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1

Probability Theory

1.1 Introduction

In this chapter we introduce probability theory using a measure-theoretic
approach. There are two main subjects that are closely related to eco-
nomics. First, the concept of σ -algebra is closely related to the notion
of information set used widely in economics. We shall formalize it. Sec-
ond, the concepts of conditional probability and conditional expectation
are defined in terms of the underlying σ -algebra. These are background
materials for understanding Wiener processes and stochastic dynamic
programming.

We keep proofs to the bare minimum. In their place, we emphasize
the intuition so that the reader can gain some insights into the subject
matter. In fact, we shall go over many commonly employed theorems on
conditional expectation with intuitive explanations.

1.2 Stochastic Processes

1.2.1 Information Sets and σ-Algebras

Let � be a point set. In probability theory, it is the set of elementary
events. The power set of �, denoted by 2�, is the set of all subsets of �.
For example, if the experiment is tossing a coin twice, then the set � is
{H H, H T, T H, T T }. It is easy to write down all 24 = 16 elements in
the power set. Specifically,

2� = {∅, {H H}, {H T }, {T H}, {T T }, {H H, H T }, {H H, T H},
{H H, T T }, {H T, T H}, {H T, T T }, {T H, T T }, {H H, H T, T H},
{H H, H T, T T }, {H H, T H, T T }, {H T, T H, T T }, �}.

1
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In general, the cardinality of the power set is 2|� |, where |�| is the
cardinality of the set �. Power sets are very large. To convince yourself,
let the experiment be rolling a die twice, a rather simple experiment. In
this simple experiment, |�| = 36 and the cardinality of the power set is
236 = 6.87 × 1010. It would be impractical to write down all elements in
this power set. What we are interested in is subsets of the power set with
certain structure.

Definition 1.1 A class F of subsets of �, i.e., F ⊂ 2�, is an algebra (or
a field) if:

(i) A ∈ F implies Ac ∈ F , where Ac is the complement of A in �.
(ii) A, B ∈ F imply that A ∪ B ∈ F .
(iii) � ∈ F (equivalently, ∅ ∈ F).

Conditions (i) and (ii) imply A ∩ B ∈ F, because A ∩ B =
(Ac ∪ Bc)c.

Definition 1.2 A class F of subsets of � is a σ -algebra if it is an
algebra satisfying

(iv) if Ai ∈ F, i = 1, 2, . . . , then
∞⋃

i=1
Ai ∈ F .

The Greek letter “σ” simply indicates that the number of sets forming
the union is countable (including finite numbers).

Any A ∈ F is called a measurable set, or simply, an F-set. We use
F to represent the information set, because it captures our economic
intuition. Conditions (i) through (iv) provide a mathematical structure
for an information set.

Intuitively, we can treat a measurable set as an observable set. An
object under study (ω ∈ �) is observable if we can detect that it has
certain characteristics. For example, let � be the set of flying objects and
let A be the set of flying objects that are green. Then Ac represents the set
of all flying objects that are not green. Condition (i) simply says that if, in
our information set, we can observe that a flying object is green (i.e., A
is observable), then we should be able to observe that other flying objects
are not green. That means Ac is also observable. Another example is this:
if we were able to observe when the general price level is rising, then
we should be able to observe when the general price level is not rising.
Formally, if A ∈ F , then Ac ∈ F .
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Condition (ii) says that, if we can observe the things or objects de-
scribed by characteristics A and those described by characteristics B,
then we should be able to observe the objects characterized by the prop-
erties of A or B. That is, A, B ∈ F imply A ∪ B ∈ F . For example, if
we are able to observe when the price level is rising, and if we are able
to observe the unemployment level is rising, then we should be able to
observe the rising of price level or rising unemployment. The same ar-
gument applies to countably many observable sets, which is condition
(iv). These mathematical structures make σ -algebras very suitable for
representing information.

It is clear that the power set 2� is itself a σ -algebra. But there are lots
of σ -algebras that are smaller than the power set. For example, in the ex-
periment of tossing a coin twice, F1 = {�, ∅, {H H} , {H T, T H, T T }}
and F2 = {�, ∅, {H H, T T } , {H T, T H}} are both algebras. The infor-
mation content of F1 is this: we can tell whether tossing a coin twice
ends up with both heads or otherwise. The information content of F2 is
this: we can tell whether both tosses have the same outcome or not. The
reader should try to find other algebras in this setup. An obvious one is
to “combine” F1 and F2. See the exercise below. We will return to these
two examples in Example 1.12 .

Exercise 1.2.1
(1) Verify that F1 and F2 are algebras.
(2) Show thatF1 ∪ F2, while containingF1 andF2, is not an algebra.
(3) Find the smallest algebra G that contains F1 and F2 in the sense

that for any algebra H which contains F1 and F2, then G ⊂ H.

Definition 1.3 A set function P : F →R is a probability measure if P
satisfies

(i) 0 ≤ P (A) ≤ 1 for all A ∈ F;
(ii) P (∅) = 0 and P (�) = 1;
(iii) if Ai ∈ F and the Ai ’s are mutually disjoint, then

P
(⋃∞

i=1 Ai

) = ∑∞
i=1 P(Ai ).

Property (iii) is called countable additivity. The triplet (�,F, P) is
used to denote a probability space.

Example 1.4 (Borel Sets and Lebesgue Measure) When � = R (the
whole real line) or � = [0, 1] (the unit interval), and the σ -algebra
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is the one generated by the open sets in R (or in [0, 1] ), we call this
σ -field the Borel field. It is usually denoted by B. An element in the Borel
field is a Borel set.

Examples of Borel sets are open sets, closed sets, semi-open, semi-
closed sets, Fσ sets (countable unions of closed sets), and Gδ sets (count-
able intersections of open sets). When � = [0, 1], B is the σ -algebra,
and P(A) is the “length” (measure) of A ∈ F , we can verify that P
is a probability measure on B. Such a measure is called the Lebesgue
measure on [0, 1].

However, not all subsets of R are Borel sets, i.e., not all subsets of
R are observable. For example, the Vitali set is not a Borel set. See, for
example, Reed and Simon (1972, p. 33). For curious souls, the Vitali set
V is constructed as follows. Call two numbers x, y ∈ [0, 1) equivalent if
x − y is rational. Let V be the set consists of exactly one number from
each equivalent class. Then V is not Lebesgue measurable.

A single point and, therefore, any set composed of countably many
points are of Lebesgue measure zero. The question then is this: Are sets
with uncountably many points necessarily of positive Lebesgue measure?
The answer is negative, and the best-known example is the Cantor set.

1.2.2 The Cantor Set

Since the Cantor set contains many important properties that are essen-
tial to understanding the nature of a Wiener process, we shall elaborate
on this celebrated set. The construction of the Cantor set proceeds as
follows. Evenly divide the unit interval [0, 1] into three subintervals. Re-
move the middle open interval, (1/3, 2/3), from [0, 1]. The remaining
two closed intervals are [0, 1/3] and [2/3, 1]. Then remove the two mid-
dle open intervals, (1/9, 2/9) and (7/9, 8/9), from [0, 1/3] and [2/3, 1]
respectively. Continue to remove the four middle open intervals from
the remaining four closed intervals, [0, 1/9], [2/9, 1/3], [2/3, 7/9], and
[8/9, 1], and so on indefinitely. The set of points that are not removed is
called the Cantor set, C.

Any point in the Cantor set can be represented by

∞∑
n=1

in

3n
, where in = 0 or 2.
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For example,

7

9
= 2

3
+ 0

9
+ 2

27
+ 2

81
+ 2

243
+ · · · ,

i.e., 7/9 = (2, 0, 2, 2, 2, . . . ). Similarly, 8/9 = (2, 2, 0, 0, . . . ), 0 =
(0, 0, 0, . . . ), 8/27 = (0, 2, 2, 0, 0, 0, . . . ), and 1= (2, 2, 2, . . . ). There-
fore, the cardinality of the Cantor set is that of the continuum. Since the
Lebesgue measure of the intervals removed through this process is

1

3
+ 1

9
· 2 + 1

27
· 4 + · · · =

∞∑
n=1

2n−1

3n
= 1,

the Cantor set must be of Lebesgue measure zero.
The main properties that are of interest to us are three. First, here is a

set with uncountably many elements that has a zero Lebesgue measure.
Second, every point in the Cantor set can be approached by a sequence of
subintervals that were removed. In other words, every point in the Cantor
set is a limit point. Such a set is called a perfect set. Third, for any interval
I ⊂ [0, 1], it must contain some subinterval that was eventually removed,
i.e., we can find a subinterval J ⊂ I such that J and the Cantor set C are
disjoint: J ∩ C = ∅. That is, C is nowhere dense in [0, 1]. These three
properties are the basic features of the zero set of a Wiener process, as
we shall see later.

1.2.3 Borel–Cantelli Lemmas

Definition 1.5 The limit superior and the limit inferior of a sequence of
sets {An} are

lim sup
n→∞

An =
∞⋂

n=1

∞⋃
k=n

Ak,

lim inf
n→∞ An =

∞⋃
n=1

∞⋂
k=n

Ak .

Simply put, x ∈ lim supn→∞ An means x belongs to infinitely many
Ak . In contrast, x ∈ lim infn→∞ An means x belongs to virtually all Ak,

in the sense that there exists N such that x ∈ Ak for k ≥ N . Since F is a
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σ -algebra, lim supn→∞ An ∈ F and lim infn→∞ An ∈ F if An ∈ F . By
definition, lim infn→∞ An ⊂ lim supn→∞ An.

Exercise 1.2.2 Let

An =
{[

0, 1 + 1
n

]
if n is even,[

0, 2 + 1
n

]
if n is odd.

Show that lim inf
n→∞ An = [0, 1] and lim sup

n→∞
An = [0, 2] .

Exercise 1.2.3 Let

An =
{[

0, 1
n

]
if n is even,[− 1

n , 0
]

if n is odd.

Show that lim inf
n→∞ An = lim sup

n→∞
An = {0} .

Exercise 1.2.4 Let A and B be subsets of �. Define

An =
{

A if n is even,
B if n is odd.

Show that lim inf
n→∞ An = A ∩ B, lim sup

n→∞
An = A ∪ B.

Theorem 1.6 Let An ∈ F . Then we have the following inequalities:

P
(

lim inf
n→∞ An

)
≤ lim inf

n→∞ P (An) ≤ lim sup
n→∞

P (An) ≤ P
(

lim sup
n→∞

An

)
.

Proof. See Billingsley (1995, Theorem 4.1). �

Corollary 1.7 If lim infn→∞ An = lim supn→∞ An = A, then limn→∞
P (An) = P (A) , i.e., if An → A, then P (An) → P (A).
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Theorem 1.8
(i) (The First Borel–Cantelli Lemma):

∞∑
n=1

P (An) < ∞ ⇒ P
(

lim sup
n→∞

An

)
= 0.

(ii) (The Second Borel–Cantelli Lemma) Suppose An are independent
events. Then

∞∑
n=1

P (An) = ∞ ⇒ P
(

lim sup
n→∞

An

)
= 1.

Proof. See Billingsley (1995, Theorems 4.3 and 4.4). �

Example 1.9 (Value Loss Assumption and Asymptotic Stability of Op-
timal Growth) While the Borel–Cantelli lemmas may appear abstract,
they have interesting economic applications. Recall that a standard
model in first-year graduate macroeconomics is the discrete-time
optimal growth problem: Let ct , kt , β, and f (k) be, respectively, per
capita consumption, capital–labor ratio, subjective discount factor, and
production function. Then the problem is to find an optimal consumption
program {ct} that solves

max
{ct }

∞∑
t=1

β t−1u(ct ), s.t. kt = f (kt−1) − ct ,

t = 1, 2, . . . , given k0 > 0.

The value loss assumption is employed to ensure the asymptotic stabil-
ity of optimal growth. By asymptotic stability we mean that the difference
between two optimal growth programs under two different initial stocks
will converge to zero. To prove such a strong result (independent of the
initial stock), a value loss assumption is employed. Specifically, we assign
a minimum value loss δ > 0 to each time period in which the two optimal
programs are parted by a distance at least ε > 0. The value loss assump-
tion makes it impossible to have infinitely many such periods (otherwise,
the program is not optimal), so that the asymptotic stability is possible.

To extend this theorem to stochastic cases, the first Borel–Cantelli
lemma comes in handy. Given ε > 0, let An be the set of points in �

such that, at time n, the difference between the realizations of these two
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optimal programs is at least ε > 0. We shall assign for each ω ∈ An a
minimal value loss δ > 0. Then the expected value loss at time n is at
least δP(An), and the total expected value loss is at least δ

∑∞
n=1 P(An).

This being an optimal program, the expected value loss cannot be
infinity. That is to say, the premise of the first Borel–Cantelli lemma
is valid:

∑∞
n=1 P(An) < ∞. It follows that P(lim supn→∞ An) = 0. In

words, the probability of those ω ∈ � that belong to infinitely many
An is zero. Thus, the time path of the difference between two optimal
programs converges to zero with probability one. The interested reader
is referred to Chang (1982) for more details.

1.2.4 Distribution Functions and Stochastic Processes

Definition 1.10 Let (�,F, P) and (�′,F ′, P ′) be two probability
spaces. Then T : (�,F, P) → (�′,F ′, P ′) is measurable if T −1(B) ∈
F for all B ∈ F ′. In particular, if �′ = R, F ′ = B (Borel field), and P ′

is Lebesgue measure, then T is a random variable.

The term T −1(B) represents the preimage of B, or the pullback of set
B. Recall that continuity of a mapping between two topological spaces
is defined as follows: the pullback of any open set in the image space
must be an open set in the domain. The concept of a measurable function
is defined similarly, i.e., the pullback of a measurable set in the image
space is a measurable set in the domain. A random variable is simply a
special case of measurable functions.

Definition 1.11 The distribution function of a random variable X, de-
noted by F (X ), is defined by

F (x) = P ({ω ∈ � : X (ω) ≤ x}) = P [X ≤ x]

( following Billingsley’s (1995) notation) or, for any Borel set A,

F (A) = P (X−1(A)) = P ({ω ∈ � : X (ω) ∈ A}).

Clearly, F (·) is defined on Borel field with image in R. Such a function
is called a Borel function.

Given a random variable X , there are many σ -algebras that can make
X measurable. For example, F is one. The σ -algebra generated by X ,
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denoted by σ (X ), is the smallest σ -algebra with respect to which X is
measurable; that is, σ (X ) is the intersection of all σ -algebras with respect
to which X is measurable. For a finite or infinite sequence of random
variables {X1, X2, . . . }, σ (X1, X2, . . . ) is the smallest σ -algebra with
respect to which each Xi is measurable.

Example 1.12 (Tossing a coin twice) Let

X1 =
{

0 if heads in both tosses,
1 otherwise,

X2 =
{

0 if same occurrence in both tosses,
1 otherwise,

.

Then σ (X1) = F1 = {�, ∅, {H H} , {H T, T H, T T }} and σ (X2) =
F2 = {�, ∅, {H H, T T } , {H T, T H}} . It is easy to show that
σ (X1, X2) = F1 ∪ F2 ∪ {{H H, H T, T H} , {T T }} . For example, if
A = {H H} ∈ F1 and B = {H H, T T } ∈ F2, then Ac ∩ B = {T T } ∈
σ (X1, X2). In words, if the result is “same occurrence in both tosses”
but not “heads in both tosses,” then it must be “tails in both tosses.”

Exercise 1.2.5 Let the experiment be rolling a die twice. Let X be the
random variable of the sum of the two rolls.

(1) Describe the probability space (�,F, P), i.e., spell out �, find
the smallest algebra F which makes X measurable, and let P be the
usual probability.

(2) Write down the distribution function F (x), and find F (A) when
A = {3, 4} .

(3) Let Y be the random variable that designates the larger of the two
rolls. Repeat (1) and (2).

Hint. In (1), first find X−1 ({i}) , i = 2, 3, . . . , 12, and then choose
F = σ (X ) = the smallest algebra generated by X.

If the distribution function F (x) has a derivative f (x), which is called
the density function of X , then f (x) satisfies the equation

F (A) =
∫

A
f (x) dx .
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Definition 1.13 A stochastic process {X (t) : t ∈ I } is a family of random
variables, where I is the index set. If I = Z (integers), then {X (t) : t ∈ I }
is called a discrete (time) stochastic process, a time series, or simply a
stochastic sequence. If I = [0, ∞) or [0, 1] , then {X (t) : t ∈ I } is called
a continuous (time) stochastic process.

A stochastic process can be thought of as a function defined on I × �,

i.e., X : I × � → R such that X : (t, ω) �→ X (t, ω) = Xt (ω) . For a
given t ∈ I , Xt (·) : � → R is a random variable. For a given ω ∈ �,

X (·, ω) : I → R is a function mapping from the index set I to R. Such
a function is called a sample function (a sample path, a realization, or a
trajectory). The range of the random variable X is called the state space,
and the value X (t, ω) is called the state at time t for a given draw ω ∈ �.
Thus, a sample function describes the states at different times for a given
draw ω ∈ �. Sample functions play an important role in understanding
the nature of a Wiener process.

Recall that the distribution function F (x) of a random variable X is
defined by F (x) = P [X ≤ x] . Similarly, the finite-dimensional distri-
bution function of a stochastic process {X (t) : t ∈ I } is given by

Ft1,t2,..., tn (x1, x2, . . . , xn) = P
[
Xt1 ≤ x1, Xt2 ≤ x2, . . . , Xtn ≤ xn

]
= P

[
n⋂

i=1

{
ω ∈ � : Xti ≤ xi

}]
.

In short, given a stochastic process, we can derive the entire family of
finite-dimensional distribution functions and there are uncountably many
of them. Is the converse true? That is, given a family of finite-dimensional
distribution functions, {Ft1,t2,..., tn (x1, x2, . . . , xn) : ti ∈ I, n ≥ 1}, satis-
fying some regularity conditions (symmetry and compatibility), can we
reconstruct a stochastic process and the underlying probability space such
that the distribution functions generated by the reconstructed stochastic
process are the ones originally given? The answer is affirmative and is
formulated as Kolmogorov’s existence theorem. See Billingsley (1995,
section 36).

There is another issue here. Two stochastic processes {X (t) : t ∈ I }
and {Y (t) : t ∈ I } are stochastically equivalent if, for all t ∈ I , X (t) =
Y (t) w.p.1, where “w.p.1” stands for “with probability one.” The
problem is: even with Kolmogorov’s theorem, we may come up with



P1: FHA
CB654-DVR CB654-CHANG.cls January 27, 2004 8:55

1.2 Stochastic Processes 11

two stochastically equivalent processes possessing the same finite-
dimensional distribution functions such that one has continuous sam-
ple functions while the other has discontinuous sample functions. For
example, let I × � = [0, 1] × [0, 1] and

X (t, w) ≡ 0, Y (t, w) =
{

1 if ω = t,
0 otherwise.

In other words, it takes more than finite-dimensional distribution func-
tions to determine the sample paths of a stochastic process. A concept of
separability is in order. The reader is referred to Billingsley (1995) for
details.

Mathematically, separability means countability. A stochastic process
is separable if a countable set of points of time in I (which is a continuum)
can determine the properties of the process. An important mathematical
result is that any stochastic process has a stochastically equivalent, sep-
arable process. Thus, for any family of finite-dimensional distribution
functions, there exists a separable process having the given family as its
finite-dimensional distribution functions. Unless otherwise specified, we
are dealing only with separable stochastic processes.

Last, but not least, we would like to know what ensures the continuity
of sample functions of a separable process. A sufficient condition is given
in the following

Theorem 1.14 (Kolmogorov–Čentsov). A stochastic process {X (t) : t ∈
[0, T ]} has continuous sample functions w.p.1 if there exist positive num-
bers a, b, c such that

E [|Xt − Xs |a] ≤ c |t − s|1+b

for all 0 ≤ s, t ≤ T .

Proof. See Karatzas and Shreve (1991, p. 53). �

Arnold (1974, p. 24) called this theorem the criterion of Kolmogorov.
It will become useful later when we try to show that a Wiener process
has continuous sample paths w.p.1.
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12 Probability Theory

1.3 Conditional Expectation

Given a probability space (�,F, P), the conditional probability of an
event A ∈ F under a condition B ∈ F is P (A | B) = P (A ∩ B) /P (B).
What we shall study in this section is P [A | E] and E [X | E] for a given
σ -algebra E ⊂ F .

1.3.1 Conditional Probability

We begin with a heuristic discussion. What kind of mathematical object
is a conditional expectation? First, we recognize that, in the end, we want
to make sense of expressions like E [E [X | E1] | E2], where E1 and E2

are two σ -algebras contained in F , and X is a random variable. If we
denote Y = E [X | E1] , then E [E [X | E1] | E2] = E [Y | E2] . Thus, if
E [E [X | E1] | E2] is defined, Y = E [X | E1] has to be a random variable.
That is, the conditional expectation is a random variable. Second, we
recognize that expectations and probabilities are connected through the
indicator function

IA (ω) =
{

1 if ω ∈ A,

0 if ω /∈ A.

More precisely, E [IA] = P (A). We would expect E [IA | E1] =
P [A | E1]. If E [IA | E1] is a random variable, then so must be P [A | E1].

Formally, the definition of conditional probability is defined as follows.
Let A, B be two events, i.e., A, B ∈ F . Suppose we can observe ω ∈ B or
ω ∈ Bc, but notω itself. (This is referred to as having partial information.)
Then we can ask the question: What is the probability of event A taking
place, given the observation B? That is, what is P (A | B)? Similarly,
what is P (A | Bc)?

We begin with the smallest σ -algebra E = {�, ∅, B, Bc}. We can
define

P [A | E] (ω) =
{

P (A | B) if ω ∈ B,

P (A | Bc) if ω ∈ Bc.

Even though we do not observe the realization of ω ∈ � itself, we can
calculate the random variable P [A | E]. Conversely, given P [A | E], we
know either ω ∈ B or ω ∈ Bc based on the value of P [A | E] . The only
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exception is when P (A | B) = P (A | Bc), but then, A and B are inde-
pendent.

In the formulation above, events B and Bc represent a partition of �.
The formulation can be extended to a family of events {B1, B2, . . . } that
partitions �. Let E be the σ -algebra generated by {B1, B2, . . . }. Then
the conditional probability of A ∈ F given E is

P [A | E] (ω) = P (A | Bi ) if ω ∈ Bi for some i.

In this way, P [A | E] : � → [0, 1] is a random variable.
It is easy to verify that the conditional probability thus defined satisfies

0 ≤ P [A | E] ≤ 1 w.p.1

and

P

[ ∞⋃
n=1

An | E
]

=
∞∑

n=1

P [An | E] if the An’s are mutually disjoint.

Proposition 1.15 P [A | E] is E-measurable and integrable, satisfying∫
B

P [A | E] d P = P (A ∩ B) for all B ∈ E . (1.1)

In particular, ∫
�

P [A | E] d P = P (A) .

Proof. For a formal proof, the reader is referred to Billingsley (1995). We
shall sketch the proof here. The measurability of P [A | E] comes from
the fact that the preimage of any interval (a, b) ⊂ [0, 1] is the union
of countably many (including finite number) B j ’s. Since each B j ∈ E ,
that countable union of B j ’s is also in E . To understand (1.1), we begin
with the simplest case, B = Bi for some i . In that case, ω ∈ Bi implies
P [A | E] (ω) = P (A | Bi ). Next, we assume B is the disjoint union of
B1 and B2. Then∫

B
P [A | E] d P = P (A | B1) P (B1) + P (A | B2) P (B2) = P (A ∩ B) ,


