomas Dean
Excerpt
More information

http://www.cambridge.org/9780521834254
http://www.cambridge.org
http://www.cambridge.org

8
TALKING WITH COMPUTERS

year.txt year.htm

02/

day.txt

day.htm

month.txt

month.htm

30/

31/

08/

day.txt

day.htm

01/

02/

09/

month.txt

month.htm

day.txt

day.htm

day.txt

day.htm

Figure 1.2: Files and directories organized hierarchically in a tree-like structure

% ls

home.html syllabus.html

% ls | sed ’s/html//’ | awk ’{print ”mv ” $1 ”html ” $1 ”htm”}’ | sh

% ls

home.htm syllabus.htm

The program starts by listing the set of files with the extension html.1 Unix
programmers call the vertical bars (|) “pipes”: they convert the output of one pro-
gram, ls in this case, into the input to another program. The sed ’s/html//’

1 In this example, all the files in the current directory have the extension html. If they didn’t, we could
modify the shell script by telling ls to list only files with the extension html. For example, substituting
ls *.html for ls would do the trick here. We’ll learn more about shells and shell scripts in Chapter 2.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-83425-4 - Talking with Computers: Explorations in the Science and Technology of Computing
Thomas Dean
Excerpt
More information

http://www.cambridge.org/9780521834254
http://www.cambridge.org
http://www.cambridge.org

1.2 EVERYDAY MAGIC
9

home.htmlsyllabus.html

sed 's/html//'home. syllabus.

awk '{print "mv " $1 "html " $1 "htm"}'

mv home.html home.htm

mv syllabus.html syllabus.htm

sh

ls

Figure 1.3: Intermediate results flowing through pipes connecting one command to the next
in a shell script

part of the program takes each file name in turn and rips off the html part; the out-
put of sed ’s/html//’ is two truncated file names home. and syllabus.. The
next | causes these file names to be piped into the program fragment awk ’{print

”mv ” $1 ”html ” $1 ”htm”}’ that essentially writes two little programs that
are themselves shell scripts and look like mv home.html home.htm and mv syl-

labus.html syllabus.htm (mv is the “move” or “rename” command and re-
quires you to specify both the original and the new names of the file you’re renam-
ing). The output of awk ’{print ”mv ” $1 ”html ” $1 ”htm”}’ is fed into
the program sh (yet another shell – remember we’re already typing to one shell)
via the last | . Figure 1.3 illustrates how the intermediate results from the different
steps in this computation are piped from one step to the next.

If you think about it, this little program is pretty interesting despite its simple
task. The program actually wrote a couple of littler programs, started up a shell and
submitted those programs to the new shell to run, producing the desired outcome.
Programs that write and run other programs and even replicate or improve upon
themselves are relatively common, for example, computer viruses.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-83425-4 - Talking with Computers: Explorations in the Science and Technology of Computing
Thomas Dean
Excerpt
More information

http://www.cambridge.org/9780521834254
http://www.cambridge.org
http://www.cambridge.org

10
TALKING WITH COMPUTERS

With a few simple modifications, this program could change the names of
thousands of files stored in any number of directories and on any number of com-
puters. With just a little more work, you could write a program that would go inside
each of these files and change any reference in the text to a file with extension html

to have the extension htm. If you were maintaining a web site with thousands of
web pages spread across hundreds of directories, you might end up writing and
running similar programs frequently.

By the way, there’s always more than one way to solve any given programming
problem, and I certainly don’t claim that this shell script is the most elegant or
efficient way of handling renaming. We could, for example, eliminate awk from our
script and manage everything using sed, as in ls | sed ’s/\(.*\)html/mv

\1html \1htm/’ | sh. However, the most compact program is not always the
best: I find the original script clearer and more appealing, though I admit this is
an aesthetic judgment.

Let’s try something a little more complicated. Many web masters use a language
called Perl both to maintain web pages and to do computations for visitors to their
web pages. Suppose a bunch of your text files refer to dates in the format mm/dd/yy
and you want to change them so as to name months explicitly, perhaps to avoid
confusion with the alternative format dd/mm/yy. You might also want to try to
clear up the ambiguity of the century implied when only two digits are used for
the year. I just created a short text file of the sort I’d like to modify and I’ll get
the shell to print it out using cat, a Unix command for creating, displaying and
stringing together (or concatenating) files:

% cat dates.txt

The date 1/1/00 should be changed,

as should 12/31/1999 and 1/1/2002,

but not the file /usr/local/bin/.

I’ve written a little Perl program in a file called program.pl to perform the
conversion, and again I get the shell to print it out:

% cat program.pl

@month = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);

while ($_ = <ARGV>) {

s”\b(\d\d?)/(\d\d?)/(?:19)?(\d\d)\b”$month[$1-1] $2, 19$3”;

s”\b(\d\d?)/(\d\d?)/(?:20)(\d\d)\b”$month[$1-1] $2, 20$3”;

print ”$_”;

}

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-83425-4 - Talking with Computers: Explorations in the Science and Technology of Computing
Thomas Dean
Excerpt
More information

http://www.cambridge.org/9780521834254
http://www.cambridge.org
http://www.cambridge.org

	http://www:
	cambridge:
	org:

	9780521834254:

